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Abstract. We characterize real hypersurfaces of type (A) and ruled real
hypersurfaces in a complex projective space in terms of two φ-invariances of their
shape operators, and give geometric meanings of these real hypersurfaces by observing
their some geodesics.
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1. Introduction. The theory of Riemannian submanifolds in a Euclidean sphere is
one of the most interesting objects in differential geometry. It is known that an isometric
immersion f of a Kähler manifold M with Kähler structure J into a sphere has parallel
second fundamental form σ if and only if σ is J-invariant, that is σ (JX, JY ) = σ (X, Y )
holds for each vector X, Y on M (Proposition 3).

In this context, we consider a real hypersurface M2n−1 in an n-dimensional complex
projective space �Pn(c) of constant holomorphic sectional curvature c(> 0), furnished
with the almost contact metric structure (φ, ξ, η, 〈 , 〉) on M induced from the Kähler
structure J of the ambient space �Pn(c). In this case the structure tensor φ behaves on M
similarly to a Kähler structure on a Kähler manifold, and on the other hand there exists
no real hypersurface with parallel second fundamental form in �Pn(c). So, we introduce
the following conditions concerning φ-invariances of the shape operator A of M.

The shape operator A of M is called strongly φ-invariant if A satisfies

〈AφX, φY〉 = 〈AX, Y〉, i.e., σ (φX, φY ) = σ (X, Y ) (1.1)

for all vectors X and Y on M. Also, it is called weakly φ-invariant if A satisfies

〈AφX, φY〉 = 〈AX, Y〉, i.e., σ (φX, φY ) = σ (X, Y ) (1.2)

for all vectors X and Y orthogonal to the characteristic vector ξ on M.
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We here note that there exist real hypersurfaces satisfying these conditions. Indeed,
the real hypersurfaces which are called of type (A) with radius π/(2

√
c ) have strongly

φ-invariant shape operator, and all of the real hypersurfaces of type (A) and the
ruled real hypersurfaces have weakly φ-invariant shape operator, which are known as
examples which enrich the theory of real hypersurfaces in �Pn(c).

The main purpose of this paper is to characterize real hypersurfaces of type (A)
and ruled real hypersurfaces in �Pn(c) by these φ-invariances of shape operators
(Theorems 1 and 2).

2. Real hypersurfaces of type (A) in �Pn(c). Let M2n−1 be a real hypersurface
with unit normal local vector field N of an n-dimensional complex projective space
�Pn(c) of constant holomorphic sectional curvature c. The Riemannian connections
∇̃ of �Pn(c) and ∇ of M are related by

∇̃X Y = ∇X Y + 〈AX, Y〉N and ∇̃XN = −AX (2.1)

for vector fields X and Y tangent to M, where 〈 , 〉 denotes the metric of M induced
from the standard Riemannian metric of �Pn(c) and A is the shape operator of M in
�Pn(c). It is known that M admits an almost contact metric structure (φ, ξ, η, 〈 , 〉)
induced from the Kähler structure J of �Pn(c). The characteristic vector field ξ of M
is defined as ξ = −JN and this structure satisfies

φ2 = −I + η ⊗ ξ, η(ξ ) = 1 and 〈φX, φY〉 = 〈X, Y〉 − η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M. It follows from the
fact that ∇̃J = 0 and Equations (2.1) that

∇Xξ = φAX. (2.2)

Here, for later use we recall the Codazzi equation of M2n−1 in �Pn(c).

(∇X A)Y − (∇Y A)X = c
4
{η(X)φY − η(Y )φX − 2〈φX, Y〉ξ}. (2.3)

The eigenvalues and eigenvectors of the shape operator A are called principal curvatures
and principal curvature vectors of M in �Pn(c), respectively. In the following, we denote
by Vλ the eigenspace associated with the principal curvature λ, namely we set Vλ =
{v ∈ TM|Av = λv}.

We usually call M a Hopf hypersurface if the characteristic vector ξ is a principal
curvature vector at each point of M. It is known that every tube of sufficiently small
constant radius around each Kähler submanifold of �Pn(c) is a Hopf hypersurface.
This fact tells us that the notion of Hopf hypersurfaces is natural in the theory of real
hypersurfaces in �Pn(c).

The following lemma is a useful tool in the theory of Hopf hypersurfaces in
�Pn(c), n � 2.

LEMMA 1. For a Hopf hypersurface M2n−1 (n � 2) with principal curvature α

corresponding to the characteristic vector field ξ in �Pn(c), we have the following:
1. α is locally constant on M;
2. If X is a tangent vector of M perpendicular to ξ with AX = λX, then

AφX = αλ+(c/2)
2λ−α

φX.
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REMARK 1. In Lemma 1(2), we note that 2λ − α 	= 0 because c > 0.

The following real hypersurfaces are so-called real hypersurfaces of type (A1) and
type (A2), respectively.

(A1) A geodesic sphere G(r) of radius r (0 < r < π/
√

c ) in �Pn(c);
(A2) A tube of radius r (0 < r < π/

√
c ) around a totally geodesic Kähler

submanifold �P	(c) in �Pn(c) with 1 � 	 � n − 2.
In this paper, summing up the real hypersurfaces of type (A1) and type (A2), we call
them the real hypersurfaces of type (A). The real hypersurfaces of type (A) are known as
typical examples of Hopf hypersurfaces. The tangent bundle TM of real hypersurfaces
M of type (A1) with radius r (0 < r < π/

√
c ) is decomposed as TM = {ξ}� ⊕ Vλ

with α = √
c cot(

√
c r), λ = (

√
c /2) cot(

√
c r/2), dim� Vλ = 2n − 2 and φVλ = Vλ.

The tangent bundle TM of real hypersurfaces M of type (A2) with radius r (0 <

r < π/
√

c ) is decomposed as TM = {ξ}� ⊕ Vλ1 ⊕ Vλ2 with α = √
c cot(

√
c r), λ1 =

(
√

c /2) cot(
√

c r/2), λ2 = (−√
c /2) tan(

√
c r/2), dim� Vλ1 = 2n − 2	 − 2, dim� Vλ2 =

2	 and φVλi = Vλi (i = 1, 2). Note that a geodesic sphere G(r) of radius r (0 < r <

π/
√

c ) in �Pn(c) is congruent to a tube of radius (π/
√

c ) − r around totally geodesic
�Pn−1(c) in �Pn(c).

We prepare the following which is a characterization of the real hypersurfaces of
type (A) (see [10]).

LEMMA 2. Let M be a real hypersurface in �Pn(c) (n � 2). Then the following
conditions are mutually equivalent:

1. M is locally congruent to a real hypersurface of type (A);
2. φA = Aφ;
3. 〈(∇X A)Y, Z〉 = (c/4)(−η(Y )〈φX, Z〉 − η(Z)〈φX, Y〉) for arbitrary vectors X, Y

and Z on M.

At the end of this section we recall the definition of circles in Riemannian geometry.
Let γ = γ (s) be a smooth real curve parametrized by its arclength s on a Riemannian
manifold M. If the curve γ satisfies the following ordinary differential equations with
some constant k(� 0)

∇γ̇ γ̇ = kYs and ∇γ̇ Ys = −kγ̇ , (2.4)

where ∇γ̇ is the covariant differentiation along γ with respect to the Riemannian
connection ∇ of M and Ys is so-called the unit principal normal vector of γ , we call
γ a circle of curvature k on M. We regard a geodesic as a circle of null curvature. It is
known that Equations (2.4) are equivalent to the equation

∇γ̇ ∇γ̇ γ̇ + 〈∇γ̇ γ̇ ,∇γ̇ γ̇ 〉γ̇ = 0, (2.5)

where 〈 , 〉 is the Riemannian metric of M.

3. Ruled real hypersurfaces in �Pn(c). We recall ruled real hypersurfaces in
�Pn(c), which are typical examples of non-Hopf hypersurfaces. A real hypersurface M
is called a ruled real hypersurface of �Pn(c) (n � 2) if the holomorphic distribution T0

defined by T0(x) = {X ∈ TxM | X⊥ξ} for x ∈ M is integrable and each of its maximal
integral manifolds is a totally geodesic complex hyperplane �Pn−1(c) of �Pn(c). A
ruled real hypersurface is constructed in the following manner. Given an arbitrary
regular real curve γ in �Pn(c) which is defined on an interval I we have at each fixed
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point γ (t) (t ∈ I) a totally geodesic complex hyperplane �Pn−1
t (c) that is orthogonal to

the plane spanned by {γ̇ (t), Jγ̇ (t)}. Then we see that M = ⋃
t∈I �Pn−1

t (c) is a ruled real
hypersurface in �Pn(c). The following is a well-known characterization of ruled real
hypersurfaces in terms of the shape operator A.

LEMMA 3. For a real hypersurface M in �Pn(c) (n � 2), the following conditions (1),
(2) and (3) are mutually equivalent:

1. M is a ruled real hypersurface.
2. Let μ = 〈Aξ, ξ 〉 and ν = ‖Aξ − μξ‖. Then the subset M1 = {x ∈ M|ν(x) 	= 0}

of M is open dense and there exists a unit vector field U on M1 such that it is
orthogonal to ξ and satisfies that Aξ = μξ + νU, AU = νξ and AX = 0 for an
arbitrary tangent vector X orthogonal to ξ and U.

3. The shape operator A of M satisfies 〈Av,w〉 = 0 for arbitrary tangent vectors
v,w ∈ TxM orthogonal to ξx at each point x ∈ M.

We treat a ruled real hypersurface locally, because generally this hypersurface has
singularities. When we study ruled real hypersurfaces, we usually omit points where ξ is
principal and suppose that ν does not vanish everywhere, namely a ruled hypersurface
M is usually supposed M1 = M.

We clarify a fundamental property on some geodesics of ruled real hypersurfaces
in �Pn(c). In the following, for a curve γ on a submanifold Mn isometrically immersed
into an arbitrary Riemannian manifold M̃n+p through f , we call γ an extrinsic geodesic
if the curve f ◦ γ is a geodesic in M̃n+p.

LEMMA 4. On a ruled real hypersurface M in �Pn(c) (n � 2), every geodesic γ whose
initial vector γ̇ (0) is orthogonal to the characteristic vector ξγ (0) is an extrinsic geodesic.

Proof. Let M0 be the leaf through the point γ (0) for the holomorphic distribution
T0M. We here take a geodesic γ1 on M0 with the same initial condition that γ1(0) =
γ (0) and γ̇1(0) = γ̇ (0). Since M0 is locally congruent to a totally geodesic complex
hyperplane �Pn−1(c) of �Pn(c), we see that the curve γ1 is also a geodesic in the
ambient space �Pn(c), which implies that the curve γ1 is a geodesic on our ruled real
hypersurface M. Hence the uniqueness theorem on geodesics tells us that these two
curves γ and γ1 are coincidental. Thus we get the desired conclusion. �

We should note that the tangent vector γ̇ (s) of a geodesic γ in this lemma is
orthogonal to ξγ (s) at each point γ (s).

The following is fundamental on ruled real hypersurfaces in �Pn(c).

PROPOSITION 1. Every ruled real hypersurface in �Pn(c) (n � 2) is not complete.

Proof. By direct computation we find that every integral curve γ of the vector
field φU is a geodesic on a ruled real hypersurface M and the function ν satisfies
the differential equation on the curve γ : φUν = ν2 + c

4 (for details, see [4]). Then,

solving this equation, we have ν(s) =
√

c
2 tan(

√
c

2 s + C) with some constant C. These
imply that every geodesic γ = γ (s) with initial vector γ̇ (0) = (φU)γ (0) on our ruled real
hypersurface M is defined on the open interval I = (− 2√

c (π
2 + C), 2√

c (π
2 − C)). Thus

we get the conclusion. �
REMARK 2. In �Hn(c), we also consider ruled real hypersurfaces. We emphasize

that there exist many complete ruled real hypersurface in �Hn(c) (for details, see [7]).
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4. Statements of results. The following is a classification theorem of real
hypersurfaces in �Pn(c) with strongly φ-invariant shape operator.

THEOREM 1. Let M2n−1 (n � 2) be a real hypersurface of �Pn(c). Then the following
conditions (1), (2) and (3) are mutually equivalent.

1. M is locally congruent to a real hypersurface of type (A) with radius π/(2
√

c ).
2. The shape operator A of M is strongly φ-invariant.
3. M satisfies the following:

(3i) At each fixed point p ∈ M, there exist orthonormal vectors v1, v2, . . . , v2n−2

orthogonal to the characteristic vector ξp of M such that all geodesics γi = γi(s)
on M with γ̇i(0) = p and γ̇i(0) = vi (1 � i � 2n − 2) are mapped to circles of
the same positive curvature in �Pn(c);

(3ii) There exists at least one integral curve of the characteristic vector field ξ of
M which is mapped to a geodesic in �Pn(c).

Proof. We shall show that Condition (1) implies both Conditions (2) and (3). We
first consider the case of type (A2) with radius π/(2

√
c ). Let M be a real hypersurface

of type (A2) with radius π/(2
√

c ) around totally geodesic �P	(c) (1 � 	 � n − 2).
Then M has three distinct constant principal curvatures 0 (with multiplicity 1),

√
c /2

(with multiplicity 2n − 2	 − 2) and −√
c /2 (with multiplicity 2	). We here remark that

Aξ = 0. Moreover, Lemma 1 tells us that φV√
c /2 = V√

c /2 and φV−√
c /2 = V−√

c /2.
Hence we see that −φAφξ = 0 = Aξ , −φAφu = (

√
c /2)u = Au for each u ∈ V√

c /2
and −φAφv = (−√

c /2)v = Av for each v ∈ V−√
c /2, so that

−φAφX = AX for all vectors X ∈ TM, (4.1)

which is equivalent to the definition (1.1) of strongly φ-invariance of the shape operator
A of M. Thus we can see that Condition (1) implies Condition (2) in the case of type
(A2) with radius π/(2

√
c ).

We next take orthonormal vectors v1, . . . , v2n−2 perpendicular to the characteristic
vector ξp at an arbitrary fixed point p of M in such a way that v1, . . . , v2n−2	−2 and
v2n−2	−1, . . . , v2n−2 are orthonormal bases of V√

c /2 and V−√
c /2, respectively. Let γi =

γi(s) (1 � i � 2n − 2	 − 2) be a geodesic on M with initial condition that γi(0) = p and
γ̇i(0) = vi. Then

∇γ̇i(s)〈γ̇i(s), ξγi(s)〉 = 〈γ̇i(s),∇γ̇i(s)ξγi(s)〉 = 〈γ̇i(s), φAγ̇i(s)〉 (from (2.2))

= 〈γ̇i(s), Aφγ̇i(s)〉 (from Lemma 2(2))

= 〈Aγ̇i(s), φγ̇i(s)〉 = −〈φAγ̇i(s), γ̇i(s)〉 = 0,

which, together with 〈γ̇i(0), ξp〉 = 〈vi, ξp〉 = 0, implies that 〈γ̇i(s), ξγi(s)〉 = 0 for each s.
Hence, using Lemma 2(3), we get

∇γ̇i(s)‖Aγ̇i(s) − (
√

c /2)γ̇i(s)‖2

= 2〈(∇γ̇i(s)A)γ̇i(s), Aγ̇i(s) − (
√

c /2)γ̇i(s)〉
= 2〈(∇γ̇i(s)A)γ̇i(s), Aγ̇i(s)〉 − √

c 〈(∇γ̇i(s)A)γ̇i(s), γ̇i(s)〉 = 0,

which, combined with Aγ̇i(0) − (
√

c /2)γ̇i(0) = Avi − (
√

c /2)vi = 0, shows that
Aγ̇i(s) = (

√
c /2)γ̇i(s) for every s. So, in view of (2.1) we know that the geodesic γi = γi(s)
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on M satisfies the following differential equations in the ambient �Pn(c):

∇̃γ̇i(s)γ̇i(s) =
√

c
2

N and ∇̃γ̇i(s)N = −
√

c
2

γ̇i(s)

for each s. That is, all geodesics γi = γi(s) (1 � i � 2n − 2	 − 2) on M are mapped to
circles of the same positive curvature

√
c /2 in �Pn(c). Also, by the same discussion as

above we find that all geodesics γj = γj(s) (2n − 2	 − 1 � j � 2n − 2) on M with initial
vector γ̇j(0) = vj ∈ V−√

c /2 are mapped to circles of the same positive curvature
√

c /2
in �Pn(c). Hence we obtain Condition (3i). We here recall that the characteristic vector
field ξ on our real hypersurface M satisfies Aξ = 0. This, together with the first equality
in (2.1) and (2.2), yields that every integral curve of ξ is mapped to a geodesic in �Pn(c).
Then we know that Condition (1) implies Condition (3) in the case of type (A2) with
radius π/(2

√
c ). The above discussion holds good even in the case of type (A1) with

radius π/(2
√

c ). Therefore, we can see that Condition (1) implies both Conditions (2)
and (3).

Conversely, we show that Condition (2) implies Condition (1). Setting X = ξ

in Equation (4.1), we see that Aξ = 0. We next take a principal curvature vector X
orthogonal to ξ with principal curvature λ. Then it follows from Lemma 1(2) and (4.1)
that λ = ±√

c /2. Again, by using Lemma 1(2) we see that each of V√
c /2 and V−√

c /2
is invariant by φ, so that φA = Aφ holds on our real hypersurface M. This, combined
with Lemma 2(2), gives us Condition (1).

Finally, we verify that Condition (3) implies Condition (1). We take orthonormal
vectors v1, v2, . . . , v2n−2 at an arbitrary fixed point p of a real hypersurface M satisfying
Condition (3i). Then, from (2.5) they satisfy

∇̃γ̇i ∇̃γ̇i γ̇i = −k2γ̇i (4.2)

for some positive constant k. On the other hand, from (2.1) we have

∇̃γ̇i ∇̃γ̇i γ̇i = 〈(∇γ̇i A)γ̇i, γ̇i〉N − 〈Aγ̇i, γ̇i〉Aγ̇i. (4.3)

Comparing the tangential components of (4.2) and (4.3), we see that

〈Aγ̇i, γ̇i〉Aγ̇i = k2γ̇i,

so that at s = 0 we get

〈Avi, vi〉Avi = k2vi for 1 � i � 2n − 2.

Since k 	= 0, we obtain

Avi = kvi or Avi = −kvi for 1 � i � 2n − 2. (4.4)

So we find that ξ is a principal curvature vector, because 〈Aξ, vi〉 = 〈ξ, Avi〉 = 0 for
1 � i � 2n − 2. This, together with Condition (3ii), implies that Aξ = 0. Then the real
hypersurface M is a Hopf hypersurface which has at most three distinct principal
curvatures k(= k(p)),−k and 0(= 〈Aξ, ξ 〉) at the point p. Thus, from Lemma 1(2) and
c > 0 we know that c/(4k) = k, so that k = √

c /2. Hence M is a Hopf hypersurface
with at the most three distinct constant principal curvatures

√
c /2,−√

c /2 and α =
〈Aξ, ξ 〉 = 0 at its each point, so that φA = Aφ holds on M. Therefore we can conclude
that our real hypersurface M is a hypersurface of type (A) with radius π/(2

√
c ). �
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REMARK 3. (1) In Condition (3i) we do not need to suppose that we take the
vectors v1, . . . , v2n−2 as a local field of orthonormal frames on M. However, for all
real hypersurfaces M in Theorem 1 we can take a local field of orthonormal frames
v1, . . . , v2n−2 on M satisfying Condition (3i).

(2) If we omit Condition (3ii), Theorem 1 is no longer true. The discussion in the
proof of Theorem 1 tells us that a real hypersurface M in �Pn(c) satisfies Condition
(3i) if and only if M is locally congruent to either a real hypersurface of type (A1) with
radius r (0 < r < π/

√
c ) or a real hypersurface of type (A2) with radius r = π/(2

√
c ).

Inspired by Condition (3ii), we are interested in the number of extrinsic geodesics
(i.e., geodesics of �Pn(c) lying on this hypersurface) on real hypersurfaces of type (A)
with radius π/(2

√
c ). To do this, we review congruence theorems on geodesics on real

hypersurfaces of type (A) in �Pn(c).
For a geodesic γ on a real hypersurface M of type (A) in �Pn(c), we define its

structure torsion ργ by ργ = 〈γ̇ , ξγ 〉. Clearly, it satisfies −1 � ργ � 1. Moreover, for
each geodesic γ on M, from the discussion in the proof of Theorem 1 we know that
the structure torsion ργ is constant along γ .

For geodesics on a geodesic sphere G(r) of radius r (0 < r < π/
√

c ), we can classify
them by means of their structure torsions (see proposition 2.3 in [2]):

LEMMA 5. On a geodesic sphere G(r) of radius r (0 < r < π/
√

c ) in �Pn(c) (n � 2),
two geodesics γ1, γ2 are congruent to each other with respect to the isometry group I(G(r))
of G(r), namely there exists an isometry ϕ of G(r) with γ2(s) = (ϕ ◦ γ1)(s) for each s if
and only if their structure torsions ργ1 and ργ2 satisfy |ργ1 | = |ργ2 |.

To obtain a congruence theorem for geodesics on real hypersurfaces of type (A2)
in �Pn(c), we need another invariant. For a geodesic γ on a real hypersurface of type
(A) in �Pn(c) we define its normal curvature κγ by κγ = 〈Aγ̇ , γ̇ 〉. By Lemma 2 we have

∇γ̇ κγ (s) = 〈(∇γ̇ (s)A)γ̇ (s), γ̇ (s)〉 = 0,

which shows that κγ is constant along γ .
Geodesics on a real hypersurface of type (A2) are classified by means of their

structure torsions and normal curvatures (see theorem 2 in [1]):

LEMMA 6. On a real hypersurface M of type (A2) in �Pn(c) (n � 2), two geodesics
γ1, γ2 are congruent to each other with respect to the isometry group I(M) of M if and
only if their structure torsions and normal curvatures satisfy |ργ1 | = |ργ2 | and κγ1 = κγ2 .

The following proposition implies that by the number of extrinsic geodesics we
can distinguish between the real hypersurface of type (A1) with radius π/(2

√
c ) and

the real hypersurfaces of type (A2) with radius π/(2
√

c ).

PROPOSITION 2. (1) The geodesic sphere G(π/(2
√

c )) of radius π/(2
√

c ) in �Pn(c)
(n � 2) has just one congruence class of extrinsic geodesics with respect to the isometry
group I(G(π/(2

√
c ))) of G(π/(2

√
c )). This extrinsic geodesic is an integral curve of the

characteristic vector field ξ on G(π/(2
√

c )).
(2) Every real hypersurface M of type (A2) with radius π/(2

√
c ) in �Pn(c) has

uncountably infinite congruence classes of extrinsic geodesics with respect to the
isometry group I(M) of M. These extrinsic geodesics are expressed as a one-
parameter family of geodesics γa = γa(s) (0 � a � 1/

√
2 ) on M with initial vector
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γ̇ (0) = √
1 − 2a2 ξγ (0) + au + av, where u, v are unit vectors orthogonal to ξγ (0) with

Au = (
√

c /2)u, Av = (−√
c /2)v.

Proof. Note that a curve γ = γ (s) on a real hypersurface M of type (A) in �Pn(c)
is an extrinsic geodesic if and only if the curve γ is a geodesic of M and the following
equation holds (see Lemma 2(3)):

〈Aγ̇ (0), γ̇ (0)〉 = 0. (4.5)

For the claim (1). For a geodesic γ = γ (s) of G(π/(2
√

c )), we can set

γ̇ (0) = ργ ξγ (0) +
√

1 − ρ2
γ u, (4.6)

where ργ is the structure torsion of γ and u is a unit vector orthogonal to ξγ (0). Then
it follows from (4.5), (4.6) and equalities Aξγ (0) = 0, Au = (

√
c /2)u that ργ = ±1, so

that the extrinsic geodesic γ is an integral curve of ξ . Furthermore, any integral curves
of ξ are congruent to one another (see Lemma 5). Thus we get Statement (1).

For the claim (2). For a geodesic γ = γ (s) of our real hypersurface M, we can set

γ̇ (0) = ργ ξγ (0) + au + bv, (4.7)

where a, b are nonnegative constants with ρ2
γ + a2 + b2 = 1, Aξγ (0) = 0 and u, v are

unit vectors orthogonal to ξγ (0) with Au = (
√

c /2)u, Av = (−√
c /2)v. Hence, from

(4.5) and (4.7) we know that the geodesic γ of M is an extrinsic geodesic if and only
if the structure ργ of γ satisfies ρ2

γ = 1 − 2a2 (0 � a � 1/
√

2 ). Therefore our real
hypersurface M has uncountably infinite congruence classes of extrinsic geodesics (see
Lemma 6). �

REMARK 4. (1) By virtue of Proposition 2(2) we see that real hypersurfaces M
of type (A2) with radius π/(2

√
c ) in �Pn(c) have a one-parameter family of closed

geodesics γa = γa(s) (0 � a � 1/
√

2 ) with the same length 2π/
√

c , which are not
congruent to one another with respect to I(M). These curves γa (0 � a � 1/

√
2 ) are

mapped to geodesics of �Pn(c). We note that these curves γa, considered as curves in the
ambient space �Pn(c), are congruent to one another with respect to the isometry group
SU(n + 1) of �Pn(c) because all geodesics of �Pn(c) are congruent to one another.

(2) In an n-dimensional complex hyperbolic space �Hn(c) of constant holomorphic
sectional curvature c(< 0), there exist also real hypersurfaces, so-called, of type (A).
However, such a real hypersurface in �Hn(c) has no extrinsic geodesics (cf. [8]). So, an
analogous result to Theorem 1 does not hold in the ambient space �Hn(c).

Next, under some conditions, we classify real hypersurfaces in �Pn(c) with weakly
φ-invariant shape operator.

THEOREM 2. For a real hypersurface M2n−1 of �Pn(c) (n � 2) we have the following
two statements (1), (2).

(1) The following conditions (1a), (1b), (1c) are mutually equivalent.
(1a) M is a Hopf hypersurface with weakly φ-invariant shape operator.
(1b) M is locally congruent to a real hypersurface of type (A).
(1c) Every geodesic γ of M has constant normal curvature κγ along γ .

(2) The following conditions (2a), (2b), (2c) are mutually equivalent.
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(2a) The holomorphic distribution T0M of M is integrable and the shape operator
of M is weakly φ-invariant.

(2b) M is a ruled real hypersurface.
(2c) At each fixed point p ∈ M there exist such orthonormal vectors v1, . . . , v2n−2

orthogonal to the characteristic vector ξ that all geodesics of M through p in
the direction vi + vj (1 � i � j � 2n − 2) are mapped to geodesics in �Pn(c).

Proof. (1) Suppose that Condition (1a) holds. Then, using the property (1.2) and the
assumption that M is a Hopf hypersurface, we see that φA = Aφ, so that by Lemma 2,
M is a real hypersurface of type (A).

Conversely, we suppose that M is a real hypersurface of type (A). Then Equation
(1.2) follows from the fact that φA = Aφ. Hence we can check the equivalency for
Conditions (1a) and (1b).

Next, we shall show the equivalency for Conditions (1b) and (1c). It follows from
our argument that Condition (1b) implies Condition (1c). We next suppose Condition
(1c). Then we see easily that

〈(∇X A)X, X〉 = 0 for each vector X on M,

which is equivalent to saying that

〈(∇X A)Y, Z〉 + 〈(∇Y A)Z, X〉 + 〈(∇ZA)X, Y〉 = 0 (4.8)

for arbitrary vectors X, Y and Z on M. In consideration of the symmetry of the shape
operator A, (4.8) and (2.3) we can see that Lemma 2(3) holds. Hence we get Condition
(1b). Thus we can check the equivalency for Conditions (1b) and (1c).

(2) It is obvious from Lemmas 3 and 4 that Condition (2b) implies Conditions (2a)
and (2c). Conversely, we suppose Condition (2a). Then it follows from the integrability
of the holomorphic distribution T0M and (2.2) that

〈(φA + Aφ)X, Y〉 = 0 for arbitrary X, Y ∈ T0M (4.9)

(see proposition 5 in [5]). Hence, in view of (1.2), (4.9) and the skew-symmetry of φ we
see that

〈AX, Y〉 = 〈AφX, φY〉 = −〈φAX, φY〉
= 〈AX, φ2Y〉 = −〈AX, Y〉 = 0,

so that by Lemma 3, M is a ruled real hypersurface. Hence we have Condition (2b).
We suppose Condition (2c). Then, from the first equaity in (2.1) we know that

at each point p ∈ M there exist orthonormal vectors v1, . . . , v2n−2 orthogonal to ξ

satisfying

〈Avi, vj〉 = 0 for 1 � i � j � 2n − 2,

which yields Lemma 3(3). Thus we can see that M is a ruled real hypersurface, so that
we obtain Condition (2b). �

REMARK 5. (1) An analogous result to Theorem 2 holds for real hypersurfaces in
an n-dimensional complex hyperbolic space �Hn(c) of constant holomorphic sectional
curvature c(< 0).
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(2) Every geodesic of each real hypersurface of type (A) in �Pn(c) is mapped to a
homogeneous curve in �Pn(c), namely it is represented by an orbit of a one-parameter
subgroup of SU(n + 1).

(3) The classification problem of real hypersurfaces with weakly φ-invariant shape
operator in �Pn(c) is still open.

The following proposition was already seen in [3]. However, for readers we prove
it again in order to guarantee the motivation of this paper.

PROPOSITION 3. Let (Mn, J) be an n-dimensional Kähler manifold with Kähler
structure J immersed into a (2n + p)-dimensional sphere S2n+p(c) of constant sectional
curvature c through an isometric immersion f . Then f has parallel second fundamental
form σ if and only if σ is J-invariant, namely σ (JX, JY ) = σ (X, Y ) holds for all vectors
X, Y on Mn.

Proof. We suppose that σ is J-invariant. Our discussion here is due to [3]. We first
recall the definition of the covariant derivative ∇ of the second fundamental form σ :

(∇Xσ )(Y, Z) = DX (σ (Y, Z)) − σ (∇X Y, Z) − σ (Y,∇X Z),

where D is the normal connection of f and ∇ is the Riemannian connection of the
submanifold Mn. This, combined with the J-invariance of σ , implies

(∇Zσ )(JX, Y ) = −(∇Zσ )(X, JY ) for all vectors X, Y and Z on Mn. (4.10)

Using Equation (4.10) and the Codazzi equation (∇Xσ )(Y, Z) = (∇Yσ )(X, Z) for the
sphere case repeatedly, we find the following:

(∇Zσ )(X, Y ) = (∇Yσ )(X, Z) = −(∇Yσ )(X, J2Z)

= (∇Yσ )(JX, JZ) = (∇JZσ )(JX, Y )

= −(∇JZσ )(X, JY ) = −(∇Xσ )(JZ, JY )

= (∇Xσ )(Z, J2Y ) = −(∇Xσ )(Z, Y )

= −(∇Zσ )(X, Y ) = 0.

Next, we suppose that f has parallel second fundamental form. Then it is known
that our Kähler manifold Mn is locally isometric to a compact Hermitian symmetric
space and moreover this isometric immersion f of the compact Hermitian symmetric
space into the ambient sphere S2n+p(c) is locally realized as a part of the embedding as
the symmetric R-space.

We here recall the embedding as symmetric R-spaces. Let g = g−1 + g0 + g1 be
a semisimple graded Lie algebra of the first kind and ν the characteristic element
which defines its gradation, i.e. ν ∈ g0 and the eigenspaces of ad(ν) with eigenvalues
±1 and 0 are respectively given by g±1 and g0. Take a Cartan involution τ of g such
that τ (ν) = −ν and let g = k ⊕ p be the Cartan decomposition by τ , i.e., k and p are
respectively the (±1)-eigenspaces of τ . Furthermore, let G be the adjoint group of g

and K the maximal compact subgroup of G with Lie algebra k. Then, under a suitable
G-invariant metric, the homogeneous space G/K is a Riemannian symmetric space of
noncompact type, and the orbit K(ν) ⊂ S ⊂ p is called a symmetric R-space, where
S denotes the hypersphere in p centred at the origin with radius |ν|. Put θ = exp
ad(π

√−1ν). Then the subspaces g, k, p are invariant by θ , and it gives an involution
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of g such that θ ◦ τ = τ ◦ θ . Let k = k+ ⊕ k− and p = p+ ⊕ p− be the decompositions
by θ , where k±1 and p±1 denote the (±1)-eigenspaces of θ in k and p, respectively. Then
ν ∈ p+ and the subspaces k− and p±1 are k+-modules satisfying

[k−, k−], [p+, p+], [p−, p−] ⊂ k+, [k−, p−] ⊂ p+, [k−, p+] ⊂ p− and [p−, p+] ⊂ k−.

Let K+ denote the isotropy subgroup of K at ν ∈ K(ν) and put M′ = K/K+. Then M′ is
a compact symmetric space associated with the involution θ and the tangent space ToM′

at the origin o in K/K+ is identified with the subspace k−. Moreover the tangent space
TνK(ν) and the normal space T⊥

ν K(ν) in p are respectively identified with p− and p+.
Let f ′ be the canonical embedding of M′ into p defined by f ′(kK+) = k(ν) ∈ K(ν) ⊂ p

where k ∈ K , and denote by σo the second fundamental form of f ′ at o. Then it follows

σ0(X, Y ) = [X, [Y, ν]] for all X, Y ∈ k−.

We here refer to [6] for the semisimple graded Lie algebra and to [11] for the construction
of symmetric R-spaces.

Now we assume that M′ is a Hermitian symmetric space. Note that the Lie algebra
of K+ is k+. Then, there exists an element H ∈ k+ such that the almost complex structure
J on ToM′ is given by the restriction of ad(H) to k−, and moreover the element H is
contained in the centre of the Lie algebra k+ ⊕ p+ (for these facts we refer to [9]).
Noting that [H, ν] = 0 and [k−, [k−, p+]] ⊂ p+, we now get the following equalities:

σ0(JX, JY ) = [JX, [JY, ν]] = [ad(H)X, [ad(H)Y, ν]]

= [ad(H)X, ad(H)([Y, ν])] = ad(H)([ad(H)X, [Y, ν]]) − [ad2(H)X, [Y, ν]]

= 0 − [J2X, [Y, ν]] = [X, [Y, ν]] = σ0(X, Y )

for X, Y ∈ k−. Since the embedding f ′ : M′ → p is K-equivariant, the second
fundamental form of f ′ is J-invariant. Moreover, since the inclusion S ↪→ p is
totally umbilical, the second fundamental form of the embedding M′ → S is also
J-invariant. By the classification theorem of parallel immersions ([3]), our parallel
immersion f : Mn → S2n+p(c) is locally constructed precisely as the composition of an
embedding as the symmetric R-space f ′ : M′ → S and a totally umbilical embedding
S ↪→ S2n+p(c). Hence the second fundamental form of f is also J-invariant. �
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