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1. Introduction

To each idempotent;; of a semigroup T, there is associated, in a natural way,
a subsemigroup Tv of T. The subsemigroup Ttt is simply the collection of all
elements of T for which v acts as a two-sided identity. We refer to such a sub-
semigroup as an /-subsemigroup of T. We first establish some elementary proper-
ties of these subsemigroups with no restrictions on the semigroup in which they
are contained. Then we turn our attention to the semigroup of all continuous
selfmaps of a topological space. The /-subsemigroups of these semigroups are
investigated in some detail and so are the a-monomorphisms [3, p. 518] from one
such semigroup into another. Among other things, a relationship is established
between /-subsemigroups and a-monomorphisms. An analogous theory exists
for semigroups of closed selfmaps on topological spaces. A number of results are
listed for these semigroups with the proofs often deleted since, in many cases, the
situation is much the same as for semigroups of continuous functions.

2. Some elementary properties of /-subsemigroups

Let T be any semigroup and let v be any idempotent of T. It is an easy matter
to show that Tv = {a e T: av = va = a} is a subsemigroup of T and is, in fact, the
largest subsemigroup for which v acts as a two-sided identity. As we mentioned
before, we refer to Tv as an /-subsemigroup of T. Clifford and Preston observe in
[1, p. 22] that vT consists of all elements of T for which v is a left identity and,
of course, Tv consists of all elements of T for which v is a right identity.
Consequently

Tv = vTnTv = vTv.

Moreover, vT is just the principal right ideal of T generated by v and, similarly,
Tv is the principal left ideal which is generated by v. Thus, each /-subsemigroup
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[2] /-subsemigroups and oc-monomorphisms 147

of T is the intersection of the principal right ideal and the principal left ideal which
are generated by some idempotent of T.

Our first result gives a sufficient condition that one 7-subsemigroup be
embeddable in another.

LEMMA 2.1. Let v and w be any two idempotents of a semigroup T and

suppose that wv = v. Then the mapping which sends aeTv into aw is a mono-
morphism from Tv into Tw.

PROOF. First, we note that if a e Tv, then av = va = a and we have

(2.1.1) w{aw) = w(va)w = (wv)aw = vaw = aw = (aw)w.

Thus, w is a two-sided identity for aw and we have shown that the mapping (f>
denned <£(a) = aw for a e Tv is a mapping from Tv into Tw.
Using (2.1.1) again, we get

</>(a)$(fo) = awbw = a(w(bw)) = a((bw)w) = ab(ww) = abw = <l>(ab)

for all a, b e Tv. To complete the proof, we need only show that <j> is injective.
Suppose aw = bw. Then

a = av = awv = bwv = bv = b.

PROPOSITION 2.2. Let v and w be any two idempotents of a semigroup T.

Then the mapping which sends aeTv into aw is an isomorphism from Tv onto
Tw if and only if vw = w and wv = v.

PROOF. (Sufficiency) Define <j)(a) = aw and ij/(b) = bv for aeTv and b e Tw.
Then

((j> o ip)(b) = bvw = bw = b.

In a similar manner, {\j/ o <p) (a) = a for each a e Tv. These facts, together with
the previous lemma imply that <j> is an isomorphism from Tv onto Tw.

(Necessity) Now suppose the mapping <p defined by (j)(a) = aw is an isomor-
phism from Tv onto Tw. Since v is the identity of Tv and w is the identity of Tw we
immediately get

(2.2.1) vw = <p(v) = w.

We must show that wv = v as well. First, we show that wv e Tv. It is immediate
that (wv)v — wv. Moreover, from (2.2.1), we get v(wv) = (vw)v = wv. Thus v is a
two-sided identity for vw. That is to say, vw e Tv. Now since <f> is injective and
#(«;) = w, it is sufficient to show that <j>(wv) = w in order to complete the proof.
We again use (2.2.1) and get

<j)(wv) = wvw = ww = w.
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148 K. D. Magill, Jr. [3]

We eventually want to investigate in some detail the /-subsemigroups of
semigroups of continuous selfmaps. As we mentioned before, there is a close
connection between the /-subsemigroups of these semigroups and certain mono-
morphisms that we have considered previously. These are the oc-monomorphisms
which were introduced in [3]. In the course of these investigations two new
classes of topological spaces will emerge naturally and in order to have at our
disposal some helpful information about them we define them and discuss a few
elementary facts concerning them in the next section.

3. RS* spaces and conformable spaces

An S*-space was defined in [6] to be any 7\ space X with the property that
if F c X is closed and peX — F, then there exists a continuous selfmap/ of X
and a point qeX such that/(x) = q for xeF and/(p) # q. This is equivalent to
requiring that point inverses form a basis for the closed subsets of X. It was shown
in [6] that every completely regular Hausdorff space which contains an arc is an
S*-space and also that every O-dimensional Hausdorff space is an S*-space. By a
0 dimensional space, we mean one whose topology has a basis of sets which are
both closed and open. Our next definition singles out a subclass of the class of
S*-spaces.

DEFINITION 3.1. A space X is an RS*-space if each retract of X (i.e., subspace
which is the range of an idempotent continuous selfmap) is an S*-space.

Since every space is the range of its identity map, it is immediate that every
.RS*-space is also an S*-space. The next result shows that KS*-spaces are fairly
abundant.

THEOREM 3.2. The class of RS*-spaces includes all O-dimensional
Hausdorff spaces as well as all completely regular, Hausdorjj, locally arcwise
connected spaces.

PROOF. By Theorem 2 of [6, p. 296], every O-dimensional Hausdorff space
is an S*-space. This, together with the fact that the property of being O-dimensional
and Hausdorff is hereditary, implies that every O-dimensional Hausdorff space is
an RS*-space.

Now suppose X is completely regular, Hausdorff and locally arcwise connec-
ted and let V be the range of an idempotent continuous selfmap v of X. We must
show that V is an S*-space in the topology it inherits from X. Let {Hx: a e A}
denote the collection of all components of X. Then each Hx is open (as well as
closed) and arcwise connected. Thus v(HJ is arcwise connected and it follows
that v(Hx) is either a point or contains an arc for each a e A. We consider two
cases:

Case 1: Some v(Hx) contains an arc.
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[4] 7-subsemigroups and oc-monomorphisms 149

Case 2: N o u(//a) contains an arc.

If Case 1 holds, the conclusion is immediate since in that case, V is a completely
regular Hausdorff space which contains an arc and by Theorem 3 of [6, p. 296],
every such space is an S*-space. Suppose, on the other hand, Case 2 holds and
let p be any point of V. We show that p is isolated in V. Let HlZp be the component
to which p belongs. Since Case 2 holds, v{Hx ) is a point and since v is idempotent,
v(p) = p. Thus v(x) = p for each xeHx . Then for any qeHap — {p}, we have
u(<?) ^ q- This implies that q $ F since v is identity on V. Hence V n HXp — {p} and

since HXp is open in X, it follows that p is isolated in V. Thus, we see that when

Case 2 holds, V is discrete and is therefore an S*-space.

It is not difficult to produce an example of an S*-space which is not an

RS*-space. In [2] , de Groot proves the existence of 1-dimensional subspaces of

the Euclidean plane with the property that the only continuous selfmaps are the

constant maps and the identity function. None of these spaces are S*-spaces.

Denote any one of them by H and let X be the free union of H and an arc. By

Theorem 3 of [3 , p. 296], X is an S*-space. However, X is not an RS*-space since

H is a retract of X and is not an S*-space.

DEFINITION 3.3. A topological space X is said to be conformable if it is a

first countable S*-space and for each pair of compact, countable subspaces A and

B with both having exactly one imit point, there exists a continuous selfmap / of

X mapping A into B such that B —f(A) is finite.

Here, a locally Euclidean space will be a Hausdorff space with the property

that each point belongs to a neighborhood which is homeomorphic to some

Euclidean iV-space and we make no requirement that the dimensions of all these

neighborhoods be the same.

THEOREM 3.4. Every locally Euclidean space is conformable.

PROOF. It is evident that a locally Euclidean space X is first countable.

Furthermore it is completely regular (in fact it is locally compact) and contains

an arc and, as we noted previously, such spaces are S*-spaces. Now let A and B

be two compact, countable subspaces of X and suppose each has exactly one

limit point. Denote the limit point of A by p and the limit point of B by q. Since

X is locally Euclidean, there exists a neighborhood H of q which is homeomorphic

to one of the Euclidean iV-spaces and since B is compact, B — H is finite. Now

let / b e any bijection from A onto B (~\H which carries the point p onto q. Then

/ i s a continuous mapping from A into H. We let ocX denote any compactification

of X and note that since A is compact, the function / maps a closed subset of the

normal space <xX into H which is an absolute retract for normal spaces. Thus, /

can be extended to a continuous function which maps aX into H, The restriction
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g of this function to X is a continuous selfmap of X with the property that
B — g{A) is finite and this proves that X is conformable.

THEOREM 3.5. Every 0-dimensional metric space is conformable.

PROOF. Let X be any such space. As we noted previously, any 0-dimensional
Hausdorff space is an S*-space and, of course, X is first countable. Now let A
and B be compact, countable subspaces of X with unique limit points p and q
respectively. Denote the points of A - {p} by {«„}"= i and inductively choose a
sequence {Gn}"_ j of mutually disjoint clopen (i.e., both closed and open) subsets
of X with finite diameter such that for each n, Gn(~\A = {an} and the sequence
{dn}™= j converges to zero where dn is the diameter of Gn. Denote the points of
B — {q} by {&„}"= i and define a selfmap / of X by

f(x) = bn for xeGn

and

f(x) = g fo

It is immediate that / is continuous at each point of each Gn. Let

Since the sequence {(/„}"= i of diameters converges to zero, it follows that H is
closed and this implies that / is continuous at every point of X — H. We have
yet to check continuity at the point p. Let V be any neighborhood of the point q.
Then bn e V for n larger than some N. Now choose a neighborhood W of p such
that W n Gn = 0 for n ^ N. It follows that f(W) <= V and hence that / is con-
tinuous. This completes the proof since f(A) = B.

THEOREM 3.6. Let X be a compact metric space with an infinite number
of isolated points. Then X is conformable if and only if it is 0-dimensional.

PROOF. Sufficiency follows immediately from the previous theorem. Now
suppose that X is conformable. Since X is compact and has an infinite number of
isolated points, there exists a sequence {bn}™=1 converging to a point q where
each bn is isolated in X. Let B = ( u {bn}™=1) u {q} and let V be any connected
subset of X. Assume V has more than one point. Then V contains a sequence
{an}™=1 which converges to some point peV. Let A = (u{an}™=1) u{p} and
since X is conformable there exists a continuous selfmap/of X such that B —f(A)
is finite. Hence f(V) contains isolated points which is a contradiction since V is
connected. Thus, the only connected subsets of X are the singletons. Since any
compact totally disconnected space is 0-dimensional, the proof is complete.
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4. a-homomorphisms revisited

In our discussion of semigroups of continuous functions, we will need some
results which can be proven for rather general semigroups of functions. It seems
to be convenient to collect them in a separate section. We begin by recalling three
definitions from [3].

DEFINITION 4.1. Let X be any set and let F(X) be the semigroup, under
composition, of all selfmaps of X. An a-semigroup is any subsemigroup of F(X)
which contains the identity function and all the constant functions.

DEFINITION 4.2. Let S be an arbitrary semigroup. A Z-subsemigroup of S is
any subsemigroup T with identity v such that if vz = z for any left zero z of S,
then zeT.

DEFINITION 4.3. A homomorphism from a semigroup 5 into a semigroup Tis
an a-homomorphism if the image of S is a Z-subsemigroup of T. If the oe-homo-
morphism is injective, we refer to it as an a-monomorphism.

In our first result of this section, we prove a lemma which will play a fundamen-
tal role in our discussion of semigroups of continuous functions and also in our
discussion of semigroups of closed functions. Part of the result was almost proved
in [3] as Theorem (2.3) but not quite. Theorem (2.3) of that paper tells us that
if <j> is an a-monomorphism from a(X) into a(Y) where the latter are a-semigroups
of functions on X and Y respectively, then there exists a function j from X into Y
and a function k from Y into X such that

(i) koj = ix, the identity function on X

and

(ii) <Kf) = jofo k for all fe a(X).

We use this to prove the

FUNDAMENTAL LEMMA (4.4.) Let oc(X) and a(Y) be any two a-semigroups of

functions on the sets X and Y respectively and let cf> be an a-monomorphism
from a(X) into a(Y). Then there exists an idempotent element v of the semigroup
OL(Y) and a bijection hfrom the range V ofv onto X such that the following three
conditions are satisfied:

(4.4.1) 4>{f) = h-lofohov for each fea(X),

(4 4 2) hKr
for each xeX and fea(X),

(4.4.3) h~KfiX)) = </>(/)(V) for each fea(X).
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Moreover, the bijection h and the idempotent v are unique in the sense that if k
and w are any two functions such that<f>{f) = k~l ofokowfor each fea{X), then
k = h and w = v.

PROOF. From (ii), we conclude the existence of a function j from X into Y
and a function k from Y into X such that </>(/) = ; o / o k for all/ea(X). Further-
more, it is immediate from (i) that j is injective and we set h=j~l. Since
(f>(ix) = jo k = h~1o k and ix is idempotent, then h~lok is an idempotent
element of a(Y). We put h~*ok = v and get k = hov. It follows that <£(/)
= h~1ofohov for all/ in <x.(X). Moreover, since h =j~1, the domain 2)(/i) of h
is the range 5R(j) of j . Thus,

S)(h) = 3tC/) = 5R(./o it) = 9K») = K

and since j is injective from Z onto V, the function /i must be injective from V
onto X.

Now we verify (4.4.2). For any point aeX, the symbol <o> will denote the
constant function which maps all X into a. The same sort of notation will be used
to denote constant functions on Y but it will be clear from context whether the
domain of the function is X or Y. We will need to use the fact that

(4.4.4) <Kfl> = <fc-V)>

for each aeX. This follows immediately from (4.4.1). Now suppose that
beh-\f-l(x)). Then be V and b = h~\a) for s o m e a e / " ' ( 4 Thus,/(a) = x
which implies that/o <a> = <x>. Using this and (4.4.4), we get

It follows from this that <f>(f)(b) = h'1^) and this implies that

bevn(4tfy) \h~Kx)).

To prove the reverse inclusion, suppose that

Then (j>(f)(c) = h~l{x) and since c belongs to the domain of h, we may write
c = h~l(h(c)). Using these facts and also (4.4.4), we get

= <<Kf) (h-\
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Since <j> is injective, this implies that <x> = </(/J(C))> which, in turn, implies that
f(h(c)) = x. Thus, c e h~1(f~1(x)) and (4.4.2) has been verified. Since the verifica-
tion of (4.4.3) follows by using similar techniques, we omit it.

We conclude this section with a result which was essentially proved in [3]
although it is stated here in considerably more generality. The result shows that in
many cases one really gains very little by considering a-homomorphisms in place
of a-monomorphisms since in these cases a-homomorphisms are either injective
or they map everything onto a single left zero.

DEFINITION 4.5. A semigroup S(X) of selfmaps of X is said to be doubly
transitive if for points p,q,x,yeX with p # q, then there exists a function/ in
S(X) with f(p) = x and f(q) = y.

THEOREM 4.6. Let x(X) be any doubly transitive (/.-semigroup and let <j)
be any oc-homomorphism from <x(X) into an a-semigroup a(Y). Then either <f> is
injective or it maps everything onto a single left zero of cc(Y).

PROOF. Suppose that </> does not map everything onto a single left zero of
a(y). It readily follows from this that <j>(ix) is not a left zero where ix is the
identity of <x(X). Since the left zeros coincide with the constant functions, this
simply means that (f)(ix) is a nonconstant idempotent and hence has at least two
different elements p and q in its range. Then <f>(ix) is an identity for the constant
functions <p> and <g> and since cj> is an a-homomorphism, it follows that both
</>> and <<?> must belong to <f>(a(X)). One now completes the proof exactly as in
the proof of Theorem 4.1 of [3, p. 523].

5. Semigroups of continuous functions

We are now in a position to examine in some detail the /-subsemigroups and
a-monomorphisms of semigroups of continuous functions. The symbol S(X)
denotes the semigroup, under composition, of all continuous selfmaps of the
topological space X. Our first result shows, among other things that each I-
subsemigroup of S(X) is isomorphic to S(Y) for an appropriately chosen space Y.

THEOREM 5.1. Let v be any idempotent of S(X) with range V. Then the
mapping which sends f in S(V) intofov is an isomorphism from S(V) onto the
I-subsemigroup S(X)V.

PROOF. Since v is idempotent, it is the identity map on V. Thus,

DO (/O v)=fov = (/O v)OV

for each feS(V) which implies that foveS(X)V. Hence, the mapping <j> defined
by 4>(f) =fov does indeed map S(V) into S(X)V. The fact that v is the identity
on V also implies that
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fovo gov =fogov

for all/ ,geS(V) which means that <f> is a homomorphism. It is immediate that
it is injective. To show that it maps S(V) onto S(X)V, let g e S(X)V be given. Then
by definition,

gov = vog = g.

It readily follows that g maps V into V. In fact, it follows that g maps all of X
into V. Let /be the restriction of g to V. Then geS(V) and one easily shows that

¥J) = g.
Our next result involves S*-spaces and /?S*-spaces which were discussed

in Section 3. It gives algebraic conditions on the semigroups which are both
necessary and sufficient for embedding an S*-space into an RS*-space as a retract.

THEOREM 5.2. Let X be an S*-space and let Y be an RS*-space. Then
S(X) is isomorphic to an I-subsemigroup ofS(Y) if and only ifX is homeomorphic
to a retract of Y.

PROOF. First, suppose X is homomorphic to a retract V of Y. Then S(X) is
isomorphic to S(V) and by Theorem (5.1), S(V) is isomorphic to an /-subse-
migroup of S(Y).

Now suppose that S(X) is isomorphic to an /-subsemigroup S(Y)V of S(Y)
and denote the range of v by V. By Theorem (5.1), S(Y)V is isomorphic to S(V)
and hence, S(X) is isomorphic to S(V). Since both X and V are S*-spaces, it
follows from Theorem 1 of [6, p. 295] that X is homeomorphic to V.

Now we begin our discussion of a-monomorphisms for semigroups of con-
tinuous functions and we eventually relate these to the /-subsemigroups of such
semigroups. The next result follows very quickly from the Fundamental Lemma.

THEOREM 5.3. Let X be an S*-space, let Y be aTx space and let <f> be an
u-monomorphism from S(X) into S(Y). Then there exists a unique idempotent v
of S(Y) and a unique continuous bijection h from the range V of v onto X such
that

(5.3.1) 4>{f) = h-1ofohov

for each f in S(X).

PROOF. Since S(X) and S(Y) are both a-semigroups, the existence of a unique
idempotent v of S(Y) and a unique bijection h from V onto X satisfying (5.3.1)
follows immediately from the Fundamental Lemma (4.4). The fact that h is
continuous follows just about as quickly. As we observed in Section 3, preimages
of points under continuous selfmaps form a basis for the closed subsets of any
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S*-space. This, together with (4.4.2) and the fact that Y is a 7\ space guarantees
us that h is continuous.

COROLLARY 5.4. Let X be an S*-space and Y a Tl space and suppose that
there exists an a-monomorphism from S(X) into S(Y). Then X is a continuous
image of Y.

PROOF. In the previous theorem, hov maps Y continuously onto X.
It is appropriate to remark at this point that Theorem (5.3) does not comple-

tely determine the a-monomorphisms from S(X) into S(Y). It tells us that each
a-monomorphism uniquely determines a pair of functions v and h satisfying
certain conditions which include (5.3.1). However, there are such functions which
do not result in an a-monomorphism from S(X)into S(Y). To be somewhat more
specific, it is not difficult to produce an S*-space X, a Tx space Y, a continuous
idempotent c o n 7 and a continuous bijection h from V onto X such that the
mapping (f> defined by (5.3.1) is not an a-monomorphism. The difficulty is that
even though / i s continuous on X, <j)(f) may not be continuous on Y. If, however
one takes h to map V homeomorphically onto X rather than just continuously,
the resulting function <j> will map S(X) into S(Y) and it is routine to show that it
is an a-monomorphism. Consequently, if we could show that the continuous
bijection h of Theorem (5.3) must actually be a homeomorphism, then the a-
monomorphisms would be completely determined. The next example shows
however, that we cannot hope to do this is general.

EXAMPLE 5.5. Let X be any nondiscrete space and let Y be the free union
of a collection {Zx: a e A} of spaces where card A = card X. Choose pa e Za for
each a and define v(z) =pa for each zeZx. Then v is a continuous idempotent
on 7 and its range V is discrete. Since card V= card X, we can choose a bijection
h from V onto X. It will be continuous but not a homeomorphism since X is not
discrete. Now define a mapping <f> by

(j>(J) = h~1ofohov.

The assertion is that <j> is an a-monomorphism from S(X) into S(Y). To see this,
factor (j> into two mappings 9 and \j/. That is, define

for each / in S(X) and define

6(g) = gov

for each g e S(V). Since V is discrete every selfmap of V is continuous so \j/ does
map S(X) into S(V). Moreover, Theorem (5.1) assures us that 6 maps S(V) into
S(Y). Consequently, $ = 0oi/r maps S(X) into S(Y). One then verifies easily
that (j> is an a-monomorphism.
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The next several results are concerned with cases where the bijection h of
Theorem (5.3) must necessarily be a homeomorphism. In such cases, of course,
we will have completely determined the a-monomorphisms. The first result
follows quickly from Theorem (5.3).

THEOREM 5.6. Let X be a Hausdorff S*-space and let Y be a compact 7\
space. Then for each a-monomorphism </> from S(X) into S(Y) there exists a
unique idempotent v of S(Y) and a unique homeomorphism h from the range V
of v onto X such that

(5.6.1) 4>{f) = h~1ofohov

for each f in S(X).

PROOF. The existence (and uniqueness) of the continuous idempotent v and
the continuous bijection h is an immediate consequence of Theorem (5.3). But
since V is the continuous image of Y under v it must also be compact and since X
is Hausdorff, the continuous bijection h must actually be a homeomorphism.

The next result shows that there are a number of instances where Y is not
compact but h must still be a homeomorphism.

THEOREM 5.7. Let X be any conformable space and let Y be any first
countable Tx space which is not the union of an infinite number of mutually
disjoint nonempty open subsets. Then for each a-monomorphism <p from S(X)
into S(Y), there exists a unique idempotent v of S(Y) and a unique homeomor-
phism h from the range V of v onto X such that

(5.7.1) <t>(f) = h-'ofohov

for each f in S(X).

PROOF. The existence, uniqueness and continuity of the functions v and h
follow immediately from Theorem (5.3). To complete the proof, we need only
show that h"1 is continuous and since X is Tu we can do this using sequences.
Suppose {an}™=, is a sequence in X which converges to a point peX. We must
show that limh~1(att) = h~\p). Now since Y is not the union of an infinite
family of mutually disjoint nonempty open subsets any discrete continuous image
of Y must be finite. Consequently, the subspace V must either be finite or it
contains a limit point q. In the former case, it follows immediately that h is a
homeomorphism so we may assume that V has a limit point q. Furthermore,
since Y is first countable, there exists an infinite sequence of distinct points in V
converging to q. In other words, V contains a compact, countable subset B with
exactly one limit point q. Since h is continuous and injective, h(B) is a compact,
countable subset of X with exactly one limit point h(q). Denote the points of the
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sequence {an}™=1 together with its limit point by A. Then A is also a compact,
countable subset of X with exactly one limit point and since X is conformable,
there exists an element/in S(X) mapping h(B) into A such that A —f(h(B)) is
finite. Thus, there is a positive integer N such that an ef(h(B)) for each n > N.
For each such n, choose bneB such that

(5.7.2) f(h(bn)) = an

then {£„}"= i is an infinite sequence of distinct points of B and must therefore
converge to the unique limit point q of B. Finally, since v is idempotent, it is the
identity map on V and hence on B. It follows from this and (5.7.1) and (5.7.2) that

(5.7.3) h ~ \an) = * ~»o/o A o v(bn) = <£(/) (bn)

for n> N. Since </>(/) is continuous and {bn}™= t converges to q, the sequence
W - i must converge to <£(/)(?)•

But

(5.7.4) 4>(f) {q) = h-'ofoho v(q) = h ' Kf(h{q))) = h~\p).

We have used the fact that / maps the unique limit point h(q) of h(B) into the
unique limit point p of A. This is a consequence of the fact that A -f(h(B)) is
finite. Thus, (5.7.3) and (5.7.4) together imply that lim/T1^,,) = h~l(p) and hence
that h"1 is continuous. This completes the proof.

We remark that in view of Example (5.5), one cannot hope to prove Theorem
(5.7) if one deletes the requirement that Y must not be the union of an infinite
number of mutually disjoint nonempty open subsets.

The next several results relate a-monomorphisms to /-subsemigroups.

THEOREM 5.8. Let X be a Hausdorff S*-space and let Y be a compact T,
space. Then a monomorphism <j> from S(X) into S(Y) is an cc-monomorphism if
and only if the image of S(X) under (j> is an I-subsemigroup of S(Y).

PROOF. (Sufficiency). Suppose ^ is a monomorphism which maps S(X) onto
some /-subsemigroup S(Y)V of S(Y). In order to conclude that <j> is an a-mono-
morphism, we must show that S(Y)V is a Z-subsemigroup of S(Y). But this is an
immediate consequence of Definition (4.2) and the fact that S(Y)V is the family
of all functions in S( F) for which v serves as a two-sided identity.

(Necessity). Now let <f> be an a-monomorphism from S(X) into S(Y).
According to Theorem (5.6) there exists an idempotent v of S(Y) and a homeo-
morphism h from the range V of v onto X such that

(5.8.1)

for each/in S(X). Now the mapping ift which sends feS(X) into h~1ofo h is an
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isomorphism from S(X) onto S(V) and the mapping 6 which sends g e S(V) into
gov is, according to Theorem (5.1), an isomorphism from S(V) onto S(Y)V. Thu
(j> = 6oil/ is a monomorphism from S(X) onto S(Y)P and the proof is complete.

The proof of the following result is deleted since it is identical to the proof of
the preceeding theorem with the exception that one appeals to Theorem (5.7) in
place of Theorem (5.6).

THEOREM 5.9. Let X be any conformable space and let Y be any first
countable 7\ space which is not the union of an infinite number of mutually
disjoint nonempty open subsets. Then a monomorphism <j) from S(X) into S(Y)
is an a-monomorphism if and only if the image of S(X) under <p is an I-
subsemigroup of S(Y).

The next result follows immediately from Theorems (5.8) and (5.2) and the
one after that follows immediately from Theorem (5.9) and (5.2).

THEOREM 5.10. Let X be a Hausdorfi S*-space and let Y be a compact
RS*-space. Then the following statements are equivalent.

(5.10.1) There exists an a-monomorphism from S(X) into S(Y).

(5.10.2) S(X) is isomorphic to an I-subsemigroup of S(Y).

(5.10.3) X is homeomorphic to a retact of Y.

THEOREM 5.11. Let X be any conformable space and let Y be any first
countable RS*-space which is not the union of an infinite number of mutually
disjoint nonempty open subsets. Then the following statements are equivalent.

(5.11.1) There exists an a-monomorphism from S(X) into S(Y).

(5.11.2) S(X) is isomorphic to an I-subsemigroup of S(Y).

(5.11.3) X is homeomorphic to a retract of Y.

REMARK: Theorem (4.6) tells us that if an a-semigroup is doubly transitive
then those a-homomorphisms mapping it into another a-semigroup are of a
rather trivial nature if they are not injective. Those topological spaces X for
which S(X) is doubly transitive are called F-spaces in [3]. Among other things,
it is shown that every completely regular, Hausdorff, arcwise connected space is a
F-space as well as every 0-dimensional Hausdorff space. For such spaces, nothing
it lost by restricting one's attention to a-monomorphisms rather than to <x-
homomorphisms.

6. Semigroups of a-monomorphisms

In this section we prove that the composition of any two a-monomorphisms
is an a-monomorphism and we use the results of the previous section to describe
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the semigroup of all a-monomorphisms on various semigroups of continuous
functions.

LEMMA 6.1. Let S,T and L be arbitrary semigroups, let <p be an a-

monomorphism from S into T and let 9 be an a-monomorphism from T into L.
Then 9o(j> is an a-monomorphism from S into L.

PROOF. The existence of <j> and 9 implies that both S and T have identities
and we denote these by i and j respectively. Now suppose that

(6.1.1) ((0o0))(i))z = z

for some left zero z of L. We must show that ze(9o (j))(S). First of all, we have
j4>(i) = ${i) which implies that

(6.1.2)

This, together with (6.1.1) results in

(6.1.3) (9(j))z = z

and since 9 is an a-monomorphism, it follows that 9(a) = z for some a e T.
Moreover, since z is a left zero of 9(T) and 6 is an isomorphism from T onto 9(T),
we conclude that a is a left zero of T. Next, we show that

(6.1.4) (<t>(i))a = a

Since 9 is injective and 9(a) = z, this can be accomplished by showing that
O)a) = z- We use (6.1.1) and get

Wa) - (W)))z = z.

Thus, (6.1.4) is verified and since <j> is an a-monomorphism, it follows that <j>(b) = a
for some b e S. Then (9o (f>)(b) = z and the proof is complete.

It follows from Lemma (6.1) that the collection of all a-monomorphisms
mapping a semigroup T with identity into itself is a semigroup under composition.
Moreover, there is no possibility of this collection being empty since every auto-
morphism of T is an a-monomorphism. We look a bit closer at the semigroup of
all a-monomorphisms on S(X). First, let X be an arbitrary topological space and
let E(X) denote the collection of all pairs (v, h) where v is an idempotent con-
tinuous selfmap of X and h is a homeomorphism whose domain is the range V
of v and whose range is all of X. Let (v, h) and (w, k) be two such pairs. It is a
routine matter to show that / i ^ o w o / j o i n s a n idempotent element of S(X) whose
range is h~1(W) where W is the range of w. Since the domain of ko h is also
h~l{W) and its range is X, the pair

OD, koh)
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belongs to E(X). Thus the multiplication defined by

(v,h)(w,k) = (h~iowohov, koh)

is an associative binary operation on E(X) and from now on when we speak of
E(X) we mean the semigroup with this multiplication.

THEOREM 6.2. Let X be a compact Hausdorfi S*-space. Then the semigroup
of all (x-monomorphisms mapping S(X) into S(X) is isomorphic to the semigroup
E(X).

PROOF. Let T denote the semigroup of all a-monomorphisms mapping S(X)
into S(X) and let $ be an element of T. According to Theorem (5.6), there exists a
unique idempotent v in S(X) and a unique homeomorphism h from the range V
of v onto X such that

(6.2.1)

for each /eS(Z) . We define a mapping <5 from T into E(X) by

(6.2.2) 4>(0) = (v, h).

Suppose that O(<£) = (v,h) and <D(0) = {w,k). This means that (6.2.1) holds for
each / in S{X) and also that

(6.2.3)

for each / in S(X). It follows from (6.2.2) and (6.2.3) that

(6.2.4) (<|ioe)(/)=(kol!)-1o/o(ko(i)o(/i-1owoliOD)

and this implies that

(6.2.5) $(<|>oe) = (r1owofeoi),lco/i)

thus,

0) = {h~lowohov, koh) = (v,h)(w,k) =

This shows that ^ is a homomorphism. It is immediate that $ is injective and it is
onto since for any pair (u, () e E(X), the mapping which sends / into t~1 o /o fo u
is an a-monomorphism a and <£((T) = (w, t).

The following result is proved just as we proved the previous one with the
exception that Theorem (5.7) is used in place of Theorem (5.6).

THEOREM 6.3. Let X be any conformable space which is not the union of
an infinite number of mutually disjoint nonempty open subsets. Then the
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semigroup of all tx-monomorphisms mapping S(X) into S(X) is isomorphic to
the semigroup E(X).

REMARKS: For any space X, the mapping <j> which sends (v,h)eE(X) into
ft"1 is a homomorphism from E(X) onto the semigroup of all homeomorphisms
mapping X into X which, of course, is a subsemigroup of S(X) and it contains
the group G(X) of units of S(X). The group G{X) is simply the group of all
homeomorphisms mapping X onto X. Thus, for any space X satisfying the
hypothesis of either of the previous two theorems, the semigroup of all a-mono-
morphisms mapping S(X) into S(X) maps homomorphically onto a subsemigroup
of S(X) which contains the group G(X).

The semigroup E(X) is generally not a group. Its identity is (ix, ix) where ix is
the identity map on X. One easily shows that an element (u, h) in E(X, has an
inverse if and only if v = ix and h is a homeomorphism from X onto X. Thus,
the group of units of E{X) is

{('x> A): /»is a homeomorphism from X onto X}

and the mapping <f> which sends (v, h) into h'1 maps this group isomorphically
onto the group G(X) of units of S(X).

It is not all difficult to find examples where E{X) is not a group. The closed
unit interval J is one such example. Define

v(x) = x for 0 g x g i

v(x) = i for | < x ^ 1

ft(x) = 2x for 0 g x ^ i .

Then (u, ft) e £(J) and is not a unit. £(/?) where K is the space of real number is,
however, a group and is therefore isomorphic to the group of all homeomorphisms
mapping R onto R. To see this, suppose that (v, h) e E{R). Then v is an idempotent
continuous selfmap of R and h maps its range V homeomorphically onto R. Now
the range of a continuous idempotent in any HausdorfT space is closed and the
only closed subspace of R which is homeomorphic to R is R itself. This forces V
to be identical to R. Thus, v = ix and h is a homeomorphism from R onto /?.
This means, as we observed previously, that (v,h) has an inverse. One more
observation: the space R is, in view of Theorem (3.5), a conformable space and it
is certainly not the union of an infinite number of mutually disjoint nonempty
open subsets. Thus, R satisfies the hypothesis of Theorem (6.3), so that the
semigroup of all a-monomorphisms mapping S(R) into S(R) is isomorphic to
E(R) and is therefore a group. All this is just another way of saying that each
a-monomorphism from S(R) into S(R) is actually an automorphism. This also
follows directly from Theorems (3.5) and (5.7), and the fact that the only closed
subset of R which is homeomorphic to R is R itself.
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7. Semigroups of closed functions

By a closed function mapping a topological space X into itself we mean any
function / mapping X into X such that f(H) is closed whenever H is closed. We
stress the fact that here a closed function is not assumed to be continuous. The
family of all closed selfmaps of I is a semigroup under composition and we
denote it by T(X). Such semigroups and also related semigroups have been
investigated in [4], [7], [8] and [9]. In this section, we obtain results for F(X)
which are analogous to various results obtained for S(X) in the preceeding two
sections. In most cases, the proofs are extremely similar to those given for S(X)
and we will often simply make a remark to that effect when we feel that it is
appropriate. The first result is a prime example as its proof follows just as the
proof of Theorem (5.1).

THEOREM 7.1. Let X be any topological space and let v be any idempotent
of T(X) with range V. Then the mapping which sends f in F(V) into fov is an
isomorphism from F(V) onto the I-subsemigroup T(X)V.

Before we get the analogue to Theorem (5.2), we need a lemma.

LEMMA 7.2. Let X be a 7\ space. A subspace V of X is the range of an
idempotent in F(X) if and only if V is closed.

PROOF. It is immediate that if V is the range of an idempotent closed selfmap
(in fact, any closed selfmap will suffice) then V is closed. On the hand if V is
closed, we choose any point peV and define

v(x) = x for x 6 V

v(x) = p for x e X - V.

Then for any closed subset H of X, we have

v(H) = v(Hn V) U v(H - V).

Now v(H C\V) = H C\V which is closed and v(H — V) is either [p] or empty.
In either event, v(H) is closed.

THEOREM 7.3. Let X and Y be Tt spaces. Then F(X) is isomorphic to an
I-subsemigroup ofT(Y) if and only if X is homeomorphic to a closed subspace
ofY.

PROOF. First, suppose that X is homomorphic to a closed subset V of Y.
Then F(X) is isomorphic to F(K). By the previous lemma, there is an idempotent
veF(Y) whose range is V and hence, by Theorem (7.1), F(V) is isomorphic to
T(Y)V. Thus, T(X) is also isomorphic to F(Y)V.
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Now suppose that T(X) is isomorphic to some F(Y)U. We use Theorem (7.1)
to conclude that F(X) and F(V) are isomorphic where, as before, V is the range of
v. Then V is closed and by Theorem (2.10) of [4, p. 512], it is homeomorphic to X.

THEOREM 7.4. Let X and Y be two Tl spaces. Then for any a-monomorphism
</> from F(X) into F(Y), there exists a unique idempotent v of f(Y) and a unique
continuous bijection h from the range V of v onto X such that

(7.4.1) 4>{f) = h"lofohov

for each f in T{X).

PROOF. Since X and Y are Tx spaces both V(X) and V{Y) are a-semigroups
so we may appeal to the Fundamental Lemma (4.4) just as in the proof of
Theorem (5.3). In this case also, the only thing we really need to do is to show
that h is continuous. Let H be any closed subset of X. According to Lemma (7.2),
there is a function/(in fact, an idempotent) in V(X) such that H = f(X). Then we
use (4.4.3) to get

Now V is closed in Y since it is the range of the closed idempotent v. Thus 4>(f)(V)
is closed since <£(/) is a closed function.

COROLLARY 7.5. Let X and Y be Tl spaces and suppose that there exists an
a-monomorphism from F(X) into F(Y). Then X is a continuous image of Y.

The proof of the next result follows immediately from Theorem (7.4). Just as
Theorem (5.6) follows from Theorem (5.3).

THEOREM 7.6. Let X be a Hausdorff space and let Y be a compact 7\
space. Then for any a-monomorphism <j> from F(X) into F(Y), there exists a
unique idempotent v of F(Y) and a unique homeomorphism hfrom the range V
of v onto X such that

(7.6.1) 4>{f) = h'lofohov

or each f in T{X).

THEOREM 7.7. Let X be Hausdorff and let Y be a compact TY space. Then
a monomorphism (j) from T(X) into r(Y) is an a-monomorphism if and only if
the image ofT{X) under (j> is an I-subsemigroup of F(Y).

The proof is analogous to the proof of Theorem (5.8) using Theorems (7.6)
and (7.1) in place of Theorems (5.6) and (5.1).

Theorem (7.7) then combines with Theorem (7.3) to give
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THEOREM 7.8. Let X be Hausdorff and let Y be a compact T, space. Then
the following statements are equivalent.

(7.8.1) There exists an a-monomorphism from T(X) into T{Y).

(7.8.2) T(Z) is isomorphic to an I-subsemigroup ofF(Y).

(7.8.3) X is homeomorphic to a closed subspace of Y.

Now let X be any space and let H(X) denote the collection of all pairs (v, h)
where v is an idempotent closed selfmap and h is a homeomorphism whose
domain is the range of v and whose range is all of X. Define the product of two
such pairs (just as in the case for continuous functions) by

(v,h)(w,k) = (h~1o wohov, koh).

Then H(X) is a semigroup with this multiplication and we can now state the
analogue of Theorem (6.2) for semigroups of closed functions.

THEOREM 7.9. Let X be a compact Hausdorff space. Then the semigroup
of all tx-monomorphisms mapping T{X) into T(X) is isomorphic to the semigroup
H(X).

The proof is analogous to the proof of Theorem (6.2) using, of course,
Theorem (7.6) in place of Theorem (5.6).

REMARK: In a Tx space X, every selfmap with finite range is a closed function.
It readily follows from this that F(X) is doubly transitive so Theorem (4.6)
implies that if X and Y are any two T1 spaces, then any nonconstant a-homomor-
phism from T(X) into F(7) must necessarily be injective.

8. Homomorphisms which are not ot-homomorphisms

We have devoted a considerable amount of space to discussing a-homo-
morphisms (or somewhat more accurately, a-monomorphisms) so it seems
appropriate to devote a little space to the discussion of some "natural" homo-
morphisms which are not a-homomorphisms. We begin with what is perhaps the
simplest example.

EXAMPLE 8.1. Let X be any topological space and let Y be any space with
more than one point. Choose any nonconstant idempotent v of S(Y) (the identity
will suffice) and map all of S(X) into v. Choose any point a in the range of v. Then
i;o<a> = <a> but the constant function <a> does not belong to the image of S(X)
under the homomorphism. Consequently, it is not an a-homomorphism. In
exactly the same manner, one constructs homomorphisms from F(X) into F(Y)
which are not a-homomorphisms.
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EXAMPLE 8.2. Let X be any topological space and let Y denote the discrete
space whose elements are all the function in S(X). Then S(Y) consists of all
selfmaps of Y and we define a mapping </> from S(X) into S(Y) as follows:

(<Kf))(g)=fog

for all feS(X) and geY(= S(X)). It is well known that <j> is a monomorphism
from S(X) into F(7). However, <f> is not an a-monomorphism. First of all,
<j>(ix) = iy where ix and iY denote the identity functions on X and Y respectively.
Then in order for (f> to be an a-monomorphism, every left zero would have to
belong to (j>(S(X)). But there are many left zeros which do not satisfy this. In
fact, the only ones which do are those constant functions on Y which map every-
thing onto some element of Y which, itself, is a constant function on X. So, in
order to get a left zero of S(Y) which is not in <j)(S(X)), one need only choose any
nonconstant function / in S(X) and then take that selfmap of Y which maps
everything into that point. The latter discussion carries through entirely for the
semigroups F(X) and r(7).

EXAMPLE 8.3. Let X be any completely regular noncompact Hausdorff
space and let fiX denote its Stone-Cech compactification. By the well known
property of fiX, each/in S(X) has a unique extension to a function/* in S(PX).
We define <f>(f) = /* . Since/*og* and (fog)* agree on the dense subspace X, it
follows that/*o#* = (fog)*. Thus, </> is a homomorphism and it is immediate
that it is injective. Let i be the identity on X and j the identity on fiX. Then
<j)(i) = j and to show that </> is not an a-monomorphism, it is sufficient to produce
a left zero of S(fiX) which is not in <f>(S(X)). To do this, choose any point in
fiX — X and take the constant function which maps everything into that point.

One can combine the techniques in the previous two examples and prove
that any semigroup can be embedded in 5(7) where Y is a suitably chosen
compact Hausdorff 0-dimensional space (and hence an S*-space — even an RS*-
space). This was also observed in [5, p. 110]. One first adjoins an identity to T
(if T does not already have one) getting a semigroup T1. Then one embeds T1

into S(TX) as in Example (8.2). T1 is assumed to have the discrete topology.
Finally, one embeds S(TX) into S(PT1) as in Example (8.3). It follows, in particular,
that for any noncompact Hausdorff S*-space X, there exists a compact Hausdorff
0-dimensional space Y such that S(X) can be embedded in S(Y). This, of course,
can never be done with an a-monomorphism in view of Corollary (5.4). As for
semigroups of closed functions, the previous devices allow us to take any noncom-
pact Tt space X and embed T(X) into S(PY) where Y is T(X) topologized with
the discrete topology. However, every continuous selfmap on a compact
Hausdorff space is also a closed selfmap so S(fiY) is a subsemigroup of F(/?7).
Thus T(X) can be embedded in the semigroup of all closed selfmaps of a compact
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Hausdorff space. Corollary (7.5) tells us that this cannot be done with an a-
monomorphism.
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