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SELF-AFFINE PROCESSES AND THE ERGODIC THEOREM 

WIM VERVAAT 

ABSTRACT. Known results for strictly stable motions as finiteness of moments and 
local boundednessof sample-path variation are generalized to self-affine processes, i.e., 
self-similar processes with stationary increments. The proofs are new, even for stable 
motions, and are obtained by applying the ergodic theorem to powers of the (one-sided) 
increments. 

0. Introduction. In this paper all stochastic processes have time domain R+ := 
[0, oo) and state space R := [—oo, oo]. We assume processes to be almost finite-valued 
in the sense that all marginal distributions are concentrated on R. This does not exclude 
infinite values for the sample paths. The distribution of a process is the family of all 
finite-dimensional distributions. Equality in distribution is expressed by =^. 

A process X — (X(t)) is H self-ajfine (H G R fixed) if it is H self-similar: 

(0.1) X(a>) =d aHX(-) for all a > 0, 

and in addition has stationary increments: 

(0.2) X(fe+-) - X(b) =d X(-) - X(0) for all b > 0 

regarded as processes with time domain R+. Ignoring trivial or pathological cases we 
may restrict our attention to the case H > 0 and X(0) = 0 (cf. Vervaat (1985)). In this 
case 11—> X(t) is easily seen to be continuous in probability, which allows us to select a 
smooth version of the following type. 

A function/ from a real interval T to R is called separable with separating set D if D 
is a dense subset of T and the closure in T x R of the graph of f\o contains the graph of 
/ . We call/ universally separable if each dense subset of T is separating for/. A process 
that is continuous in probability possesses a version which is universally separable wpl 
(Neveu (1964), Proposition III.4.2). Henceforth we assume self-affine processes to be 
selected in this way. As a consequence we cannot exclude infinite values for the sample 
paths. Another consequence is, for instance, that X = 0 wpl in case X(t) — 0 wpl for 
each t separately. Nevertheless, sample paths of self-affine processes can be very ill-
behaved (cf. Maejima (1983)). 
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SELF-AFFINE PROCESSES 255 

An important subclass of the H self-affine processes are those with independent in
crements. They are the strictly stable motions with exponent H~l. Such processes exist 
only for H > ^. We have Brownian motion for H = \. The characteristic function of 
the symmetrized distribution of X(l) has the form À \—» exp —c\\\xlH for some c > 0. 

The contents of this paper can be described from two different viewpoints. Here is 
the first one. The distribution of an H self-affine process over the space of all functions 
/ : R+ —• R such that/(0) = 0 is invariant under the transformations 

(0.3) f^a-
Hf(a.) (fl>0) 

(0.4) / ^ / ( f c + . ) _ / ( f r ) (fc>0). 

We explore what can be derived if we apply the ergodic theorem to these probability 
preserving transformations, which leads us to several results around the second line of 
invariance. Because of this, discussions prior to the results often replace formal proofs 
afterwards. 

For an alternative description, consider the collection of known properties of strictly 
stable motions, as listed in the following table: 

range of H: 

»=l 
{<H< 1 

1 <H 

E|X(1)|" = oo: 

for no/? > 0 

iff 

P>h 

sample path variation: 

nowhere 
bounded 

locally bounded 

TABLE. PROPERTIES OF STRICTLY STABLE MOTIONS. 

See Zolotarev (1986) and Fristedt (1974) for these results. We want to generalize them 
as much as possible to all self-affine processes. Complete generalization is impossible, 
as the following list of examples shows. 

EXAMPLES 0.1. (a) There exist Gaussian self-affine processes (fractional Brownian 
motions, cf. Mandelbrot and Van Ness (1968)) for 0 < H < 1, and for them all moments 
are finite. 

(b) For all combinations of H and p not allowed in the middle column there are self-
affine processes X such that E|X(1)|P = oo. See Kôno and Maejima (1991). 

(c) For H > 1, there are H self-affine processes whose sample paths have nowhere 
bounded variation wpl. See Vervaat (1985, §§5.3, 6.5). 

1. Auxiliary results. We first formulate the ergodic theorem as we are going to 
apply it. It deviates from the standard formulation by the possibility of an infinite expec
tation. This version is known in the folklore but rare in the books. See Vervaat (1985, 
Theorem 3.7) for a proof starting from the finite-expectation case. Recall that a sequence 
(£*)j£i °f random variables in R is called stationary if its distribution is invariant under 
the time shift, i.e., (£,n+k)kL\ has the same distribution for n — 0,1,2, 
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256 WIM VERVAAT 

THEOREM 1.1. Let (£*)/£ i be a stationary sequence of random variables in R and 
let ip be a Borel measurable function R. —• R. such that E</?(£i) exists, finite or infinite 
(Le., (E(^+(Ci),E<^-(Ci)) ^ (00,00);. Then 

(1.1) l i m - f > ( 6 ) = E-V(4i)wpl, 
n-^oo n £ = 1 

where E1 denotes conditional expectation with respect to the a-algebra I of events that 
are almost invariant under the shift of(^). 

If X has stationary increments, then (X(k) — X(fc—1)) is a stationary sequence. Its 
first element equals X(l) if X(0) = Owpl, which is the case if X is self-affine. Then 
we have by Theorem 1.1 for all Borel functions (p such that Etp(X(l)) exists, finite or 
infinite: 

(1.2) lim - V <p(X(k) - X(k-l)) = EJ<^(X(1)) wpl, 

where / is the a-algebra of events that are almost invariant under the shift of (X(k) — 

X(k— 1)). We will apply (1.2) in the next sections for (f(x) = (x+y. 
The following theorem presents instances of propagation of sample-path behavior of 

self-affine processes over their entire time domain. 

THEOREM 1.2. Let XbeH self-affine with H > 0. Then the following hold. 
(a) The events [X(l) — 0] and [X ~ 0] are equal up to a null event. 
(b) IfX(\) > Owpl, then X has increasing sample paths wpl. 
(c) Wpl X is either nowhere of bounded variation or of bounded variation on all 

bounded time intervals. 

PROOF. For (a), see O'Brien and Vervaat (1983, Lemma 3), for (b) Vervaat (1985, 
Theorem 2.2), and for (c) Vervaat (1985, Theorem 2.4(b)). • 

For the following theorem and the sequel we define stochastic order. Let £ and r\ 
be two random variables in R. We say that £ is stochastically smaller than 77, notation 
£ <d rç, if P[£ >x]< P[r7 > JC] for all x <G R. Then E/(£) < E/(r/) for all nondecreasing 
functions/: R —> [0,00]. 

THEOREM 1.3. Let (Q, ^F, P) be a probability space, let Q be a sub-o -algebra of J 
and let £ be an R-valued random variable on (£2, J7, P) such thatE£+ < 00. IfE^Ç >d £, 
then E^£ = £ wpl, i.e., £ differs from a Q measurable function by a null function. 

The theorem has been proved by Smit (1983). The next proof is due to M.S. Keane 
(personal communication). 

PROOF. Let/ be a strictly increasing, strictly convex function on R such that/(x) —• 
0 as x —> —00 and/(x) ~ x as x —• 00 {e.g., fix) = log(l + ex)). Set/(—00) := 0 
and/(oo) := 00. Note that E/(£) < 00 because E£+ < 00 and/(x) ~ JC as * —•» 00. By 
Jensen's inequality for conditional expectations we have 

(1.3) E^/ (0>/ (E^)wpl , 
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with equality iff £ = E^£ wpl (also in case P[£= — oo] > 0, to be checked separately). 
However, 

oo > E/(0 = EEfy(0 > E/(E^) > E/(0 

(the last inequality because E^£ >d £), so the second last inequality is in fact an equality, 
which in presence of (1.3) implies E^/(£) = /(E^£) wpl. So £ = E^£ wpl by the line 
after (1.3). • 

COROLLARY 1.4. If E£ exists, finite or infinite, and E^£ =d £, then E^£ = £ wpl. 

2. Locally bounded variation. We are going to apply (1.2) with <p(x) = x+. This 
case already occurs in Vervaat (1985, §3), the germ of the present paper. 

Let X be H self-affine (H > 0). We are aiming at the case of X having locally bounded 
variation wpl, but first we assume that X has nondecreasing sample paths wpl. We con
front (1.1): 

J2 (X(k) - X(k-l)) = -X{n) -> E7X(1) wpl 
'*=! 

with 
. f-^Owpl i f O < # < l ; 
-X(n) =d nH~lX(l) I = Z(l) if H = 1; 
n l ->co-X( l ) i f l < / 7 . 

Comparing the limits, which must be equal in distribution, we find 

E7X(l) = 0wpl i f O < # < l ; 
E7X(1) =<, X(l) i f / / = 1; 
P[E7X(l)-oo] = 1 - P[E7X(1)=0] = P[X(1)>0] if 1 < H. 

For 0 < H < 1 it follows subsequently that EX(1) - EE7X(1) = 0, X(l) = 0 wpl (since 
X(l) > 0 wpl), so thatX = 0 wpl by Theorem 1.2(a). 

For H = 1 it follows by Corollary 1.4 that X(l) differs by a null function from a / 
measurable random variable, so thatX(&) — X(k— 1) = X(l) wpl for all k. Consequently, 
X(t) = tX{\) wpl for t e N. By self-similarity we find the same for t e 2~nN, n = 
1,2,... (apply (0.1) for H = 1 and a = 2~n). By universal separability it follows that 
X{f) — tX{\) for all real t>0 simultaneously wpl. 

For 1 < //, Theorem 1.2(a) sharpens the result to E7X(1) — oo-l[x=o]c wpl. It follows 
that EX(1) = oo unless X = 0 wpl. 

We have found: 

THEOREM 2.1. IfX is a nondecreasing self-affine process, then 
X=0wpl / /*0</ /< 1; 
X(t) = tX(l) wpl ifH= 1; 
EX(1) = oo if 1 < H unless X = 0 wpl. 

Now we assume that X has sample paths of locally bounded variation wp 1. In this case 
we can write X = X^ —X^ where Xj is the nondecreasing process obtained by X^(t) : = 
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sup ££=1 (X(tk) — X(^_i)) , the supremum taken over all n G N and all sequences 0 = 
to < t\ < - - - < tn — t, and where Xj := (—X)j. From these expressions and the 
continuity in probability it is clear that both Xf and Xj are H self-affine as well. Applying 
Theorem 2.1 to Xj and Xj we find for X = X̂  — Xj : 

THEOREM 2.2. If X is an H self-affine process whose sample paths have locally 
bounded variation wpl, then 

X = Owpl ifO<H < 1; 
X=tX(l)v/plifH= 1; 
EX(1)+ = oo in case 1 < H unless X is nonincreasing wpl; 
EX(1)~ = oo in case 1 < H unless X in nondecreasing wpl. 

REMARKS 2.3. (a) By Theorem 1.2(c) it follows for the case H < 1 that wpl either 
X has nowhere bounded variation or X(t) = tX(l). This is a successful generalization of 
the top part in the right column of the table. No further generalization is possible for the 
bottom part of the same column, because of Examples 0.1(c). 

(b) Let A : = [X has locally bounded variation]. Then A is invariant under the transfor
mations (0.3) and (0.4), so Xl^ and X\Ac are also H self-affine. It follows that H > 1 and 
E|X(1)| = oo if P(A) > 0 unless X(0U = £X(l)U wpl. Similar extensions are possible 
for the results in the next sections. 

The following result builds on the arguments used above for the case H = 1. It will 
be needed in the sequel. 

LEMMA 2.4. Let X be an H self-affine (H > 0) universally separable process. If 
X(l)+ differs by a null function from a I measurable function, then X(t)+ = ^X(l)+ wpl, 
and H > 1 unless X = Owpl. If in addition P[X(1)>0] > 0, then H = 1 and X(t) = 
rX(l)wpl. 

PROOF. We have (X(k) - X(&-1))+ = X(l)+wpl for all &, which consumes all 
probability of the events [X(t) > 0], a probability that does not depend on t because X is 
self-similar. So [X(t) > 0] can only occur this way, and X(0+ = fX(l)+ wpl for all t G N, 
hence jointly for all real t > 0 by self-similarity and universal separability. The event 
[X(l)> 0] turned out to be invariant wpl for the transformations (0.3) and (0.4) applied 
to X, so Xl[x(i)>o] and Xl[x(i)<o] are H self-affine, and monotone by Theorem 1.2(b). 
So H > 1 by Theorem 2.1, unless X = Owpl. If P[X(1)>0] > 0 then H = 1, so that 
X(f)l[x(i)<0] = fX(l)l[X(i)<o] wpl by Theorem 2.1. • 

3. Infinite moments. We are going to apply (1.2) with ip(x) = (x+Y for/? < 1. Let 
X be H self-affine (H > 0) and universally separable. We confront (1.2): 

(3.1) - É ((*(*) - *(£- l ) )T -+ E7(X(l)+y wpl 
n k=\ v y 

with 

f ^ O w p i i f # < ^ ; 
l- ±((x(k)-x(k-i))+y > l-{x{nT)p =d rfH-\x(\T)p = (KD7 if// = \\ 
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The restriction/? < 1 is needed for the inequality. The case Hp < 1 does not give inter
esting conclusions. We compare the two limits in the two other cases under the additional 
hypothesis that E(X(l)+)P < oo, so E /(X(l)+) / ' < oo wpl. 

For the case///? = 1 wcMdE1 (X(l)+)P >d (X(l)+f, so (X(l)+)P = E7(X(l)+)pwpl 
by Theorem 1.3, i.e., X(l)+ differs by a null function from a / measurable random vari
able. By Lemma 2.4 it follows that X(t)+ = tX(l)+ wpl, so that X+ = 0 wpl in case 

For the case Hp > 1 we arrive at a contradiction unless X(l)+ = 0 wpl, so unless X 
is nondecreasing wpl (by Theorem 1.2(b)). 

Combining all this with the restriction/? < 1 we conclude: 

THEOREM 3.1. IfX is a universally separable H self-affine process with H > 1, then 
E(X(1)+) = oo for p > jj, unless X is decreasing wpl or H = 1 andX{t) = tX{\) wpl. 

We have generalized the middle column of the table as far as Examples 0.1 (a,b) allow 
us. 

4. Infinite moments in presence of jumps. We are going to apply (1.2) with 
</?(JC) = (x+y for general /? > 0. However, our results are meaningful mainly for/? > 1, 
and our motivation comes from this subcase. We try to confront (3.1) with the asymptotic 
behavior of 

The following is obvious for the case pH > 1. 

THEOREM 4.1. Let X be an H self-affine process. IfpH > 1 and the series on 
the right-hand side of (4.1) does not converge to 0 in probability as n —> oo, then 
E(X(l)+f = oo. 

At this stage, results for pH — 1 seem hard to get at. Moreover, if X happens to be 
a pure jump process, then the series on the right-hand side of (4.1) converges wpl to 
EfE[o,i] ( (X(t+) — X(t—)) ] , which is also a lower estimate for the lower limit of the 
same series in (4.1) if X happens to be càdlàg. Therefore we aim at asymptotic lower 
estimates of the same type, but in a context without assumptions about the smoothness 
of sample paths of X beyond separability. 

Let/ be a function T —• K (T an interval in R). By 6+f(t) we denote the upward jump 
off ai t: 

(4.2) S+f(t) : = (lim inff(s) - lim sup/(s))+ for t G T9 

with the provision that lim infs^tf(s) must be replaced by f(t) in case t = max T, and 
lim sup^/Xs) by/ (0 in case t = minT. Similarly we define 6~f(f) := 8+(—f)(t) to be 
the downward jump. Note that 6+f(t) = 8~f(t) — 0 does not imply that/ is continuous 
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at t (unless/ is càdlàg). For instance, if/ is nowhere bounded above or below (as are 
the sample paths of self-affine processes in Maejima (1983)), then/ has no jumps at all 
according to our definition. 

If/ is separable with separating set D, then s on the right-hand side of (4.2) may be 
restricted to s G D without changing the left-hand side. 

LEMMA 4.1. (a) Let f and ip be a R-valued functions on [0,1] and [0, oo] respec
tively, and suppose that p is non-negative and lower semicontinuous. Then 

(4.3) ,£^>)<li™(|>((/^)-/(^))*). 

(b) Iff is, in addition, separable with separating set D, then 

(4.4) E ¥>(W)) = I™ inf Ê ^((/X"*) -/("*-i))+), 
re[0,l] m ^ ° ° k=\ V J 

where the infimum is taken over all finite sequences 0 = wo < u\ < • • • < un — 1 such 
that Uk G D U {0,1} and uk — uk_\ < ^ for 1 < k < n. 

PROOF, (a) If x < left-hand side of (4.3), then there is a finite subset F of [0,1] such 
that already x < ^2teF p (S+f(t)\ By lower semicontinuity of p and (4.2) there is an e > 0 

such that x < ZteF^Ufin) -f(lt))
+) for all lt and rt that satisfy 0 V (t-e) < lt < t < 

rt < (t+e) A 1. So the sum on the right-hand side of (4.3) is also larger than x for all 
large n. 

(b) The proof that the right-hand side of (4.4) is not smaller follows the methods of 
the proof of (a), supplemented by the argument that s in (4.2) may be restricted to D. To 
prove that the right-hand side is not larger, suppose it is larger than x. We must show that 
then the left-hand side is also larger than x. The right-hand side is still larger than some 
y > x and there is an m G N such that EjJ=1 ip(f(uk) —/(w^_i)+) is larger than y for all 
sequences (wfc)j|L0 as indicated in the line after (4.4). Fix a finite sequence 0 = to < t\ < 
• • • < tn — 1 (not necessarily in D) such that tk — tk^\ < ~ for all k, and then select an 
increasing sequence UQ, U\ , . . . , W2n+i such that UQ — 0, W2«+i = 1, Uk G D for the other k, 
u2k < h < u2k+\ (either inequality restricted to u having indices other than 0 and 2n + 1), 
and 

n 2n+l / x 

E <KW*)) > E M(*k) -/fe-i)) - (y-x) 
k=\ k=\ V J 

(which is possible by (4.2) and lower semicontinuity of ip). The left-hand side is not 
larger than the left-hand side of (4.4). The right-hand side is larger than y — (y—x) = x. m 

We now are going to compare the right-hand side of (4.1) with functionals of 1^(1), 
where 
(4.5) Yp(t) := E {à+XM)P for t > 0. 

ue[0,t] 

Note that Yp(t) is indeed a random variable for each t, by (4.4) with countable D and our 
convention to take universally separable versions of X. Obviously, Yp has nondecreasing 
sample paths, but its values may be oo. 
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LEMMA 4.3. Wpl either Yp = oo on (0, oo) or Yp is finite-valued. IfHp < 1 and Yp 

is finite-valued, then Yp = 0 (modulo null events). 

PROOF. Note that Yp is pH self-affine in the more general sense that it need not be 
almost finite-valued. Because Yp has increasing sample paths and P[Yp(t) = oo] does 
not depend on t > 0 by self-similarity, the implication Yp(t) = oo (for a fixed t > 0) 
=> Yp = oo on (0, oo) holds true wpl. This proves the first statement in the lemma. 

Since A := [Yp finite-valued] is invariant under the transformations (0.3) and (0.4), 
the nonincreasing process YP\A is also/?// self-affine, and finite-valued. If/?// < 1, then 
Yp IA = 0 wp 1 by Theorem 2.1. If pH = 1, then Yp(t) \A = f Fp( 1 ) \A wp 1 by Theorem 2.1. 
However, if Yp is finite-valued, then the sums on the right-hand side of (4.5) are finite, 
so their summands are positive only on a countable set of M'S. SO the sum cannot be of 
the form ct for varying t unless c — 0. We arrive at the same conclusion as for pH < 1. 

• 

THEOREM 4.4. Let X be H self-affine and universally separable. IfpH > 1 and X 
makes positive jumps with positive probability, then E \X( 1 )+ J = oo. 

PROOF. If X makes positive jumps with positive probability, then Yp(l) > 0 with 
positive probability. If pH = 1, then Yp = oo on (0, oo) with the same positive proba
bility, by Lemma 4.3. From (3.1), (4.1) and Lemma 4.2(a) it follows that E7(Z(1)+)P >d 

Fp(l), which equals oo with positive probability. So E(X(1)+) = oo for p = ~, and 
consequently also for larger p. m 

We now check this result against what is known for strictly stable motions. We have 
obtained the 'if part of the following variant of the middle column of the table. For 
strictly stable motions X (which are known to possess càdlàg versions) we have 
E(X(l)+Y = oo iff X makes positive jumps with positive probability and p > ^, for 
all H > \. Indeed, Brownian motion (// = \) does not make jumps'at all, and for spec
trally negative strictly stable motions with H > \ (those that make only negative jumps) 
all moments of X(l)+ exist (cfi Zolotarev (1986)). 

In Theorem 3.1, which applies to the case H > 1, there is no condition at all about 
positive jumps, which at first sight could contradict what is known for spectrally negative 
strictly stable motions. However, for H > 1 the spectrally negative strictly stable motions 
are nonincreasing (Theorem 3.1 could serve as a new proof for this, in presence of the 
finiteness of EX(1)+). For// = 1 the only strictly stable motion among the stable motions 
is the symmetric one (Kasahara, Maejima and Vervaat (1988) or O'Brien and Vervaat 
(1985, §7)), so Theorem 3.1 is not applicable here. 
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