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Global divisibility of Heegner points and

Tamagawa numbers

Dimitar Jetchev

In memory of my father and my grandfather

Abstract

We improve Kolyvagin’s upper bound on the order of the p-primary part of the
Shafarevich–Tate group of an elliptic curve of rank one over a quadratic imaginary field.
In many cases, our bound is precisely that predicted by the Birch and Swinnerton-Dyer
conjectural formula.

1. Introduction

Let E/Q be an elliptic curve of conductor N and let −D < 0 be a fundamental discriminant such
that all prime factors of N are split in the quadratic imaginary field K = Q(

√−D). We call such a
−D a Heegner discriminant for the elliptic curve E/Q.

Let N be an ideal in the ring of integers OK of K of norm N , such that OK/N ∼= Z/NZ. The
Heegner point x1 = [C/OK → C/N−1] lies on the modular curve X0(N) and is defined over the
Hilbert class field H/K by the theory of complex multiplication. Let ϕ : X0(N) → E be a fixed
modular parametrization that maps the cusp i∞ of X0(N) to the origin of E (see [BCDT01] for
the existence of such a parametrization). Then the Gross–Zagier formula (see [GZ86, ch. I, 6.5])
relates the height of the point yK = TrH/K(ϕ(x1)) to the special value L′(E/K , 1) of the derivative
of the L-function L(E/K , s). Gross and Zagier used this formula (see [GZ86, ch. V, 2.2]) to restate
the Birch and Swinnerton-Dyer conjectural formula for E/K (whenever the analytic rank is 1) as
follows.

Conjecture 1 (Birch and Swinnerton-Dyer formula). If the point yK has infinite order, then E(K)
has rank 1 and the Shafarevich–Tate group X(E/K) is finite of order

#X(E/K) =
(

[E(K) : ZyK ]
c · ∏q|N cq

)2

,

where c is the Manin constant (known to be a positive integer) and cq = [E(Qq) : E0(Qq)] is the
Tamagawa number at q.

Kolyvagin (see [Kol90, Theorem A], [Kol91a] and [Kol91b]) has shown the rank part of the
above conjecture, the finiteness of X(E/K) and a significant part of the conjectural formula. More
precisely, consider the following hypothesis on a prime p.
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Hypothesis (*).1 We have p � 2N and the extension Q(E[p])/Q has Galois group isomorphic to
GL2(Fp), that is, the mod p Galois representation ρE,p : Gal(Q/Q) → GL(E[p]) is surjective.

For such a prime p, Kolyvagin gives a precise formula for the order of the p-primary part of
X(E/K) by constructing explicit elements in the p-power Selmer group Selp∞(E/K) from Heegner
points, namely

#X(E/K)[p∞] = p2(m0−m∞), (1)
where m0 = [E(K) : ZyK ] and m∞ is a nonnegative integer which is defined in terms of the global p-
divisibility of the Heegner points used for the construction of the classes. We give a precise definition
of m∞ in § 4.1. The above formula provides strong evidence for Conjecture 1.

However, Kolyvagin’s arguments give no indication of how to relate the correction factor m∞ to
the Manin constant and the Tamagawa numbers. As for the Manin constant, it is already known
that p � c if p � N (see [AU96] and [ARS06] for an account on the known results about c). The
combination of (1) and Conjecture 1 yields the following reformulation of the Birch and Swinnerton-
Dyer conjectural formula for E/K in the case when the analytic rank is 1.

Conjecture 2 (BSD conjectural formula). If p satisfies Hypothesis (*), then

m∞ = ordp

(∏
q|N

cq

)
.

Our main result provides the following evidence for this conjecture.

Theorem 1.1. Assume that the Heegner point yK has infinite order in E(K) and that p satisfies
Hypothesis (*). If mmax = maxq|N ordp(cq), then m∞ � mmax.

As a consequence, we obtain a new upper bound on the p-primary part of the Shafarevich–Tate
group over K:

#X(E/K)[p∞] � p2m0−2mmax .

Here, mmax = maxq|N ordp(cq). If p divides at most one Tamagawa number, our upper bound
coincides with the exact upper bound predicted by the Birch and Swinnerton-Dyer conjectural
formula for E/K .

Remark 1. Results of Schneider, Perrin-Riou and Kato from Iwasawa theory, together with the
conjectured nonvanishing of the p-adic regulator, imply the exact upper bound on the p-primary
part of the Shafarevich-Tate group for E/Q predicted by the Birch and Swinnerton-Dyer conjecture
[SW08, Theorem 8]. A remark of Colmez (see [Col03, Remark 0.13(ii)]) suggests that this last
conjecture is at least as difficult as proving Leopoldt’s conjecture. Our results in the analogous
situation over K do not depend upon any conjecture.

We prove the theorem by refining Kolyvagin’s original arguments. We also apply several tech-
niques from the theory of Kolyvagin systems as developed by Mazur, Rubin and Howard (see [MR04]
and [How04]). The paper is organized as follows. Section 2 contains some notation. Section 3 is about
Selmer modules as introduced by Mazur and Rubin. We define various local conditions to be used in
the proof, recall the notion of a Selmer structure and the associated Selmer modules, discuss the rel-
evant global duality results on Galois cohomology, and introduce a new Selmer structure which will
replace the standard Selmer structure obtained from the Kummer local conditions in Kolyvagin’s
arguments. In § 4 we review the basics of Heegner points over ring class fields, define the numbers
m0 and m∞ which appear in Kolyvagin’s formula for the order of X(E/K)[p∞] and recall the con-
struction of Kolyvagin’s classes. The main contribution in this section is Proposition 4.1 where we

1Recently, Byungchul Cha (see [Cha05]) has been able to weaken Hypothesis (*).
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obtain more refined local properties of the constructed classes than those implicitly used by Kolyva-
gin. The proof is based on certain reduction properties of the Heegner points at bad places. Finally,
we prove our main theorem in § 5. The major new ingredients are the combinatorial arguments of
§§ 5.2 and 5.3. The remaining part of the proof is a combination of the Čebotarev density theorem
and the global duality results. We first prove the result in an easy case (Theorem 5.2) and then use
some techniques of Kolyvagin to reduce the general case to the easy case in § 5.3.

2. Notation

Throughout the paper, K is a fixed algebraic closure of K, OK is the ring of integers of K, Oc =
Z+cOK is the order of conductor c in OK and K[c] is the ring class field extension of K of conductor
c. Recall that K[c] is an abelian extension of K whose Galois group is isomorphic to Pic(Oc) and
that is Galois and dihedral over Q. For instance, K[1] is the Hilbert class field of K. For a number
field L and a place w of L, let Lw be the completion of L at w, let Ow be the valuation ring of Lw,
let Lw be a fixed algebraic closure of Lw and let Lur

w be the maximal unramified extension of Lw.
Whenever F is a field with a fixed algebraic closure F , GF will denote the Galois group Gal(F/F ).
If M is a continuous GF -module, H1(F,M) will be the Galois cohomology group H1(GF ,M).

Moreover, fix an embedding ιv : K ↪→ Kv for each place v of K (this corresponds to fixing a
place of K above v for every place v of K). If M is a GK -module, then ιv determines an inclusion
GKv ↪→ GK and, hence, a localization map locv : H1(K,M) → H1(Kv,M).

Following Kolyvagin, if A ∼= Z/px1Z ⊕ Z/px2Z ⊕ · · · ⊕ Z/pxnZ with x1 � x2 � · · · � xn > 0, we
write

Inv(A) = (x1, x2, . . . , xn).

For instance, Inv(O) = ( ). Also, for a ∈ A, ord′
p(a) stands for the integer n such that pn is the

order of a in A.

Finally, we need to introduce certain special primes needed for the constructions and the argu-
ments of the paper.

Definition 2.1 (Kolyvagin prime). We call a rational prime � a Kolyvagin prime relative to E, K
and p if � is inert in K and p divides both the �th coefficient a� of the modular form f associated to
E and � + 1, that is, p | (a�, � + 1). Equivalently, the characteristic polynomial of Fr� is congruent
to T 2 − 1 modulo p.

We denote the set of all Kolyvagin primes for E,K and p by Λ1. Moreover, let Λ1
m be the set of

all � ∈ Λ1, such that pm | (a�, � + 1).

Finally, for each � ∈ Λ1, we fix a generator σ� of the cyclic group Gal(K[�]/K[1]).

3. Selmer modules

3.1 Local conditions

Fix a positive integer m. By a local condition at a finite place v we mean a subgroup of the
cohomology group H1(Kv, E[pm]).

3.1.1 General finite place v of K. We define several local conditions for a finite place v of K.

• Unramified local condition: this is defined as

H1
ur(Kv , E[pm]) := ker{H1(Kv, E[pm]) → H1(Kur

v , E[pm])}.
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• Kummer local condition: we denote this by H1
Kum(Kv, E[pm]) and define it to be the image of

the local Kummer map

δv : E(Kv)/pmE(Kv) ↪→ H1(Kv , E[pm]).

• Connected Kummer local condition: let E0(Kv) be the subgroup of E(Kv) consisting of all
points which specialize to the identity component of the Néron model of E/K at v. We define
the connected Kummer local condition H1

Kum0(Kv, E[pm]) to be the image of E0(Kv) under
the map

E(Kv) � E(Kv)/pmE(Kv)
δv−→ H1(Kv, E[pm]).

The following proposition (see [Cas65] for more details) compares the unramified and the
Kummer local conditions.

Proposition 3.1. Let v be a place of good reduction for E, such that v � p. Then H1
ur(Kv , E[pm]) =

H1
Kum(Kv, E[pm]).

We also need to compare the Kummer condition with the connected Kummer condition.

Lemma 3.2. Let v | N be a place of K and let mv = ordp(cv). Suppose that m > mv. Then

H1
Kum(Kv , E[pm])

H1
Kum0(Kv, E[pm])

∼= Z/pmvZ.

Proof. This follows immediately from [Sil92, Theorem 15.2] and the above definitions, using that p
is odd.

3.1.2 A place over a Kolyvagin prime �. Let m > 0 be an integer. For a Kolyvagin prime
� ∈ Λ1

m let λ be the unique prime of K lying above �. Let K[�]λ be the completion of K[�] at the
place below the place corresponding to the fixed embedding ιλ : K ↪→ Kλ.

• Transverse local condition: we define this as

H1
tr(Kλ, E[pm]) := ker{H1(Kλ, E[pm]) → H1(K[�]λ, E[pm])}.

To give an alternative description of H1
tr(Kλ, E[pm]), we first explain that GKλ

acts trivially on
E[pm]. Indeed, GKλ

acts through its quotient Gal(Kur
λ /Kλ) which is topologically generated by Frλ.

However, Frλ = Fr2� and since � ∈ Λ1
m, then the conjugacy class of Fr� acting on E[pm] is the same

as the conjugacy class of complex conjugation, that is, Frλ acts trivially.
Hence,

H1(Kλ, E[pm]) = Hom(GKλ
, E[pm]) ∼= Hom(Gab

Kλ
/pm, E[pm]). (2)

By local class field theory,

Gab
Kλ

/pm ∼= Gal(Kur
λ /Kλ)/pm × Gal(K[�]λ/Kλ)/pm. (3)

By (2) and (3),
H1(Kλ, E[pm]) = H1

ur(Kλ, E[pm]) ⊕ H1
tr(Kλ, E[pm]).

Here,
H1

ur(Kλ, E[pm]) = {f ∈ Hom(Gab
Kλ

/pm, E[pm]) : f(Gal(K[�]λ/Kλ)/pm) = 0}
and

H1
tr(Kλ, E[pm]) = {f ∈ Hom(Gab

Kλ
/pm, E[pm]) : f(Gal(Kur

λ /Kλ)/pm) = 0}.
A homomorphism in H1

ur(Kλ, E[pm]) is determined by the image of Frλ, whereas a homomor-
phism in H1

tr(Kλ, E[pm]) is determined by the image of the fixed generator σ� of the cyclic group
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Gal(K[�]/K[1]). Thus,

H1
ur(Kλ, E[pm]) ∼= E[pm] and H1

tr(Kλ, E[pm]) ∼= E[pm].

Here τ ∈ Gal(Kλ/Q�) acts on Hom(Gab
Kλ

, E[pm]) by sending f to f τ , where f τ (σ) = f(τ−1στ)τ

for σ ∈ Gab
Kλ

. Then the first of the above isomorphisms is Galois equivariant and the second is
anti-equivariant (since K[�]/Q is dihedral, so conjugation by τ sends σ to its inverse). Therefore,

H1
ur(Kλ, E[pm])± ∼= E[pm]± and H1

tr(Kλ, E[pm])± ∼= E[pm]∓.

The module E[pm] splits into two eigenspaces of complex conjugation each of which is free of rank 1
over Z/pmZ and, thus, H1

ur(Kλ, E[pm])± and H1
tr(Kλ, E[pm])± are all free of rank 1 over Z/pmZ.

Finally, one can use the explicit description of the ±-eigenspaces to conclude that H1
tr(Kλ, E[pm])

is self-orthogonal with respect to the Tate local pairing.2 Indeed, it suffices to show that H1
tr

(Kλ, E[pm]) is isotropic (since it has the rank of a maximal isotropic subspace). Since
H1

tr(Kλ, E[pm])± are both cyclic Z/pmZ-modules, each of them is self-orthogonal, so it will be enough
to show that H1

tr(Kλ, E[pm])+ is orthogonal to H1
tr(Kλ, E[pm])−. The last is an immediate conse-

quence of the Gal(Kλ/Q�)-equivariancy of the symplectic Tate local pairing (i.e. 〈τx, τy〉λ = 〈x, y〉λ).
The same argument shows that H1

ur(Kλ, E[pm]) is self-orthogonal as well.

3.2 Selmer structures and Selmer modules
Selmer structures and Selmer modules are discussed in great generality by Mazur and Rubin
(see [MR04, ch. 2]). Here, we need to consider Selmer structures only on the Galois modules E[pm]
of pm-torsion points on the elliptic curve E for various m.

3.2.1 Selmer structures. A Selmer structure F on E[pm] consists of a choice of a local condition
H1

F (Kv , E[pm]) ⊆ H1(Kv, E[pm]) for each place v of K, such that for all but finitely many v,
H1

F (Kv , E[pm]) = H1
ur(Kv, E[pm]).

3.2.2 Selmer modules. Given a Selmer structure F on E[pm], one can define the corresponding
Selmer module as

H1
F (K,E[pm]) := Ker

{
H1(K,E[pm]) →

⊕
v

H1(Kv , E[pm])/H1
F (Kv, E[pm])

}
,

where the sum is taken over all places v of K. The Selmer module H1
F (K,E[pm]) will be a stable

Gal(K/Q)-subspace of H1(K,E[pm]) provided that
⊕

v|q H1
F (Kv, E[pm]) is a Gal(K/Q)-stable sub-

space of
⊕

v|q H1(Kv, E[pm]) for every rational prime q. This will always be the case in the rest of
this paper.

3.2.3 Dual Selmer structure. This is the Selmer structure F∗ on E[pm] whose local conditions
are the orthogonal complements of the local conditions of F under the Tate local pairing

〈 , 〉v : H1(Kv , E[pm]) × H1(Kv , E[pm]) → Z/pmZ.

Note that F∗ is a well-defined Selmer structure because the unramified local condition H1
ur(Kv ,

E[pm]) is self-orthogonal for every place v � pN (see [Mil86, Theorem 1.2.6]).

3.2.4 Comparing Selmer modules and their duals. If F and G are two Selmer structures, we
say that F 
 G if H1

F (Kv , E[pm]) ⊆ H1
G(Kv , E[pm]) for every place v of K. In addition, if F 
 G,

2For a different proof using class field theory and Kummer theory, see [MR04, Proposition 1.3.2(ii)].
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one obtains a perfect bilinear pairing

H1
G(Kv, E[pm])

H1
F (Kv, E[pm])

× H1
F∗(Kv, E[pm])

H1
G∗(Kv, E[pm])

→ Q/Z

that is induced from the Tate local pairing.

Theorem 3.3. Let F 
 G be two Selmer structures on E[pm] and consider the exact sequences

0 → H1
F (K,E[pm])± ↪→ H1

G(K,E[pm])±
(locGF )±−−−−−→

(⊕
v

H1
G(Kv , E[pm])

H1
F (Kv, E[pm])

)±

and

0 → H1
G∗(K,E[pm])± ↪→ H1

F∗(K,E[pm])±
(locF

∗
G∗ )±−−−−−→

(⊕
v

H1
F∗(Kv , E[pm])

H1
G∗(Kv, E[pm])

)±
,

where (locGF )± and (locF
∗

G∗ )± are the natural restriction maps on the ±-eigenspaces for complex
conjugation and the sum is over all places v, for which H1

F (Kv, E[pm]) � H1
G(Kv, E[pm]). The

images of (locGF )± and (locF
∗

G∗ )± are orthogonal complements with respect to the local pairings∑
v〈 , 〉±v obtained from the Tate pairings on the ±-parts of the local cohomology groups.

Proof. This follows easily from Poitou–Tate global duality theorem. Standard references are [Rub00,
Theorem 1.7.3], [Mil86, Theorem I.4.10] and [Tat63, Theorem 3.1].

3.3 Kummer and connected Kummer Selmer structure
We need two special Selmer structures for the proof of Theorem 1.1.

3.3.1 Kummer Selmer structure. The first Selmer structure is the standard Kummer Selmer
structure F on E[pm]. It is defined by the local condition H1

F (Kv, E[pm]) := H1
Kum(Kv , E[pm]) for

every v (it is well defined by Proposition 3.1). By using the compatibility of the Tate local duality
with the Weil pairing, one shows that the structure F is self-dual, that is, the local conditions are
self-orthogonal at each place with respect to the Tate local pairing 〈 , 〉v .

3.3.2 Connected Kummer Selmer structure. This refers to a Selmer structure obtained by re-
placing the Kummer local condition at one pair of conjugate primes v, v̄ | N with the corresponding
connected local conditions. A similar structure was used in an argument of Mazur and Rubin
(see [MR04, Propostion 6.2.6]). Later, we use Lemma 3.2 and Theorem 3.3 to compare the Selmer
modules corresponding to a connected Kummer Selmer structure with the usual Selmer group
(i.e. the Selmer module corresponding to the Kummer Selmer structure).

3.4 Lozenge diagrams
3.4.1 Modified Selmer structures. Let F be a Selmer structure on E[pm] and a, b, c be relatively

prime integers, such that abc ∈ Λm. The modified Selmer structure Fa
b (c) is the structure whose

local conditions are obtained from those of F by simply replacing them at the places v | abc as
follows:

• if v | c, then H1
Fa

b (c)(Kv, E[pm]) = H1
tr(Kv, E[pm]);

• if v | a, then H1
Fa

b (c)(Kv, E[pm]) = H1(Kv, E[pm]);

• if v | b, then H1
Fa

b (c)(Kv, E[pm]) = 0.

If a, b or c equals 1, we simply omit it from the notation (e.g. if a = 1, then we write Fb(c) instead
of Fa

b (c)).
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3.4.2 Lozenge diagrams. The following result is a refinement of [MR04, Lemma 4.1.6] and
[How04, Lemma 5.1.8], and is useful whenever one needs to compare the structures of two Selmer
modules for Selmer structures F(c) and F(c�).

Lemma 3.4. Let F be a Selmer structure on E[pm] (not necessarily self-dual). Consider the following
diagrams

H1
F�(c)(K,E[pm])±

H1
F(c)(K,E[pm])±

� �

a±
����������������

H1
F(c�)(K,E[pm])±

� �

b±
����������������

H1
F�(c)

(K,E[pm])±
� �

c±
���������������� � �

d±
����������������

and

H1
F�(c)∗(K,E[pm])±

H1
F(c)∗(K,E[pm])±

� �

(c∗)±
����������������

H1
F(c�)∗(K,E[pm])±

� �

(d∗)±
����������������

H1
F�(c)∗(K,E[pm])±

� �

(a∗)±
���������������� � �

(b∗)±
����������������

where each inclusion is labelled with the lengths of the corresponding cyclic cokernels. Then the
lengths satisfy:

(i) 0 � a±, b±, c±, d±, (a∗)±, (b∗)±, (c∗)±, (d∗)± � m;

(ii) a± + c± = b± + d± and (a∗)± + (c∗)± = (b∗)± + (d∗)±;

(iii) a± + (a∗)± = b± + (b∗)± = c± + (c∗)± = d± + (d∗)± = m;

(iv) a± � d±, b± � c±, (c∗)± � (b∗)± and (d∗)± � (a∗)±.

Proof. Statement (i) follows from the definition of F�(c), F�(c), F�(c)∗ and F�(c)∗ and the fact
that the ±-parts H1

ur(Kλ, E[pm])± and H1
tr(Kλ, E[pm])± of the unramified and the transverse local

conditions are free of rank one over Z/pmZ. Statement (ii) follows immediately from the diagram.
Statement (iii) is an immediate consequence of the split global duality Theorem 3.3. Finally, state-
ment (iv) follows from the following equalities (which are consequences of the self-duality and the
non-intersection of the transverse and the unramified local conditions)

H1
F(c)(K,E[pm])± ∩ H1

F(c�)(K,E[pm])± = H1
F�(c)

(K,E[pm])±

and

H1
F(c)∗(K,E[pm])± ∩ H1

F(c�)∗(K,E[pm])± = H1
F�(c)∗(K,E[pm])±.

4. Heegner points over ring class fields

Kolyvagin used Heegner points over ring class fields for certain non-maximal orders of K to construct
explicit cohomology classes in H1(K,E[pm]) for each m (see [Kol90], [Gro91] or [McC91]). He used
these classes to study the structure of the Selmer group Selp∞(E/K) (see [Kol91a]).
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4.1 Defining Heegner points over ring class fields

4.1.1 Heegner points over ring class fields. Let c be a positive integer, let Oc = Z + cOK

be the order of conductor c in OK and let Nc = N ∩ Oc. Then Nc ⊂ Oc is an invertible ideal,
Oc/Nc  Z/NZ and the map C/Oc → C/N−1

c is a cyclic isogeny of degree N , so it defines a point
xc ∈ X0(N)(C) which is K[c]-rational by the theory of complex multiplication. One can use the
parameterization ϕ : X0(N) → E to construct a point yc = ϕ(xc) ∈ E(K[c]).

4.1.2 Kolyvagin primes and conductors. For each Kolyvagin prime � ∈ Λ1 (recall Definition 2.1)
let M(�) = ordp(a�, � + 1), where for an integer x, m = ordp(x) is the maximal exponent satisfying
pm | x. Denote by Λr the set of all square-free products of exactly r Kolyvagin primes and let
Λ =

⋃
r Λr (by convention, Λ0 = {1}). For each c ∈ Λ define M(c) = min�|c M(�). For the purpose

of our argument, we also need to consider the subset Λr
m ⊂ Λr defined as

Λr
m = {c ∈ Λr : M(c) � m}.

We also set Λm =
⋃

r Λr
m.

4.1.3 Kolyvagin derivative operators. Let Gc = Gal(K[c]/K) and Gc = Gal(K[c]/K[1]). For
each � ∈ Λ1, the group G� is cyclic of order � + 1 and Gc

∼= ∏
�|c G� (to see this, one uses that the

subgroup of Gc fixing K[c/�] is isomorphic to G�).

We fix a generator σ� of G� for each � ∈ Λ1 and define D� =
∑�

i=1 i · σi
� ∈ Z[G�] and Dc =∏

�|c D� ∈ Z[Gc]. Note that (σ� − 1)D� = 1 + � − TrK[�]/K[1]. We refer to the Dc as the Kolyvagin
derivative operator for the conductor c.

Finally, let S be a set of coset representatives for Gal(Kab/K[1]) ⊆ Gal(Kab/K). Here, Kab

denotes the maximal abelian extension of K. For every c ∈ Λ, define

Pc =
∑
s∈S

sDcyc ∈ E(K[c]).

The points Pc are derived from the points yc, so we refer to them as derived Heegner points.

4.1.4 Defining m0 and m∞. For what follows, we assume Hypothesis (*). Let m′(c) be the
largest positive integer such that Pc ∈ pm′(c)E(K[c]). If Pc is torsion then m′(c) = ∞. Define a
function m : Λ → Z by

m(c) =

{
m′(c) if m′(c) � M(c)
∞ otherwise.

Finally, let mr = minc∈Λr m(c). Kolyvagin proves [Kol91b, Theorem C] that mr � mr+1 for every
r � 0 and defines m∞ = limr→∞ mr. Note that P1 = yK , so (under our assumptions) m0 = m′(1) =
ordp[E(K) : ZyK] is finite and so are all mi. Thus, m∞ is finite.3

4.1.5 Kolyvagin classes κc,m ∈ H1(K,E[pm]). Let c ∈ Λm. To construct the class κc,m ∈
H1(F , E[pm]), one first observes that the image P̃c of Pc in E(K[c])/pmE(K[c]) is fixed by Gc

(see [Gro91, Proposition 3.6]). Since the Galois representation ρE,p is surjective, the restriction
map H1(K,E[pm]) res−−→ H1(K[c], E[pm])Gc is an isomorphism (see [Gro91, pp. 241–242]), so if δc :

3In fact, Kolyvagin proved that mr � mr+1 without the assumption that the Heegner point yK = P1 has infinite order
in E(K). In this situation, one could still define m∞, but it is not at all obvious whether m∞ < ∞. Kolyvagin conjec-
tured this for all elliptic curves (see [Kol91a, Conjecture C] for the original statement of the conjecture and [JLS07]
for some applications of Kolyvagin’s conjecture and some computational and theoretical evidence).
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E(K[c])/pmE(K[c]) → H1(K[c], E[pm]) is the Kummer map, one can define

κc,m := res−1(δc(P̃c)) ∈ H1(K,E[pm]).

It follows from the definition of the Kummer map that κc,m = 0 if and only if Pc ∈ pmE(K[c])
(which is equivalent to m � m(c)). Moreover, if m > m(c), then ord(κc,m) = m − m(c). The class
κc,m is represented by the 1-cocycle

σ �→ σ

(
Pc

pm

)
− Pc

pm
− (σ − 1)Pc

pm
, (4)

where (σ−1)Pc/p
m is the unique pm-division point of (σ−1)Pc in E(K[c]) (see [McC91, Lemma 4.1]).

Finally, let ε = ±1 be the eigenvalue of the Atkin–Lehner (Fricke) involution wN on the eigenform
f corresponding to E, that is, f |wN = ε · f . For each c ∈ Λm, let ε(c) = ε · (−1)fc where fc = #{� :
� | c}. It follows from [Gro91, Proposition 5.4(ii)] that κc,m lies in the ε(c)-eigenspace for the action
of complex conjugation on H1(K,E[pm]), that is, κc,m ∈ H1(K,E[pm])ε(c).

4.2 Auxiliary classes κ̃c,m ∈ H1(K,E[pm])
Suppose that c ∈ Λ satisfies m + m(c) � M(c). We construct a class κ̃c,m ∈ H1(K,E[pm])ε(c) such
that the cyclic Z/pmZ-submodule generated by κ̃c,m is free of rank 1 and contains the original class
κc,m. Indeed, consider the short exact sequence

0 → E[pm] → E[pm+m(c)]
pm

−−→ E[pm(c)] → 0,

and the corresponding long exact sequence on Galois cohomology

0 → H1(K,E[pm]) ↪→ H1(K,E[pm+m(c)])
pm

−−→ H1(K,E[pm(c)])

(here, we have used H0(K,E[pm(c)]) = E(K)[pm(c)] = 0). Since m + m(c) � M(c), one has the
cohomology class κc,m+m(c) ∈ H1(K,E[pm+m(c)]). Using the definition of κc,m, we observe that
pm(c)κc,m+m(c) = κc,m in H1(K,E[pm+m(c)]). We claim that κc,m+m(c) is in the image of H1(K,E[pm])
under the above inclusion. Indeed, since ord(κc,m+m(c)) = m, then it is in the kernel of the second
map in the above exact sequence, that is, it comes from a class κ̃c,m ∈ H1(K,E[pm]). Moreover,

ord κ̃c,m = ordκc,m+m(c) = m,

that is, κ̃c,m spans a free Z/pmZ-submodule of H1(K,E[pm])ε(c) that contains κc,m = pm(c)κ̃c,m.

4.3 Local conditions for Kolyvagin classes
Let F be the Kummer Selmer structure defined in § 3.3. The cohomology classes κc,m are known to lie
in H1

F(c)(K,E[pm])ε(c) (see [Gro91, Proposition 6.2], [McC91, Lemma 4.3] or [How04, Lemma 1.7.3]).
Since the local conditions defining the Selmer structure F(c) are Cartesian (see [MR04, Defini-
tion 1.1.4] for the definition), we have κ̃c,m ∈ H1

F(c)(K,E[pm])ε(c) as well.
Our main observation towards the refinement of Kolyvagin’s results is the following.

Proposition 4.1. For any c ∈ Λm and any v | N , one has

locv(κc,m) ∈ H1
Kum0(K,E[pm]).

To prove the proposition, we need two auxiliary statements.

4.3.1 Reduction properties of Heegner points. The following lemma is extracted from several
results discussed in the paper of Gross and Zagier (see [GZ86, § III.1] and [GZ86, § III.3, Proposi-
tion 3.1]).
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Lemma 4.2. The Heegner point yc lies, up to translation by a rational torsion point of E, on
E0(K[c]w), where E0(K[c]w) is the subgroup of E(K[c]w) of the points that specialize to the identity
component of the Néron model of E.

4.3.2 A lemma on p-divisibility groups. We recall the following well-known result (see, e.g.,
[Cas65]).

Lemma 4.3. Let v � p be any finite place of K. Then the group E0(Kur
v ) is p-divisible.

Now, we are ready to prove our refinement.

Proof of Proposition 4.1. By Lemma 4.3 the group E0(Kur
v ) is p-divisible. In other words, there is

a short exact sequence

0 → E0(Kur
v )[pm] → E0(Kur

v )
pm

−−→ E0(Kur
v ) → 0.

By taking the long exact sequence on Galois cohomology and using the fact that Néron models are
stable under unramified base change, we obtain the following exact sequence

E0(Kv) → H1(Kur
v /Kv , E

0(Kur
v )[pm]) → H1(Kur

v /Kv , E
0(Kur

v ))[pm] → 0.

However, H1(Kur
v /Kv, E

0(Kur
v )) = 0 according to Lang’s theorem (see [Lan56]), that is, the map

E0(Kv) → H1(Kur
v /Kv , E

0(Kur
v )[pm]) is surjective. We thus consider the following commutative

diagram

E0(Kv) ��

��

H1(Kur
v /Kv , E

0(Kur
v )[pm])

φ
��

E(Kv) �� H1(Kv, E[pm]) �� H1(Kv , E)[pm] �� 0

where the map φ is the composition

H1(Kur
v /Kv, E

0(Kur
v )[pm]) → H1(Kur

v /Kv , E(Kur
v )[pm]) inf−→ H1(Kv , E[pm]).

We will be done if we can show that the class locv(κc,m) lies in the image of φ (the surjectivity
then implies that it comes from a point of E0(Kv)). To see that locv(κc,m) ∈ im(φ), we look at the
explicit cocycle (4) and use Lemma 4.2 to show that there exists a point Q ∈ E(Q)tor such that
Qc = Pc −Q ∈ E0(Kur

v ). Since E(Q)[p∞] = 0, the point Q is p-divisible over Q. This, together with
the p-divisibility of E0(Kur

v ) (Lemma 4.3) implies

κc,m(σ) = −(σ − 1)Pc

pm
+ σ

(
Pc

pm

)
− Pc

pm
= −(σ − 1)Qc

pm
+ σ

(
Qc

pm

)
− Qc

pm
∈ E0(Kur

v )[pm].

Therefore, the class κc,m is the image of the cohomology class of H1(Kur
v /Kv , E

0(Kur
v )[pm]) repre-

sented by the cocycle

σ �→ −(σ − 1)Qc

pm
+ σ

(
Qc

pm

)
− Qc

pm

under the map φ. This proves the proposition.

4.4 Local comparison between κc,m and κc�,m

We need to use a (slightly modified) construction of Mazur–Rubin and Howard of a comparison
isomorphism

φλ : H1
ur(Kλ, E[pm]) → H1

tr(Kλ, E[pm])
at places λ above Kolyvagin primes (also known as the finite-singular comparison map). The def-
inition in the Heegner point setting is given in [How04, Definition 1.1.8]. Here, we use a twisted
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version of Howard’s construction in order to avoid some technical difficulties when we establish the
local relations at λ between the classes κc,m and κc�,m.

The difference between our φλ and the homomorphism constructed by Howard (see [How04,
Definition 1.1.8]) is the extra twist by an automorphism χ� : E[pM(�)] → E[pM(�)] (see [How04,
Proposition 1.7.4]). This allows us to have an explicit comparison between locλ(κc,m) and locλ(κc�,m)
via the following proposition, whose proof is identical to that of [How04, Proposition 1.7.4].

Proposition 4.4. For any c ∈ Λm and � ∈ Λ1
m for which � � c,

φλ(locλ(κc,m)) = locλ(κc�,m).

In particular, since φλ is an isomorphism, ord′
p(locλ(κc,m)) = ord′

p(locλ(κc�,m)).

5. Proof of the main theorem

5.1 An application of Čebotarev density theorem
The following lemma is an application of Čebotarev density theorem and will be used in the proof
of our theorem.

Lemma 5.1. Assume that Hypothesis (*) holds and let

κ+ ∈ H1(K,E[pm])+, κ− ∈ H1(K,E[pm])−

be cohomology classes with M+ = ord(κ+) and M− = ord(κ−). There exist infinitely many primes
� ∈ Λ1

m such that ord′
p(locλ(κ+)) = M+ and ord′

p(locλ(κ−)) = M−, where λ is the unique place of
K above �.

Proof. This follows immediately from [McC91, Corollary 3.2] since the cohomology classes κ+ and
κ− are linearly independent.

Remark 2. Hypothesis (*) can be weakened since the proof of [McC91, Corollary 3.2] does not need
the surjectivity of the Galois representation, but simply the weaker assumption that EndFp(E[p])
is spanned (as an Fp-vector space) by the elements σ ∈ Gal(Q(E[p])/Q). This fact is equivalent to
the absolute irreducibility of the Galois representation ρE,p.

5.2 Core vertices and minimal core vertices
Let m be an integer. For clarity, we denote each Selmer module H1

G(c)(K,E[pm]) simply by HG(c)

for various Selmer structures G (i.e. we omit the Galois group and the Galois representation since
they will stay fixed).

Following the terminology of [MR04], we define a core vertex for m and for the Kummer Selmer
structure F to be any conductor c ∈ Λm, such that either

InvH+
F(c) = (m) and InvH−

F(c) = ( ),

or

InvH+
F(c) = ( ) and InvH−

F(c) = (m).

A minimal core vertex is a core vertex c for m for which m(c) = m∞ < m � M(c). To make the
argument easier to follow, we prove the theorem in the case when there exists a minimal core vertex
for sufficiently large m.

Theorem 5.2. Assume that there exists a minimal core vertex c ∈ Λm for some m > max(mmax,
m∞). Then m∞ � mmax.
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Proof. We may assume that mmax > 0. Since m > m(c), the class κc,m ∈ Hε(c)
F(c) is nontrivial. Since

c is a core vertex, we conclude that Hε(c)
F(c)

∼= Z/pmZ and H−ε(c)
F(c)

= 0.

Fix q such that ordp(cq) = mmax. Then q | N , so q splits in K by the Heigner hypothesis. Let v
and v̄ be the places of K above q, so cv = cv̄ = cq. Consider the connected Kummer Selmer structure
F0 that differs from F only at v and v. Consider the two Selmer modules HF0(c) and HF0(c)∗ .

Since Hε(c)
F0(c) is a submodule of Hε(c)

F(c), we have Hε(c)
F0(c)

∼= Z/pm′
Z for some integer m′ satisfying

0 � m′ � m. Similarly, H−ε(c)
F0(c) = 0.

One can now determine the invariants of the dual modules H±
F0(c)∗ in terms of m,m′ and mmax

by applying Theorem 3.3 to the exact sequence4

0 → H±ε(c)
F0(c) ↪→ H±ε(c)

F(c) →
(

H1
Kum(Kv, E[pm])

H1
Kum0(Kv , E[pm])

⊕ H1
Kum(Kv̄ , E[pm])

H1
Kum0(Kv̄ , E[pm])

)±ε(c)

and the dualized sequence

0 → H±ε(c)
F(c) ↪→ H±ε(c)

F0(c)∗ →
(

H1
Kum0(Kv, E[pm])⊥

H1
Kum(Kv , E[pm])

⊕ H1
Kum0(Kv̄ , E[pm])⊥

H1
Kum(Kv̄ , E[pm])

)±ε(c)

,

where H1
Kum0(Kv, E[pm])⊥ and H1

Kum0(Kv̄, E[pm])⊥ are the orthogonal complements of the local con-
ditions H1

Kum0(Kv, E[pm]) and H1
Kum0(Kv̄, E[pm]) under the Tate local pairing. Since m > mmax =

ordp(cv), Lemma 3.2 implies that the last term in each of the above sequences is isomorphic to
Z/pmmaxZ. This allows us to apply global duality (Theorem 3.3) to conclude that

Inv(Hε(c)
F0(c)∗) = (m,mmax + m′ − m) and Inv(H−ε(c)

F0(c)∗) = (mmax).

Moreover, Hε(c)
F0(c)∗

∼= Hε(c)
F(c) ⊕ T , where Hε(c)

F(c)
∼= Z/pmZ is generated by κ̃c,m and T is isomorphic

to Z/pmmax+m′−mZ. Let κ be a generator for the cyclic Z/pmZ-module H−ε(c)
F0(c)∗

∼= Z/pm
maxZ. By

Lemma 5.1, there exists � ∈ Λ1
m, (�, c) = 1, such that ord′

p(locλ(κ̃c,m)) = m and ord′
p(locλ(κ)) =

mmax, where λ is the unique prime of K above �.

The key idea to finish the proof is to determine the invariants of the Selmer module H−ε(c)

(F0)�(c)
.

Indeed, by the choice of �, the cyclic cokernel of the map H−ε(c)

(F0)�(c)∗ → H−ε(c)
F0(c)∗ has length mmax.

This means (by Lemma 3.4(iii)) that the cokernel of the corresponding dual map H−ε(c)
F0(c) → H−ε(c)

(F0)�(c)

has length m − mmax. Thus, we conclude that H−ε(c)

(F0)�(c)
is cyclic of length m − mmax.

To complete the argument, notice that H−ε(c)
F0(c�) is a submodule of H−ε(c)

(F0)�(c)
∼= Z/pm−mmaxZ. Since

κc�,m ∈ H−ε(c)
F0(c�), then

m − mmax � ord′
p(κc�,m) � ord′

p(locλ(κc�,m)) = ord′
p(locλ(κc,m)) = ord′

p(κc,m) = m − m∞,

where the first equality follows from Proposition 4.4 and the second equality follows because
ord′

p(locλ(κ′)) = m (i.e. locλ is injective on Zκ′). Thus, m∞ � mmax.

5.3 Existence of core vertices and the general case
In this final section, we reduce the proof of Theorem 1.1 to the case when there exists a minimal
core vertex (Theorem 5.2). Whenever m is fixed, we accept the Selmer modules notation from the
previous section. The most difficult part of the proof is the following proposition.

4Note that the exact sequence implies m − m′ � mmax.
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Proposition 5.3. Let c ∈ Λ satisfy m(c) + m � M(c). There exists a core vertex c′ ∈ Λm+m(c),
such that m(c′) � m(c).

Proof. Since m(c) + m � M(c), the class κ̃c,m is defined, lies in HF(c) (see § 4.3) and generates a
free Z/pmZ-submodule of HF(c) that contains κc,m. This means that

Inv(Hε(c)
F(c)) = (m,x1, x2, . . .)

for some x1 � x2 � · · · � 0. Let

Inv(H−ε(c)
F(c) ) = (y1, y2, . . .),

where y1 � y2 � · · · � 0. Choose a prime �1 ∈ Λ1
M(c), such that ord′

p(locλ1(κ)) = y1 and
ord′

p(locλ1(κ̃c,m)) = m (here, λ1 is the unique prime of K above �1 and κ is a generator for a direct

summand of H−ε(c)
F(c) corresponding to the invariant y1). Such a prime can be selected according to

Lemma 5.1.
Next, we compute the invariants of H±ε(c�1)

F(c�1)
. More precisely, we claim that y1 = y2 and

Inv(H−ε(c�1)
F(c�1) ) = (x1, x2, . . .)

and

Inv(Hε(c�1)
F(c�1)) = (m, y3, . . .).

To show this, we look at the lozenge diagrams for the self-dual Kummer Selmer structure F
and fill up as much as we can the lengths of the corresponding cokernels (the notation (a; b) means
that the cyclic cokernel for the ε(c)-part has length a and the cyclic cokernel for the −ε(c)-part has
length b: we refer to it as the type of the cokernels).

H±ε(c)

F�1 (c)

H±ε(c)
F(c)

� �

(0;m−y1)
����������

H±ε(c)
F(c�1)

� �

(m;x)
�����������

H±ε(c)
F�1

(c)

� �(m;y1)

���������� � � (0;m−x)

�����������

Indeed, the choice of �1 implies that the cokernels of the maps H±ε(c)
F�1

(c) ↪→ H±ε(c)
F(c) have type (m; y1).

By Lemma 3.4(iii), the corresponding dual maps H±ε(c)
F(c) ↪→ H±ε(c)

F�1(c)
have cokernels of type (0;m−y1).

Next, by Lemma 3.4(iv), the cokernel of the map Hε(c)
F(c�1)

↪→ Hε(c)

F�1(c)
has length m and the cokernel of

the map Hε(c)
F�1

(c) ↪→ Hε(c)
F(c) is trivial. Let x be the length of the cokernel of the map H−ε(c)

F(c�1) ↪→ H−ε(c)

F�1(c)
.

Again, by Lemma 3.4(iii), the cokernel of the map H−ε(c)
F�1

(c) ↪→ H−ε(c)
F(c) has length m−x. This justifies

the labelling of the diagram. By using Lemma 3.4(iv), we note that m−y1 � m−x, that is, x � y1.
The next crucial observation is that x = y1. To see this, we observe that the comparison isomor-

phism φλ1 and Proposition 4.4 imply

m − m(c�1) � ord′
p(locλ1(κc�1,m)) = ord′

p(locλ1(κc,m)) = ord′
p(κc,m) = m − m(c),

and, hence, m(c�1) � m(c). This means that m(c�1) + m � M(c) = M(c�1), so the class κc�1,m

lives in a free submodule of Hε(c�1)
F(c�1)

of rank one. Thus, the module HF(c�1) contains an invariant m.
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Hence, by looking at the inclusion HF�1
(c) ↪→ HF(c�1) and using that x � y1, we obtain x = y1 = y2.

Moreover, we determine the invariants

InvHε(c�1)
F(c�1)

= (m, y3, . . . ) and InvH−ε(c�1)
F(c�1)

= (x1, x2, . . . ).

We repeat the above process and use Lemma 5.1 to choose a prime �2 ∈ ΛM(c), such that
ord′

p(locλ2(κ2)) = x1 and ord′
p(locλ2(κ̃c,m)) = m, where λ2 is the unique prime of K lying above �2

and κ2 is a generator of a direct summand corresponding to the invariant x1. By exactly the same
argument, m(c�1�2) � m(c�1) � m(c), x1 = x2 and

InvHε(c�1�2)
F(c�1�2)

= (m,x3, x4, . . . ) and InvH−ε(c�1�2)
F(c�1�2)

= (y3, y4, . . . ).

We continue the process of adding primes from Λ1
M(c) to the conductor until we reach a conductor

c′ = c�1 . . . �s, such that Hε(c′)
F(c′)

∼= Z/pmZ and Hε(c′)
F(c′) = 0 and for which m(c′) � m(c).

Finally, we prove the main Theorem 1.1.

Proof of Theorem 1.1. According to [Kol91b, Theorem 1], one can also describe m∞ as

m∞ = lim
r→∞ inf

c∈Λr
m′

m(c)

for any sufficiently large integer m′ (in particular, for m′ > 2m0). Fix an integer m > max{m0,
mmax} and let m′ = m + m0. Choose c ∈ Λr

m′ for which m(c) = m∞ (such a c exists according to
the above redefinition of m∞).

Since m(c)+m = m∞+m < m′ � M(c), by Theorem 5.3, there exists a core vertex c′ ∈ Λm+m(c),
such that m(c′) � m(c) = m∞ (i.e. m(c′) = m∞). This, together with m(c′) + m � M(c′) implies
that c′ is a minimal core vertex. Thus, Theorem 5.2 implies the desired inequality.

Remark 3. It is natural to ask whether one could prove the full inequality

m∞ � ordp

(∏
q|N

cq

)

by using a Selmer structure with more than one connected Kummer local condition and refining
the above argument. For instance, if p | cq1 and p | cq2 for two Tamagawa numbers at primes
q1 �= q2, then one would like to show that m∞ � 2. The reason this approach fails is that one
would need a local term isomorphic to Z/p2Z in the global duality sequences as opposed to two
local terms isomorphic to Z/pZ in order to reach a cyclic Selmer module whose length is at most
m − 2 containing κc�,m as in the final step of the proof of Theorem 5.2.

Remark 4. A related result in a disjoint setting has recently been established by Büyükboduk
in [Büy07] via the machinery of Kolyvagin systems. However, Büyükboduk’s result does not pro-
vide new upper bounds on the order of the Shafarevich–Tate group since the exact bounds predicted
by the Birch and Swinnerton-Dyer conjecture in the corresponding setting have already been estab-
lished via arguments from Iwasawa theory.
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