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Abstract. Nonlinear quantum Hall-MHD equations for a warm dense magneto-
plasma with an anisotropic electron pressure are derived. The nonlinear equations
include the quantum force associated with electron tunneling effects. The newly
found equations can be used to investigate the dense plasma stability, as well as
different types of waves, instabilities, and nonlinear structures in a warm dense
magnetoplasma.

In a dense quantum Fermi plasma, the electrons are degenerate and the cor-
responding electron distribution obeys Fermi–Dirac statistics. In such a dense
plasma, the governing quantum kinetic equation [1, 2], deduced from the Wigner
equation [3], accounts for the electron degeneracy. In the past, several authors
have studied the linear properties of electrostatic waves in unmagnetized [4,5] and
magnetized [6–8] plasmas containing degenerate electrons.
Recently, there has been a renewed interest in investigating waves [9–14], instabil-

ities [15,16] and turbulence [17], as well as coherent nonlinear structures [18–20] at
nanoscales in dense quantum plasmas. The latter are ubiquitous in astrophysical
bodies [21–23] (e.g. the interior of white dwarfs, magnetars, supernovae, etc.) and
in intense laser–solid density plasma interaction experiments [24–26].
In this letter, we present nonlinear quantum Hall-MHD equations for a warm

dense magnetoplasma in which the degenerate electrons have a pressure anisotropy.
This may arise when the electrons are heated by intense electromagnetic and
neutron beams in a dense magnetoplasma.
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Let us suppose that our dense Fermionic plasma is embedded in an external
magnetic field ẑB0 , where ẑ is a unit vector along the z-axis, and B0 is the strength
of the magnetic field. In the presence of electromagnetic fields, the dynamics of the
inertialess hot electrons is governed by

0 = −nee

(
E+

1
c
ue × B

)
− ∇ · P + neFQ, (1)

where ne is the electron number density, ue is the electron fluid velocity, E and B
are the electric and magnetic fields, respectively, e is the magnitude of the electron
charge, c is the speed of light in vacuum, P = P⊥I + (P‖ − P⊥)b̂b̂ is the electron
pressure, I is the unit dyad, and b̂b̂ = BB/B2 is the dyad formed from the unit
vector b̂. Here P‖ and P⊥ are the components of the electron pressure parallel and
perpendicular to b̂, respectively. Furthermore, the quantum force associated with
the quantum Bohm potential is [27]

FQ =
�

2

2me
∇

(∇2√
ne√

ne

)
, (2)

where � is the Planck constant divided by 2π, and me is the electron mass. For
low-phase velocity (in comparison with c) disturbances, the electromagnetic fields
are determined from the Faraday law

∂B
∂t

= −c∇ × E, (3)

and Ampère’s law

∇ × B =
4πe

c
(Ziniui − neue), (4)

where Zi is the ion charge state, and ni and ui are the ion number density and the
ion fluid velocity, respectively. The latter are determined from the ion continuity
and momentum equations

dni
dt

+ ni∇ · ui = 0, (5)

and

ρi
dui
dt

= Zinie

(
E+

1
c
ui × B

)
+ ρig+ 2ρiui ×Ω, (6)

where d/dt = (∂/∂t) + ui · ∇, ρi = nimi is the ion mass density, mi is the ion mass,
ρig is the gravity force, and |Ω| is the angular rotation frequency of the ions. The
quantum force acting on the ions is much smaller than that on the electrons, and
therefore it is not included in (6). Since in dense quantum plasmas, the ions are
much colder than the electrons, we have also neglected the anisotropic ion pressure.
We now eliminate E from (6) by using (1), obtaining

ρi
dui
dt

=
eZini

c

(
1 − Zini

ne

)
ui × B

+
Zini
ne

[
(∇ × B) × B

4π
− ∇ · P

]
+ ρig+ 2ρiui ×Ω+ ZiniFQ, (7)

where from (4) we used

ue =
Zini
ne
ui − c∇ × B

4πene
. (8)
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By using the identity

(∇ × B) × B = [(B · ∇)B− 1
2 ∇B2 ], (9)

we can express (7) as

ρi
dui
dt

=
eZini

c

(
1 − Zini

ne

)
ui × B− Zini

ne
∇

(
P⊥ +

B2

8π

)

+
Zini
ne

(B · ∇)
4π

[
B−

4π(P‖ − P⊥)B
B2

]
+ ρig+ 2ρiui ×Ω+ ZiniFQ, (10)

where we have introduced ∇ · P = ∇P⊥ + (B · ∇)[(P‖ − P⊥)B/B2 ].
Furthermore, by using (1) and (4) we can write (3) as

∂B
∂t

= ∇ ×
[(

Zini
ne
ui − c∇ × B

4πene

)
× B

]
+

c

e
∇ ×

(
∇ · P
ne

)
. (11)

Let us invoke the following Chew, Goldberger and Low equations [28] for the
parallel and perpendicular components of the electron pressure(

∂

∂t
+ ue · ∇

)
P‖ + P‖∇ · ue + 2P‖(b̂b̂ · ∇) · ue = 0, (12)

and (
∂

∂t
+ ue · ∇

)
P⊥ + 2P⊥∇ · ue − P⊥(b̂b̂ · ∇) · ue = 0, (13)

where ue is given by (8).
Equations (5) and (9)–(13), which form a closed system under the quasi-neutrality

condition [29] e(Zini−ne) = −qdnd, are the desired quantum Hall-MHD equations.
Here qdnd is the charge density of dust grains (if present in a non-uniform dense
magnetoplasma). In the absence of charged dust grains the condition Zini = ne ≡ n
would suffice.
In a quasi-neutral unmagnetized isotropic plasma without dust grains, we have

from (10)

dui
dt

= −∇P

ρ
+ g+ 2ui ×Ω+

Zi�
2

2memi
∇

(
∇2√

n√
n

)
, (14)

where P is the isotropic electron pressure and ρ = nmi. In an isotropic dense
plasma, we also have the adiabatic equation of state

d

dt

(
P

ργ

)
= 0, (15)

where γ is the adiabatic index.
Equations (14) and (15) are similar in form to the equations describing solitary

atmospheric waves [30]. Thus, linearizing (14) and (15) around the equilibrium
values (namely ρ0 and P0), we obtain the dispersion relation for a non-uniform
plasma

ω2 = ω2
g
k2

⊥
k2 +

4
k2 (k ·Ω)2 , (16)

where ω is the frequency, ωg = [(dzρ0/ρ0 − dzP0/γP0)dzP0/ρ0 ]1/2 , and k2
⊥ =

k2 − k2
z . Here k⊥ and kz are the wave numbers across and along the density and

pressure inhomogeneities, namely dzρ0 and dzP0 . The equilibrium, without ion flow,
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is determined from

g = −dzP0

ρ0
+

Zi�
2

2memi

d

dz

(
d2

z
√

ρ0√
ρ0

)
, (17)

where g = −gẑ and ẑ is the unit vector along the z-axis in a Cartesian coordinate
system.
Following Stenflo [31], the dynamical equations for nonlinearly interacting

modes in our inhomogeneous dense unmagnetized plasma are

∂∇2uz

∂t
− ẑ · (∇ × ∇ × ui · ∇ui) + ∇2

⊥χ + R = 0, (18)

and
dχ

dt
− ω2

guz = 0, (19)

where uz = ẑ · ui, χ = (1/ρ) − (1/ρ0), and R = 2ẑ · (∇ × ∇ × (ui × Ω)). Here
χ has been normalized by the factor dzP0 . In two-space dimensions, the coupled
equations (18) and (19) with R = 0 (namely no ion rotation) admit a stationary
dipolar vortex [31,32] (a modon) whose profile is presented in [31].
In summary, we have presented the nonlinear quantumHall-MHD equations in a

non-uniform dense magnetoplasma with degenerate electrons having an anisotropic
pressure. These equations can be used to investigate different kinds of waves,
anisotropic electron pressure driven instabilities, as well as multiscale turbulence
and structures in non-uniform dense magnetoplasmas. As an illustration, we have
presented an example of linear and nonlinear electrostatic waves in non-uniform
unmagnetized plasmas containing electron density and electron pressure gradients.
It turns out that the quantum effects appear through the equilibrium state in the
analyses of linear and nonlinear electrostatic modes in a non-uniform dense Fermi
plasma.
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