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Genericity of supercuspidal representations of

p-adic Sp4

Corinne Blondel and Shaun Stevens

Abstract

We describe the supercuspidal representations of Sp4(F ), for F a non-archimedean local
field of residual characteristic different from two, and determine which are generic.

Introduction

Let F be a locally compact non-archimedean local field, with ring of integers oF , maximal
ideal pF , and residue field kF . Whereas every smooth irreducible supercuspidal (complex)
representation of GLN (F ) is generic, i.e. has a Whittaker model, this is no longer true for
classical groups over F . The existence of non-generic supercuspidal representations of classical
groups is significant and has many consequences; let us cite a few of them in local representation
theory (global consequences are heavy as well, see for instance [HP79]). First, of course, is the fact
that the definition of the L-function attached to a representation of a classical group is available
only for generic representations, thanks to the work of Shahidi; in particular, a characterisation
through local factors of the local Langlands correspondence for a classical group is not fully
available. Also, reducibility of parabolic induction is completely understood for GLN (F ) while
in classical groups results are complete only in the case of generic inducing representations.

The most celebrated example of a non-generic supercuspidal representation is the
representation Θ10 of Sp4(F ), induced from the inflation to Sp4(oF ) of the cuspidal unipotent
representation θ10 of Sp4(kF ) constructed by Srinivasan (see [HP79] again). To the best of
our knowledge, until recently, most known non-generic supercuspidal representations were level
zero, in particular level-zero representations induced from the inflation of a cuspidal unipotent
representation of the reductive quotient of a maximal special parahoric subgroup. Our purpose in
this paper is to exhaust the non-generic supercuspidal representations of Sp4(F ) in odd residual
characteristic.

It is certainly no surprise, and part of the folklore in the subject, that level-zero supercuspidal
representations of Sp4(F ) coming from cuspidal representations of Sp4(kF ) are generic if and
only if the corresponding cuspidal representation is, and that the only non-generic cuspidal
representation of Sp4(kF ) is Srinivasan’s θ10. For the sake of completeness (indeed a classification
of level-zero non-generic supercuspidal representations in much greater generality may be found
in the work of DeBacker and Reeder [DR]), we include proofs of these results in §§ 2.3 and 2.4.
Actually we prove in Proposition 2.2 that generic level-zero supercuspidal representations of
Sp2N (F ) are obtained by inducing the inflation of a generic cuspidal representation of the
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reductive quotient of a maximal parahoric subgroup of Sp2N (F ), on the condition that this
parahoric subgroup is special.

For positive-level supercuspidal representations, the situation is not as simple. Our point
of view is to use the exhaustive construction given by the second author in [Ste08]: those
representations are induced from a set of types, generalising Bushnell–Kutzko types for GLN (F ).
We give necessary and sufficient conditions on those types for the induced representation to be
generic. We obtain surprisingly many (at least with respect to our starting point) non-generic
representations.

Let us be more precise and sketch the result (Theorem 2.1 and Proposition 3.4). Positive-level
supercuspidal representations of Sp4(F ) fall into four categories, according to the nature of the
skew semi-simple stratum [Λ, n, 0, β] at the bottom level of the construction (§ 2.1).

(I) The first category starts with a skew simple stratum with corresponding field extension F [β]
of dimension four over F . Here non-generic representations are obtained only when F [β]/F
is the biquadratic extension, and when a binary condition involving β and the symplectic
form is fulfilled.

(II) The second category starts with a skew simple stratum with corresponding field extension
F [β] of dimension two over F . Non-generic representations are obtained whenever the F [β]-
skew hermitian form attached to the symplectic form is anisotropic (or, equivalently, when
the quotient group J/J1 involved in the construction, which is a reductive group over kF ,
is anisotropic).

(III) In the third category, the stratum is the orthogonal sum of two two-dimensional skew simple
strata [Λi, ni, 0, βi], i= 1, 2. Non-genericity occurs only when F [β1] is isomorphic to F [β2]
and again a binary condition involving β1β2 and the symplectic form is fulfilled.

(IV) All representations in the fourth category, when the stratum is the orthogonal sum of a
skew simple stratum and a null stratum, both two-dimensional, are non-generic.

The main character in the proof is indeed a would-be character: to a stratum as above is
attached a function ψβ on Sp4(F ) and the crucial question is whether there exists a maximal
unipotent subgroup U of Sp4(F ) on which ψβ actually defines a character (see [BH98]); this
question is easily solved in § 3, where Proposition 3.4 lists the exact conditions alluded to above.
Whenever there is no such subgroup U , we prove in § 5 that the corresponding representations
are not generic, using a criterion of non-genericity given in § 1.2 (this states essentially that if
a cuspidal representation c−IndSp4(F )

J λ is generic, then λ contains the trivial character of some
long root subgroup).

Now assume that there is a maximal unipotent subgroup U on which ψβ is a character. A
type attached to our stratum is a representation κ⊗ σ of a compact open subgroup J , where κ
is a suitable β-extension attached to the stratum and σ is a cuspidal representation of the finite
reductive group J/J1 attached to the stratum (see § 2.1). The fundamental step is Theorem 4.3,
stating that the representation κ contains the character ψβ of J ∩ U . This implies genericity in
cases (I) and (III), where σ is just a character of an anisotropic group. However, for cases (II)
and (IV) (in which, we should add, ψβ defines a degenerate character of U) we have to deal with
the component σ, with opposite effects. In case (II), the inflation of σ contains the restriction to
J ∩ U of a character of U and genericity follows. In contrast, in case (IV), the inflation of σ does
not contain the restriction to J ∩ U of a character of U and the resulting cuspidal representation
is not generic.
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The paper is organised as follows: after setting notation, we recall some relevant facts about
genericity in § 1.1 and give our criterion for non-genericity in § 1.2.

In § 2 we first explain (in § 2.1) the construction of positive-level supercuspidal representations
of Sp4(F ) taken from [Ste08]. Following this, we can state in § 2.2 our main theorem, Theorem 2.1,
describing the non-generic supercuspidal representations of Sp4(F ). The rest of § 2 gives the proof
of the theorem in the level-zero case, while the remaining sections of the paper are the steps in
the proof for positive-level representations.

Section 3 addresses the question of whether there is a maximal unipotent subgroup U on
which ψβ is a character and the possible degeneracy of this character; this study is summarised
in Proposition 3.4 and Remark 3.5. In § 4 we deal with the case where there is a maximal
unipotent subgroup U on which ψβ is a character and show genericity under this assumption
(Theorem 4.5), except for representations in the fourth category (case (IV)), for which we only
take a step towards a later proof of non-genericity (Proposition 4.6).

At this point we have proved that all positive-level supercuspidal representations that are
not in the list of non-generic representations in Theorem 2.1, are indeed generic. The last part
of the proof of the main theorem is thus to prove non-genericity for representations in that list,
which we do in § 5 (case (I) in § 5.2, cases (II) and (III) in § 5.3 and case (IV) in § 5.4).

Finally, we have grouped in Appendix Appendix A several easy but useful technical
statements about relevant self-dual lattice sequences (Appendices A.1 and A.2) and a number of
technical lemmas dealing with the intersection of our familiar open compact subgroups with
maximal unipotent subgroups (Appendix A.3), allowing us eventually to prove the crucial
Proposition 4.1 (Appendix A.4).

We have several remarks to add concerning these results. First, genericity for positive level
supercuspidal representations of Sp4(F ) only depends on the stratum itself and on the symplectic
form. It does not depend on the choice of a semi-simple character attached to the stratum.

The second remark is that the proofs are quite technical, often on a case-by-case basis. The
present work can of course be regarded as a first step towards understanding non-genericity
in classical groups, but even the case of Sp2N (F ) might not be just an easy generalisation. In
particular, the precise conditions for genericity are surprisingly complicated but it seems to us
that they do not admit a simple unified description, as for level-zero representations. For example,
non-generic positive-level supercuspidal representations can be induced from either special or
non-special maximal compact subgroups of Sp4(F ), and likewise for generic representations.

Finally, we have deliberately stuck to the construction of supercuspidal representations of
Sp4(F ) via types. Another very fruitful point of view uses Howe’s correspondence. Indeed, in a
very recent work ([GT07]), Gan and Takeda study the Langlands correspondence for GSp4(F )
and obtain in the process a classification of non-generic supercuspidal representations of GSp4(F )
in terms of Howe’s correspondence; they also have a sequel dealing with Sp4(F ) (see [GT08]).
A dictionary between these two points of view would of course be very interesting, especially
if it can provide some insight into the way non-generic supercuspidal representations of Sp4(F )
fit into L-packets. For example, in case (I), the genericity of the supercuspidal representation
depends on the embedding of β in the symplectic Lie algebra: up to the adjoint action of Sp4(F ),
there are two such embeddings, precisely one of which gives rise to non-generic representations.
This suggests that representations in these two sets might be paired to form L-packets. A closer
investigation of such phenomena would certainly deserve some effort.
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Notation

Let F be a locally compact non-archimedean local field, with ring of integers oF , maximal
ideal pF , residue field kF and odd residual characteristic p=HkF . On occasion $F will denote
a uniformising element of F . Similar notation will be used for field extensions of F . We let νF
denote the additive valuation of F , normalised so that νF (F×) = Z. We fix, once and for all, an
additive character ψF of F with conductor pF .

Let V be a 2N -dimensional F -vector space, equipped with a non-degenerate alternating
form h. By a symplectic basis for V , we mean an ordered basis {e−N , . . . , e−1, e1, . . . , eN} such
that, for 1≤ i, j ≤N ,

h(ei, ej) = h(e−i, e−j) = 0, h(e−i, ej) = δij ,

where δij is the Kronecker delta.
Let A= EndF (V ) and let denote the adjoint anti-involution on A associated to h, so

h(av, w) = h(v, aw) for a ∈A, v, w ∈ V.

We let G be the corresponding symplectic group G= SpF (V ) = {g ∈GLF (V )/g = g−1}, or
G= Sp2N (F ) whenever a symplectic basis is fixed. For most of the paper N will be two.
Similarly Ḡ denotes either GLF (V ) or GL2N (F ).

Skew semi-simple strata in A are the basic objects in what follows. We recall briefly the
essential notation attached to those objects and refer to [Ste05] for definitions.

Let [Λ, n, 0, β] be a skew semisimple stratum in A. Then Λ is a self-dual lattice sequence
in V and defines a decreasing filtration {ai(Λ), i ∈ Z} of A by oF -lattices ai(Λ) = {x ∈A/∀k
∈ Z, xΛ(k)⊆ Λ(k + i)}. We put a(Λ) = a0(Λ), a self-dual oF -order in A. We also need P (Λ)
= a(Λ)× ∩G and Pi(Λ) = (1 + ai(Λ)) ∩G for i≥ 1. Note that the lattice sequence Λ gives rise
to a valuation νΛ on V (Appendix A.1) and the filtration {ai(Λ), i ∈ Z} gives rise to a valuation
on A, also denoted by νΛ.

Next, β is a skew element in A: β =−β, and n is a positive integer with n=−νΛ(β).
Furthermore the algebra E = F [β] is a sum of fields E =

⊕l
i=1 Ei, corresponding to a

decomposition V =⊥li=1 V
i of V as an orthogonal direct sum, and accordingly of Λ: Λ =

∑l
i=1 Λi

with Λi(k) = Λ(k) ∩ V i, and of β: β =
∑l

i=1 βi. The centraliser B of β in A is B =
⊕l

i=1 Bi
where Bi is the centraliser of βi in EndF (V i).

Last, for β a skew element of A we define ψβ as the following function on G: ψβ(x)
= ψ(tr(β(x− 1))), x ∈G.

1. Generalities on genericity

1.1 Genericity
The results of this section are valid in a much more general setting than the remainder of this
paper so we temporarily suspend our usual notation.

Let G= G(F ) be the group of F -rational points of a connected reductive algebraic group G
defined over F . Let S be a maximal F -split torus in G with G-centraliser T, let B be an
F -parabolic subgroup of G with Levi component T, and let U be the unipotent radical of B.

Let χ be a smooth (unitary) character of U = U(F ). The torus S = S(F ) acts on the set of
such characters by conjugation. We say that χ is non-degenerate if its stabiliser for this action
is just the centre Z of G.
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Example 1.1. Let G= Sp4(F ), which we write as a group of matrices with respect to some
symplectic basis, let T be the torus of diagonal matrices, and let U be the subgroup of upper
triangular unipotent matrices in G. Any character χ of U is given by

χ


1 u x y
0 1 v x
0 0 1 −u
0 0 0 1

= ψF (au+ bv),

for some a, b ∈ F , and it is easy to see that χ is non-degenerate if and only if a, b are both
non-zero. Moreover, there are four orbits of non-degenerate characters of U , given by the class
of b in F×/(F×)2.

Returning to a general connected reductive group G, let π be a smooth irreducible (complex)
representation of G. We say that π is generic if there exist U = U(F ) as above and a non-
degenerate character χ of U such that

HomG(π, IndGU χ) 6= 0.

Note that, since all such subgroups U are conjugate in G we may choose to fix one. Moreover,
we need only consider non-degenerate characters χ up to T -conjugacy. A basic result here is
the following.

Theorem 1.2 (Rodier [Rod73, Theorem 3]). Assume G is split over F . Let π be a smooth
irreducible representation of G and let χ be a non-degenerate character of a maximal unipotent
subgroup U of G. Then

dimC HomG(π, IndGU χ)≤ 1.

On the other hand, and again in a general G, when dealing with supercuspidal representations
we may not bother about the non-degeneracy of the character in the definition of genericity, a
fact that will be useful in the sequel. Indeed we have the following.

Lemma 1.3. Assume G is split over F . Let π be a smooth irreducible supercuspidal
representation of G. Let U be a maximal connected unipotent subgroup of G and let χ be
a character of U = U(F ) such that

HomG(π, IndGU χ) 6= 0.

Then the character χ is non-degenerate.

Proof. Assume χ is degenerate and use the definition of non-degeneracy in [BH03, § 1.2], as well
as the corresponding notation: there is a simple root α such that the restriction of χ to U(α) is
trivial. The character χ is then trivial on the subgroup 〈U(α), Uder〉 of U (Uder being the derived
subgroup of U).

We claim that this subgroup contains the unipotent radical N of a proper parabolic
subgroup P of G. The assumption HomG(π, IndGU χ) 6= 0 provides us, by Frobenius reciprocity,
with a non-zero linear form λ on the space V of π which satisfies λ ◦ π(u) = χ(u)λ for any u ∈ U .
Since λ is in particular N -invariant, we obtain that the space VN of N -coinvariants is non-zero,
which contradicts cuspidality.

We now prove the claim. Let ∆ be the set of simple roots as in [BH03]. From [Bor91, § 21.11],
the unipotent radical of the standard F -parabolic subgroup PI of G attached to the subset
I = ∆− {α} is UΨ(I) where Ψ(I) is the set of positive roots that can be written α+ β with β
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either zero or a positive root. Hence, the elements in Ψ(I) other than α are positive roots γ
of length at least two, and UΨ(I) is directly spanned by U(α) and the U(γ) for non-divisible
such roots γ. From [BH02, Theorem 4.1], for any such γ we have U(γ)(F )⊂ Uder (recall the
characteristic of F is not two), hence N = UΨ(I)(F ) is contained in 〈U(α), Uder〉 as asserted. 2

Now let π be an irreducible supercuspidal representation of G. We suppose, as is the case for
all known supercuspidal representations, that π is irreducibly compact-induced from some open
compact mod centre subgroup of G. Then (the proof of) [BH98, Proposition 1.6] immediately
gives us the following.

Proposition 1.4. Let K be an open compact mod centre subgroup of G and ρ an irreducible
representation of K such that π = c−IndGK ρ is an irreducible, so supercuspidal, representation
of G. Then π is generic if and only if there exist a maximal connected unipotent subgroup U
of G and a character χ of U = U(F ) such that ρ|K ∩ U contains χ|K ∩ U . Moreover, if this is
the case then HomG(π, IndGU χ) 6= 0 so χ is non-degenerate, and the character χ|K ∩ U occurs in
ρ|K ∩ U with multiplicity one.

1.2 A criterion for non-genericity

Now we look more closely at the situation for symplectic groups so we return to our usual
notation: G= Sp2N (F ). In particular, using Proposition 1.4 and a decomposition of G, we obtain
a criterion to determine when an irreducible representation of G is not generic.

Let T denote the standard (diagonal) maximal split torus of G, let U be the subgroup of
all upper triangular unipotent matrices in G, and put B = TU , the Borel subgroup of all upper
triangular matrices in G. Let Φ = Φ(G, T ) be the root system and, for γ ∈ Φ, let Uγ denote the
corresponding root subgroup. Let W denote the Weyl group NG(T )/T ; by abuse of notation, we
also use W for a set of representatives in the compact maximal subgroup K0 = Sp2N (oF ) of G.

We write K1 for the pro-unipotent radical of K0, so that K0/K1 ' Sp2N (kF ). We note that
B ∩K0/B ∩K1 is the standard Borel subgroup (of upper triangular matrices) of K0/K1, that
T ∩K0/T ∩K1 is the diagonal torus, and that W is the Weyl group.

Let I1 denote the inverse image of the maximal unipotent subgroup U ∩K0/U ∩K1 of
K0/K1, that is, the pro-unipotent radical of the standard Iwahori subgroup I consisting of
matrices which are upper triangular modulo pF . Then the Bruhat decomposition for K0/K1 gives

K0/K1 = (B ∩K0)WI1/K1.

Since K1 ⊂ I1, we obtain K0 = (B ∩K0)WI1. Finally, using the Iwasawa decomposition G= BK0

(since K0 is a good maximal compact subgroup of G), we obtain

G= BWI1. (1.5)

Now we can use this decomposition to translate Proposition 1.4 into a sufficient condition
for non-genericity of compactly induced supercuspidal representations of G.

Proposition 1.6. Let J be a compact open subgroup of G and λ an irreducible representation
of J such that π = c−IndGJ λ is an irreducible supercuspidal representation of G. Let U be the
subgroup of all upper triangular unipotent matrices in G and we also use the other notation
from above. Then π is generic if and only if there exist w ∈W , p ∈ I1 and a character χ of U
such that pλ contains the character χw of pJ ∩ Uw. In particular,
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if π is generic then there are p ∈ I1 and a long root γ ∈ Φ such that pλ contains the
trivial character of pJ ∩ Uγ .

We remark that, in our symplectic basis, the long roots correspond to the entries on the
anti-diagonal.

Proof. Since all maximal unipotent subgroups of G are conjugate to U , Proposition 1.4 implies
that π is generic if and only if there exist g ∈G and a character χ of U such that λ contains
the character χg of J ∩ Ug. Now we use the decomposition (1.5) to write g = bwp, with b ∈ B,
w ∈W and p ∈ I1. Since U b = U and χb is another character of U , we can absorb the b and the
result follows on conjugating by p.

The final assertion follows since the derived subgroup Uwder contains Uγ for some long root γ. 2

2. The supercuspidal representations of Sp4(F )

What we seek is a complete list of which supercuspidal representations of Sp4(F ) are generic,
which are not. So we start with a description of positive-level supercuspidal representations
of Sp4(F ); level-zero supercuspidal representations are obtained by inducing from a maximal
parahoric subgroup P the inflation of a cuspidal representation of the (finite) quotient of P by
its pro-p-radical. We are then in a position to state our main theorem, identifying non-generic
representations from our list. We end the section with a proof of the theorem for level-zero
representations. The proof for positive level occupies the remaining sections.

2.1 The positive-level supercuspidal representations
In this section we describe the construction of the positive-level supercuspidal representations of
Sp4(F ). We refer to [Ste08] for more details and for proofs of the results stated here.

The construction begins with a skew semisimple stratum [Λ, n, 0, β] in A such that a(Λ) ∩B
is a maximal self-dual order normalised by E× in B. There are essentially four cases here. In the
first two, the stratum is actually simple:

(I) ‘maximal case’: [Λ, n, 0, β] is a skew simple stratum and E = F [β] is an extension of F
of degree four;

(II) ‘two then zero case’: [Λ, n, 0, β] is a skew simple stratum, E = F [β] is an extension of F of
degree zero and a0(Λ) is maximal amongst (self-dual) oF -orders in A normalised by E×.

Otherwise, we have a splitting V = V 1 ⊥ V 2 of [Λ, n, 0, β] into two two-dimensional F -vector
spaces, and we write: Λi for the lattice sequence in V i given by Λi(k) = Λ(k) ∩ V i, for k ∈ Z;
βi = 1iβ1i, where 1i is the projection onto V i with kernel V 3−i; if βi 6= 0, then ni =−νΛi(βi),
otherwise ni = 0. Then n= max{n1, n2}. The last two cases are as follows:

(III) ‘two plus two case’: for i= 1, 2, [Λi, ni, 0, βi] is a skew simple stratum and Ei = F [βi] is an
extension of F of degree two;

(IV) ‘two plus zero case’: [Λ1, n1, 0, β1] is a skew simple stratum and E1 = F [β1] is an extension
of F of degree 2; β2 = 0, so that in V 2 we have the null stratum [Λ2, 0, 0, 0], and a0(Λ2) is
maximal amongst (self-dual) oF -orders in A2 = EndF (V 2).

We often think of (IV) as a degenerate case of (III) by thinking of a null stratum as a degenerate
simple stratum.
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In each case, we have the subgroups H̄1 =H1(β, Λ), J̄1 = J1(β, Λ) and J̄ = J(β, Λ) of
Ḡ (see [Ste05, § 3.2]). We write H1 = H̄1 ∩G, and similarly for the other groups. There
is a family C(β, Λ) of rather special characters of H1, called semisimple characters; one
of their properties is the fact that their restriction to Pi(Λ) for suitable i is equal to
ψβ. For each θ ∈ C(β, Λ), there is a unique irreducible representation η of J1 containing θ
(see [Ste05, § 3.6]). In each case, there is a ‘suitable’ extension κ of η to a representation of
J , which we call a β-extension; further details of this step are given in the following.

The extensions E, Ei in each case come equipped with a non-trivial Galois involution
(the restriction of the adjoint anti-involution on A), which we write as usual. We use the
same notation for the induced involution on the residue fields kE , ki; note that this involution
may be trivial. Then the quotient J/J1 has one of the following forms:

(I) k1
E = {x ∈ kE : xx= 1};

(II) U(1, 1)(kE/kF ) or k1
E × k1

E if E/F is unramified; SL2(kF ) or O2(kF ) if E/F is ramified;

(III) k1
1 × k1

2;

(IV) k1
1 × SL2(kF ).

Let σ be the inflation to J of an irreducible cuspidal representation of J/J1. (Note that, in the
case of O2(kF ) in (II), this just means any irreducible representation of the (anisotropic) dihedral
group O2(kF ).)

Now we put λ= κ⊗ σ and π = c−IndGJ λ is an irreducible supercuspidal representation of G.
All irreducible supercuspidal representations of G of positive level can be constructed in this
way (although we remark that often we cannot, as yet, tell when two such representations
are equivalent).

Finally in this section, we recall briefly some properties of the β-extensions which we require,
especially in the cases (II) and (IV) where their construction is somewhat more involved. Indeed,
in cases (I) and (III), J/J1 has no unipotent elements so there is never any problem here.

We define another skew semisimple stratum [Λm, nm, 0, β] as follows:

• in cases (I) and (III), we have Λm = Λ, nm = n;

• in case (II), Λm is a self-dual oE-lattice sequence in V with a0(Λm)⊂ a0(Λ) minimal amongst
(self-dual) oF -orders normalised by E×, and nm =−νΛm(β);

• in case (IV), we take Λ2
m a self-dual oF -lattice sequence in V with a0(Λ2

m)⊂ a0(Λ2) minimal
amongst (self-dual) oF -orders, Λm = Λ1 ⊥ Λ2

m, and nm =−νΛm(β).

In each case, we have the subgroups H̄1
m =H1(β, Λm), J̄1

m = J1(β, Λm) of Ḡ, and we put
H1
m = H̄1

m ∩G etc. Let θm ∈ C(β, Λm) be the transfer of θ, that is θm = τΛ,Λm,βθ in the notation
of [Ste05, § 3.6], and let ηm be the unique irreducible representation of J1

m containing θm. We
form the group

J̃1 = (P1(Λm) ∩B)J1.

Then (see [Ste08, Proposition 3.7]) there is a unique irreducible representation η̃ of J̃1 which
extends η and such that η̃ and ηm induce equivalent irreducible representations of P1(Λm).
Moreover, if Ig(η̃) denotes the g-intertwining space of η̃, we have

dim Ig(η̃) =

{
1 if g ∈ J̃1(B ∩G)J̃1;
0 otherwise.
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A β-extension of η is an irreducible representation κ of J such that κ|J̃1 = η̃ (see [Ste08,
Theorem 4.1]).

2.2 The main theorem
Theorem 2.1. The non-generic supercuspidal representations of Sp4(F ) are the following.

(i) The positive-level supercuspidal representations attached to a skew semisimple stratum
[Λ, n, 0, β] as above and such that either:

• [Λ, n, 0, β] is a sum of non-zero simple strata (cases (I), (II) and (III)) and there is no
maximal unipotent subgroup of G on which ψβ is a character; or

• [Λ, n, 0, β] is the sum of a non-zero simple stratum and a null stratum in dimension two
(case (IV)).

(ii) The level-zero supercuspidal representations induced from the inflation to a maximal
parahoric subgroup P of a cuspidal representation σ of P/P1, where P1 is the pro-p-radical
of P, satisfying one of the following:

(a) P is attached to a non-connected subset of the extended Dynkin diagram of G, that is,
P/P1 is isomorphic to Sp2(kF )× Sp2(kF );

(b) P is isomorphic to Sp4(oF ) and σ is a non-regular cuspidal representation of Sp4(kF ).

For positive-level representations the theorem will follow from Proposition 3.4, which
establishes the conditions on β for there to exist a maximal unipotent subgroup of G on which ψβ
is a character, and from Theorem 4.5 and § 5. The proof for level-zero representations is given
below, with a more detailed list.

2.3 The generic level zero representations of Sp2N(F )
Note that for finite reductive groups, the notion equivalent to genericity is called regularity:
a representation of Sp2N (kF ) is called regular if it contains a non-degenerate character of a
maximal unipotent subgroup. Part (ii) of the above theorem, i.e. the level-zero case, actually
holds for Sp2N (F ), as a consequence of Propositions 1.4 and 1.6.

Proposition 2.2. Let P be a maximal parahoric subgroup of Sp2N (F ) with pro-p-radical P1

and let σ be a cuspidal representation of P/P1. The representation π of Sp2N (F ) induced from
the inflation of σ to P is irreducible supercuspidal. It is generic if and only if the quotient P/P1

is isomorphic to Sp2N (kF ) and σ identifies to a regular cuspidal representation of Sp2N (kF ).

Proof. Up to conjugacy, we may assume that P is standard; in particular, using the notation
in 1.2, P contains I. Then our standard P is the group of invertible and symplectic elements in
the order

A =

 Mi(oF ) Mi, 2N−2i(oF ) Mi(p−1
F )

M2N− 2i, i(pF ) M2N−2i(oF ) M2N− 2i, i(oF )
Mi(pF ) Mi, 2N−2i(pF ) Mi(oF )

 for some integer i, 0≤ i≤N,

where Mi,j(oF ) denotes the set of i by j matrices with entries in oF (similarly with pF ) and Mi

stands for Mi,i. Assume first that P/P1 is isomorphic to Sp2N (kF ), i.e. i= 0 or N , and use
Proposition 1.4. If σ is regular, then π is generic. Conversely if π is generic, there is a maximal
unipotent subgroup U ′ and a character χ′ of U ′ such that σ contains χ|P∩U ′ . The subgroup
U ′ is conjugate to the subgroup U of all upper triangular unipotent matrices so, using the
Iwasawa decomposition G= PB as in § 1.2, we may replace U ′ by U . Since σ is cuspidal,
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Lemma 1.3, applied to Sp2N (kF ), tells us that χ|P∩U is identified with a non-degenerate character
of P ∩ U/P1 ∩ U , a maximal unipotent subgroup of Sp2N (kF ), hence σ is regular.

Assume now that 1≤ i≤N − 1: then P/P1 is isomorphic to Sp2i(kF )× Sp2N−2i(kF ), the

relevant entries being those in
( ∗ 0 ∗

0 ∗ 0
∗ 0 ∗

)
in the above description of A. Assume for a contradiction

that π is generic: from Proposition 1.6, plus the inclusion I1 ⊂ P, there exist w ∈W and a
character χ of U such that σ contains the character χw of P ∩ Uw. Let Uw = P ∩ Uw/P1 ∩ Uw
and let χw be the character of Uw defined by χw. The group Uw is a maximal unipotent subgroup
of P/P1 (a simple combinatoric argument suffices here). We show that, since χ is trivial on Uder,
the character χw is degenerate, thus contradicting the cuspidality of σ.

To fix ideas, suppose that w = 1. The intersection of the image of U with Sp2i(kF ) is the
subgroup Ūi of upper triangular unipotent matrices while the image of Uder contains the simple
long root: the restriction of χ̄ to Ūi is degenerate, hence σ cannot be cuspidal (Lemma 1.3).

In general, observe that w must map the N positive long roots (corresponding to the
antidiagonal entries in U) onto a set E of N long roots that correspond to the long root entries in
Uw. Those N long roots separate into i long roots in Ūw ∩ Sp2i(kF ) and N − i long roots
in Ūw ∩ Sp2N−2i(kF ). The N − 1 positive not simple long roots corresponding to antidiagonal
entries in Uder are sent onto a subset of N − 1 long roots in E : only one is missing, so either
in Ūw ∩ Sp2i(kF ) or in Ūw ∩ Sp2N−2i(kF ), the unique long root entry that does not belong to
the derived group does belong to Uwder: on this group, the restriction of χ̄w is degenerate, so σ is
not cuspidal. 2

We remark that a classification of level-zero non-generic supercuspidal representations for
a general unramified connected reductive group may be found in the work of DeBacker and
Reeder [DR].

2.4 The cuspidal representations of Sp4(Fq)
We come back to Sp4. It has been known for a long time that among the cuspidal
representations of Sp4(kF ), only one is non-regular, the famous representation θ10 of Srinivasan
([Spr70, § II.8.3, Sri68]); it is the unique cuspidal unipotent representation of Sp4(kF ). Yet this
common knowledge lacks a reference in the modern setting of Deligne–Lusztig characters; we
thus pause here to detail the list of cuspidal representations of Sp4(Fq) as they arise from the
Lusztig classification. The necessary background and notations are taken from the book [DM91],
particularly Chapter 14.

For this section only we let G= Sp4(F̄q) and we let F be the standard Frobenius on G,
acting as x 7→ xq on each entry, so that GF = Sp4(Fq). We let G∗ be the dual group SO5(F̄q)
with standard Frobenius F ∗.

Deligne–Lusztig characters ofGF are parameterised by pairs (T ∗, s), T ∗ an F ∗-stable maximal
torus of G∗ and s an element of T ∗F

∗
, up to G∗F

∗
-conjugacy. A rational series of irreducible

characters of GF is made of all irreducible components of Deligne–Lusztig characters RGT ∗(s)
where the rational conjugacy class of s (i.e. the G∗F

∗
-conjugacy class of s) is fixed. Rational

series of characters are disjoint and exhaust irreducible characters of GF . Cuspidal (irreducible)
characters are those characters that appear in some RGT ∗(s) for a minisotropic torus T ∗ and do not
appear in any RGT ∗(s) where the torus T ∗ is contained in a proper F ∗-stable Levi subgroup of G∗.

Let s be a rational semi-simple element contained in an F ∗-stable maximal torus T ∗ of G∗,
let CG∗(s) (respectively CoG∗(s)) be its centraliser in G∗ (respectively the connected component

222

https://doi.org/10.1112/S0010437X08003849 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003849


Genericity of supercuspidal representations of p-adic Sp4

of its centraliser) and let W (s) (respectively W o(s)) be the Weyl group of CG∗(s) (respectively
CoG∗(s)) relative to T ∗, contained in the Weyl group W (T ∗) of G∗ relative to T ∗.

For w in W (T ∗), there exists an F ∗-stable maximal torus T ∗w of G∗ of type w with respect
to T ∗ and containing s if and only if w belongs to W o(s). Letting x be the type of T ∗ with
respect to some split torus, by the formula

χ(s) = (−1)l(x)|W o(s)|−1
∑

w∈W o(s)

(−1)l(w)RGT ∗w(s)

one defines a proper character χ(s) which is a multiplicity one sum of regular irreducible
characters, each appearing with multiplicity ±1 in Deligne–Lusztig characters underlying the
series attached to s. We have

〈RGT ∗w(s), RGT ∗w(s)〉GF = Card W (s)wF
∗

and 〈χ(s), χ(s)〉GF = |(W (s)/W o(s))F
∗ |

and the results in [DM91, ch. 14] imply the following, for the rational series of characters attached
to s.

(i) If only minisotropic rational maximal tori contain s, all characters in the series are cuspidal.
The number of regular cuspidal characters in the series is the number of components of χ(s).

(ii) If no minisotropic rational maximal torus contains s, there is no cuspidal character in
the series.

(iii) If at least one minisotropic rational maximal torus and at least one non-minisotropic rational
maximal torus contain s, no cuspidal character in the series (if any) is regular.

(iv) If exactly one minisotropic rational maximal torus (up to rational conjugacy) and at least
one non-minisotropic rational maximal torus contain s, there is no cuspidal character in the
series.

The Weyl group of G∗ has eight elements. A rational maximal torus of type w with respect to a
split torus is minisotropic if and only if w is either a Coxeter element h (there are two of them,
conjugate in the Weyl group) or the element of maximal length w0. Rational points of such a
torus are conjugate to T ∗0

wF ∗ , isomorphic to

K2
4 = kerNF×

q4/F
×
q2

for w = h,

K1
2 ×K1

2 = kerNF×
q2/F

×
q
× kerNF×

q2/F
×
q

for w = w0.

Table 1 lists the families of geometric conjugacy classes of rational semi-simple elements of
G∗ through a representative s0 (not necessarily rational) in the diagonal torus

T ∗0 =

t
∗(λ, µ) =


λ

µ
1

µ−1

λ−1


/
λ, µ ∈ F̄×q

 ,

using the following notation: we fix ζ4, a primitive (q4 − 1)th root of unity in F̄×q , and we let

ζ4,2 = ζq
2−1

4 , ζ2 = ζq
2+1

4 , ζ2,1 = ζq−1
2 and ζ = ζq+1

2 .

In cases 13 and 14, χ(s) =RGT ∗(s) is irreducible, cuspidal and regular (it actually contains
any non-degenerate character of a maximal unipotent subgroup) by fact (i); we obtain ((q −
1)(q − 3))/8 + (q2 − 1)/4 equivalence classes of such representations.
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Table 1. Families of geometric conjugacy classes of rational semi-simple elements of G∗.

Case s0 Condition Number W o(s0) |W (s0)/W o(s0)|
1 t∗(1, 1) 1 W 1

2 t∗(−1,−1) 1 〈sα′ , sα′+2β′〉 2

3 t∗(−1, 1) 1 〈sβ′〉 2

4 t∗(ζi, 1) ζi 6=±1
q − 3

2
〈sβ′〉 1

5 t∗(ζi,−1) ζi 6=±1
q − 3

2
1 2

6 t∗(ζi, ζi) ζi 6=±1
q − 3

2
〈sα′〉 1

7 t∗(ζi, ζj) ζi 6=±1
(q − 3)(q − 5)

8
1 1

ζj 6=±1

ζi 6= ζ±j

8 t∗(ζi2, ζ
qi
2 ) ζi2 /∈K1

2

(q − 1)2

4
1 1

ζi2 /∈ F×q

9 t∗(ζi, ζj2,1) ζi 6=±1
(q − 1)(q − 3)

4
1 1

ζj2,1 6=±1

10 t∗(1, ζi2,1) ζi2,1 6=±1
(q − 1)

2
〈sα′+β′〉 1

11 t∗(−1, ζi2,1) ζi2,1 6=±1
(q − 1)

2
1 2

12 t∗(ζi2,1, ζ
−i
2,1) ζi2,1 6=±1

(q − 1)
2

〈sα′+2β′〉 1

13 t∗(ζi2,1, ζ
j
2,1) ζi2,1 6=±1

(q − 1)(q − 3)
8

1 1

ζj2,1 6=±1

ζi2,1 6= ζ±j2,1

14 t∗(ζqi4,2, ζ
i
4,2) ζi4,2 6=±1

q2 − 1
4

1 1
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Cases 4, 5, 6, 7, 8 and 9 give no cuspidal representations (fact (ii)), neither do cases 10 and 12
(fact (iv)). Cases 2 and 3 each determine two rational series, in which again fact (iv) applies:
they contain no cuspidal.

Missing cuspidals ([Spr70, § II.8.3, Sri68]) now must come from cases 1 and 11. Indeed
case 11 produces two rational series, one of which satisfying fact (ii), but the other satisfying
fact (i), for a torus of type w0. Here χ(s) =RGT ∗(s) is the sum of two irreducible, cuspidal and
regular (but for different choices of a non-degenerate character of a maximal unipotent subgroup)
representations and we obtain 2((q − 1)/2) equivalence classes of such representations.

Last, case 1 gives the so-called unipotent series, which for Sp4(Fq) contains exactly one
cuspidal representation ([Lus78, Theorem 3.22]), non-regular by fact (iii).

3. The function ψβ on maximal unipotent subgroups

A key step in the determination of Whittaker functions on GLN (F ) in [BH98] is the
construction of a maximal unipotent subgroup U of GLN (F ) on which ψβ defines a character
([BH98, Propositions 2.1 and 2.2]). This will be a key step indeed in the determination of generic
supercuspidal representations of Sp4(F ): the existence of such a subgroup on which ψβ defines a
non-degenerate character will turn out to be a sufficient condition for genericity (see § 4), whereas
the non-existence will imply non-genericity (see § 5). In cases where such a U exists but ψβ is
degenerate, we find both generic and non-generic representations.

3.1 The quadratic form h(v,βv)
Proposition 3.1. Let β be an element of A such that β̄ =−β and let ψβ be the function on G
defined by ψβ(x) = ψ(tr(β(x− 1))), x ∈G. The following are equivalent:

(i) there exists a maximal unipotent subgroup U of G such that the restriction of ψβ to U is
a character of U ;

(ii) there exists a maximal unipotent subgroup U of G such that ψβ(x) = 1 for all x ∈ Uder;

(iii) there exists a totally isotropic flag of subspaces of V :

{0} ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V

such that βVi ⊂ Vi+1 for i= 1, 2;

(iv) the quadratic form v 7→ h(v, βv) on V has non-trivial isotropic vectors.

Proof. The equivalence of the first three statements is straightforward and a variant of
[BH98, Proposition 2.1]; note that a maximal flag of subspaces of V determines a maximal
unipotent subgroup of G if and only if it is totally isotropic.

Certainly statement (iii) implies statement (iv): a basis vector v for V1 satisfies h(v, βv) = 0
since V2 is its own orthogonal. Assuming that statement (iv) holds, let v be a non-zero vector in
V such that h(v, βv) = 0 and put V1 = Span {v}, V3 = V ⊥1 . If βv and v are colinear, let V2 be any
totally isotropic two-dimensional subspace of V containing V1, otherwise put V2 = Span {v, βv}:
statement (iii) is satisfied since, for a totally isotropic flag as in statement (iii), the conditions
βV1 ⊂ V2 and βV2 ⊂ V3 are equivalent (recall that β̄ =−β). 2

Remark 3.2. Assume that the conditions in Proposition 3.1 hold and let U be a maximal
unipotent subgroup of G attached to a totally isotropic flag {0} ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V such that

225

https://doi.org/10.1112/S0010437X08003849 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003849


C. Blondel and S. Stevens

βVi ⊂ Vi+1 for i= 1, 2. A simple inspection shows that the character ψβ of U is non-degenerate
if and only if βV1 is not contained in V1 and βV2 is not contained in V2.

We need to investigate those cases where the element β appears in a skew semi-simple stratum
[Λ, n, 0, β] as listed in § 2.1. We need an extra piece of notation in cases (I) or (II), where the
stratum is simple: the field extension E = F [β] has degree four or two; we let E0 be the field of
fixed points of the involution x 7→ x̄ on E, so that [E : E0] = 2, and we define a skew-hermitian
form δ on V relative to E/E0 by

h(av, w) = trE/F (aδ(v, w)) for all a ∈ E, v, w ∈ V. (3.3)

(This notation will also be used in case (III) when E1 and E2 are isomorphic, with E = E1.) The
determinant of δ belongs to F× if [E : F ] = 2; it is a skew element in E× if [E : F ] = 4.

Proposition 3.4. Let β be an element of A appearing in a skew semi-simple stratum [Λ, n, 0, β]
as in § 2.1. The only cases in which there does not exist a maximal unipotent subgroup U of G
on which ψβ is a character are the following:

(i) the element β generates a biquadratic extension E = F [β] of F (case (I)) and the coset
β det(δ)NE/E0

(E×) in E×0 is theNE/E0
(E×)-coset that does not contain the kernel of trE0/F ;

(ii) the element β generates a quadratic extension E = F [β] of F (case (II)) and the skew-
hermitian form δ on V , dimE V = 2, is anisotropic, that is, det(δ) /∈NE/F (E×);

(iii) the symplectic space V decomposes as V = V 1⊥V 2 and the element β decomposes
accordingly as β = β1 + β2 where for i= 1, 2, βi generates a quadratic extension Ei = F [βi]
(case (III)), E1 is isomorphic to E2 and β1/β2 /∈ det(δ)NE/F (E×).

Remark 3.5. Let β be as above. Assume that there exists a maximal unipotent subgroup U of
G on which ψβ is a character. Then:

• in cases (I) and (III) the character ψβ of U is non-degenerate;

• in cases (II) and (IV) the character ψβ of U is degenerate.

The proof of those statements occupies the next two sections. We recall that, up to
isomorphism, there is exactly one anisotropic quadratic form on V : its determinant is a square
and its Hasse–Minkowski symbol is equal to −(−1,−1)F (see [OMe63, § 63C]).

3.2 The biquadratic extension

Let us examine the case of a maximal simple stratum (case (I)). The determinant of the quadratic
form v 7→ h(v, βv) on V is the determinant of β, i.e. NE/F (β).

Lemma 3.6. The norm NE/F (β) of β is a square in F× if and only if E is biquadratic. If this

holds we have NE/E0
(E×) = F×E×0

2
.

Proof. A four-dimensional extension of F is called biquadratic if it is Galois with Galois group
Z/2Z× Z/2Z. Biquadratic extensions of F are all isomorphic, their norm subgroup is F×2(class
field theory). The ‘if’ part is then clear. Now assume that NE/F (β) is a square. Since β is skew
and generates a degree four field extension of F , its square β2 generates E0 over F and is not
a square in E×0 , while NE0/F (β2) =NE/F (β) must be a square in F×. We proceed according
to ramification.
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If E0 is ramified over F , β2 must have even valuation, its squareroot generates an unramified
extension of E0. So E/E0 is unramified and NE/E0

(E×) is made of even valuation elements, i.e.
is equal to F×E×0

2 since o×E0
= o×F (1 + pE0). It follows that NE/F (E×) = F×

2.

If E0 is unramified over F , we have in the residual field kE0 :

u ∈ k×E0
is a square in k×E0

if and only if NkE0
/kF

(u) is a square in k×F .

We write β2 =$j
Fu with u ∈ o×E0

. Then NE0/F (β2) =$2j
F NE0/F (u). It follows that u must be a

square and β2 must have odd valuation: its square root generates a ramified extension of E0.
Then E is the extension E0[α] where α2 is a uniformising element in F , and NE/E0

(E×)
= (−α2)Zo×2

E0
= F×E×0

2 because k×F ⊂ k
×2
E0

. It follows that NE/F (E×) = F×
2. 2

If NE/F (β) is not a square, we are done. Assume from now on that E is biquadratic and use
the form δ defined in (3.3). Since β is skew and δ is skew-hermitian, the element βδ(v, v), v ∈ V ,
belongs to E0. Since V is one-dimensional over E the form δ(v, v) is anisotropic and the subset
D(V ) = {βδ(v, v)/v ∈ V, v 6= 0} of E×0 is one of the two cosets of NE/E0

(E×) in E×0 . On the
other hand, we have NE/E0

(E×) = F×E×0
2, hence the set of non-zero elements in Ker trE0/F is

fully contained in one of those two cosets. Proposition 3.4 follows in this case (and Remark 3.5
directly follows from Remark 3.2 since β generates a degree-four extension of F ).

Remark. We can be more precise about this condition: if E0 is unramified over F and |kF | ≡ 3[4],
then h(βv, v) is anisotropic if and only if βδ(v, v) /∈ F×E×0

2; otherwise h(βv, v) is anisotropic if
and only if βδ(v, v) ∈ F×E×0

2.

3.3 Cases II, III and IV

The case numbered (IV) in § 2.1 is obvious. The set of isotropic vectors for the quadratic form
h(v, βv) is the subspace V 2. The flags that satisfy Proposition 3.1(iii) are the flags that can be
written in the form {0} ⊂ Fe−2 ⊂ Fe−2 + Fe−1 ⊂ Fe−2 + Fe−1 + Fe1 ⊂ V where {e−i, ei} is a
symplectic basis of V i for i= 1, 2.

Case (II) is also quite clear: as in case (I) the element βδ(v, v) belongs to E0 = F , hence
h(βv, v) = 2βδ(v, v) has isotropic vectors if and only if δ(v, v) does. Furthermore, a flag {0} ⊂
V1 ⊂ V2 ⊂ V3 ⊂ V as in Proposition 3.1 must have the form V1 = Fv, where v is non-zero and
isotropic for δ, and V2 = 〈v, βv〉. Since β2 belongs to F× we always have βV2 = V2 so, if ψβ defines
a character of the corresponding unipotent subgroup of G, this character is degenerate.

We finish with case (III). We have V = V 1⊥V 2 and β = β1 + β2. For v ∈ V , writing v = v1 + v2

on V = V 1⊥V 2, we obtain h(v, βv) = h(v1, β1v1) + h(v2, β2v2). The determinant of this form is
the product NE1/F (β1)NE2/F (β2). For the form to be anisotropic, the determinant must be a
square, hence

NE1/F (β1)≡NE2/F (β2) mod F×2.

Each βi is skew with characteristic polynomial X2 − (−NEi/F (βi)): the class of −NEi/F (βi) mod
the squares determines, up to isomorphism, the extension Ei. So if E1 and E2 are not isomorphic
we are done.

We pursue assuming they are and let E = E1 ' E2. We may see V as a vector space over
E and define δ as in (3.3). The decomposition V = V 1⊥V 2 is orthogonal for δ as well, and for
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i= 1, 2, vi 7→ h(vi, βivi) is an anisotropic quadratic form on V i: a (non-zero) isotropic vector
for h(v, βv) must have the form v = v1 + v2 with vi ∈ V i, vi 6= 0. We then have

h(v, βv) = h(v1, β1v
1) + h(v2, β2v

2) = 2β1δ(v1, v1) + 2β2δ(v2, v2),

and Proposition 3.4 follows.
The remark on the non-degeneracy of ψβ on U whenever it defines a character follows from the

fact that V 1 and V 2 are anisotropic for h(v, βv): the corresponding totally isotropic flag has
the form (with notation as above) {0} ⊂ V1 = 〈v1 + v2〉 ⊂ V2 = 〈v1 + v2, β1v

1 + β2v
2〉 ⊂ V ⊥1 ⊂ V .

We never have βV2 ⊆ V2 unless β2
1 = β2

2 , but this belongs to case (II), not to case (III).

4. Generic representations

In § 3, we have found necessary and sufficient conditions for there to exist a maximal unipotent
subgroup U of G on which ψβ defines a character. When there is such a U , this gives us a
candidate for trying to build a Whittaker model, as is the case in GLN (F ) (see [BH98]). In this
section we consider the case where there is such a U .

4.1 Characters and β-extensions
Proposition 4.1 (cf. [BH98, Lemma 2.10]). Let [Λ, n, 0, β] be a skew semisimple stratum in A.
Let θ ∈ C(Λ, 0, β) be a skew semisimple character and let U be a maximal unipotent subgroup
of G such that ψβ|Uder

= 1. Then

θ|H1∩U = ψβ|H1∩U .

Unfortunately, we have been unable to find a unified proof of this proposition; the proof is
therefore rather ugly, on a case-by-case basis, and we postpone it to Appendix Appendix A.

We continue with the notation of Proposition 4.1. Then we can define a character Θβ of
H̃1 = (J ∩ U)H1 by

Θβ(uh) = ψβ(u)θ(h) for u ∈ J ∩ U, h ∈H1.

Note that this is a character, since J normalises H1 and intertwines θ with itself.

Corollary 4.2 (cf. [BH98, Lemma 2.11]). Let η be the unique irreducible representation of J1

which contains θ. Then the restriction of η to J1 ∩ U contains the character ψβ|J1∩U .

Proof. The proof is essentially identical to that of [BH98, Lemma 2.11]. We recall that
kθ(x, y) = θ[x, y] defines a non-degenerate alternating form on the finite group J1/H1

(see [Ste05, Proposition 3.28]). Note also that the image of H̃1 ∩ J1 in J1/H1 is a totally isotropic
subspace for the form kθ, since θ extends to a character Θβ of H̃1. Now we can construct η by
first extending Θβ to (the inverse image in J1 of) a maximal totally isotropic subspace of J1/H1

and then inducing to J1. In particular, η contains Θβ and, hence, ψβ|J1∩U . 2

Now put J̃1 = (J ∩ U)J1 = (P (Λ) ∩B× ∩ U)J1. Note that, if J/J1 is anisotropic, then
J ∩ U = J1 ∩ U so J̃1 = J1.

Theorem 4.3 (cf. [PS08, Theorem 2.6]). Let [Λ, n, 0, β] be a skew semisimple stratum in A as
listed in § 2.1 and let κ be a β-extension of η to J as described there. Assume that there is a
maximal unipotent subgroup U of G such that ψβ|Uder

= 1 and use the notation above. Then:

κ|J̃1 ' IndJ̃
1

H̃1 Θβ.
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In particular, we deduce that the restriction of κ to J ∩ U contains the character ψβ|J∩U
(cf. [BH98, Lemma 2.12]). Moreover, except in cases (IV), and (II) when J/J1 is isotropic, this
means that the restriction of the simple type λ to J ∩ U contains ψβ|J∩U , since λ= κ.

Proof. The proof is in essence the same as that of [PS08, Theorem 2.6], which it may be useful
to read first: because of the similarities, we do not give all of the details here.

We begin by proving

IndJ
1

(J1∩U)H1 Θβ ' η. (4.4)

We prove this first in cases (I) and (III). Here E1 = {x ∈ E/xx̄= 1} is a maximal torus of G. Then
J = E1J1 and π = c−IndGJ κ. Since J ∩ U = J1 ∩ U , Corollary 4.2 implies that κ contains ψβ|J∩U .
Hence, π contains ψβ and, since ψβ is then a non-degenerate character, κ contains ψβ|J∩U with
multiplicity one (Proposition 1.4). Hence, Θβ|(J1∩U)H1 occurs in η with multiplicity precisely one
and (4.4) follows (see [PS08, Lemma 2.5]). Note that this already gives the theorem in cases (I)
and (III), since E1 is maximal and J̃1 = J1 in these cases.

Now we consider the other cases (II) and (IV). Recall that U is given by a flag {0} ⊂ V1

⊂ V2 ⊂ V3 ⊂ V (see Proposition 3.1), described in § 3.3. What we need here is to define a parabolic
subgroup P0 of G, with unipotent radical U0 contained in U and with a specific Levi factor M0

conforming to Λ in the sense of [BH96, § 10]. We achieve this according to the case as follows.

(II) From § 3.3, the unipotent subgroup U is attached to a flag

{0} ⊂ Fw−1 ⊂ Fw−1 + Fβw−1 ⊂ Fw−1 + Fβw−1 + Fβw1 ⊂ V

where {w−1, w1} is a Witt basis for V over E. We then let M0 be the stabiliser of the
decomposition V = Ew−1 ⊕ Ew1 and P0 be the stabiliser of the flag {0} ⊂ Ew−1 ⊂ V .

(IV) Here U is attached to a flag {0} ⊂ Fe−2 ⊂ Fe−2 + Fe−1 ⊂ Fe−2 + V 1 ⊂ V . We can pick
e2 so that {e−2, e2} is a symplectic basis of V 2 adapted to Λ2. We then let M0 be the
stabiliser of the decomposition V = Fe−2 ⊕ V 1 ⊕ Fe2 and P0 be the stabiliser of the flag
{0} ⊂ Fe−2 ⊂ Fe−2 ⊕ V 1 ⊂ V .

Let kθ be the form defined in the proof of Corollary 4.2. In each case, we have the following
properties (see [BH96, § 10] and [Ste08, Lemma 5.6 and Corollary 5.10]):

(i) U , H1 and J1 have Iwahori decompositions with respect to (M0, P0);

(ii) J1 ∩ U0/H
1 ∩ U0 is a totally isotropic subspace of J1/H1 with respect to the form kθ;

(iii) J1 ∩M0 ∩ U/H1 ∩M0 ∩ U is a maximal totally isotropic subspace of J1 ∩M0/H
1 ∩M0;

(iv) there is an orthogonal sum decomposition

J1

H1
=
J1 ∩M0

H1 ∩M0
⊥
(
J1 ∩ U0

H1 ∩ U0
× J1 ∩ U−0
H1 ∩ U−0

)
,

where U−0 is the unipotent subgroup opposite to U0 relative to M0.

Then (J1 ∩ U)H1 has an Iwahori decomposition with respect to (M0, P0) and (J1 ∩ U)H1/H1 '
J1 ∩M0 ∩ U/H1 ∩M0 ∩ U ⊥ J1 ∩ U0/H

1 ∩ U0 is a maximal totally isotropic subspace of J1/H1.
In particular, from the construction of Heisenberg extensions, (4.4) follows.
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For the final stage, as in the construction of β-extensions, there is an oE-lattice sequence Λm
such that J̃1 = (P 1(Λm) ∩B)J1, and P 1(Λm) still has an Iwahori decomposition with respect to
(M0, P0). Defining η̃ to be IndJ̃

1

H̃1 Θβ, we see that η̃|J1 = η, and one checks that

IndP
1(Λm)

J̃1
η̃ ' IndP

1(Λm)
J1

m
ηm.

Since this uniquely determines η̃, from the definition of β-extension we obtain that κ|J̃1 = η̃, and
the result follows. 2

4.2 The positive-level generic supercuspidal representations of Sp4(F )
Here we show that all of the positive-level supercuspidal representations which are not in the
list of Theorem 2.1 are indeed generic.

Theorem 4.5. Let π = c−IndGJ λ be a positive-level irreducible supercuspidal representation of
G= Sp4(F ) with underlying skew semisimple stratum [Λ, n, 0, β]. Suppose that this stratum is
not in case (IV) and that there exists a maximal unipotent subgroup U of G such that ψβ|Uder

= 1.
Then π is generic.

Proof. Except in case (II) when J/J1 is isotropic, this is immediate from Theorem 4.3, since
λ|J̃1 = κ|J̃1 in these cases so λ|J∩U contains the character ψβ|J∩U ; hence, by Proposition 1.4, π
is generic.

Suppose now we are in case (II) and choose a Witt basis {w−1, w1} for V over E attached
to the unipotent subgroup U as in the proof of Theorem 4.3. The quotient J/J1 ' P (Λ) ∩
B×/P1(Λ) ∩B× is then isomorphic to SL2(kF ) if E/F is ramified, to U(1, 1)(kE/kF ) if E/F is
unramified.

We have U ∩B× = {( 1 x
0 1 ) /x ∈ F} with respect to the E-basis {w−1, w1} and

U ∩B× =

u(x) =


1 0 0 N(β)x
0 1 x 0
0 0 1 0
0 0 0 1

/x ∈ F


in the symplectic basis {w−1, βw−1, (β/N(β))w1/2, w1/2} of V over F .

Now recall that λ= κ⊗ σ, for σ some irreducible cuspidal representation of J/J1. Note
that all cuspidal representations σ of U(1, 1)(kE/kF ) or SL2(kF ) are generic, since the maximal
unipotent subgroup is abelian and σ cannot contain the trivial character, by Lemma 1.3.
Here we only need the fact that (the inflation of) σ restricted to J ∩ U ∩B× contains some
character of J ∩ U ∩B×, which must have the form u(x) 7→ ψF (αx) for some α in F . Since

χ :
(

1 a b c
0 1 x y
0 0 1 z
0 0 0 1

)
7→ ψF (αx) is a character of U , we see that σ|J ∩ U contains χ|J ∩ U . Since κ|J∩U

contains ψβ (Theorem 4.3), we deduce that λ|J∩U contains the restriction to J ∩ U of the
character χψβ of U and, by Proposition 1.4, π = c−IndGJ λ is generic (and the character χψβ
is non-degenerate). 2

4.3 Case (IV)
In case (IV), any maximal unipotent subgroup U of G on which ψβ defines a character can be
written as upper triangular unipotent matrices in a symplectic basis {e−2, e−1, e1, e2} as in the
beginning of § 3.3. Here {e−2, e2} is a symplectic basis of V 2, hence U ∩B× is made of matrices
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of the form
(

1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

)
. Even though σ, as a cuspidal hence generic representation of SL2(kF ),

does contain a non-trivial character of J ∩ U ∩B×, this character is by no means the restriction
of a character of U . This is an heuristic explanation of the fact that none of the case (IV)
supercuspidal representations are generic, unfortunately not a proof. In this section, we prove a
crucial result towards non-genericity. The last step will be taken in § 5.4.

Proposition 4.6. Let π = c−IndGJ λ be a positive-level supercuspidal representation from
case (IV) and let U be a maximal unipotent subgroup of G such that ψβ|Uder

= 1. Then the
restriction of λ to J ∩ U ∩B× is a sum of non-trivial characters.

Proof. We retain all of the notation of § 4.1 and write U as in the beginning of this section.
We also write U2 = U ∩B× = U ∩ SpF (V 2). Since J = (J ∩ P (Λ) ∩B×)J1 we have J ∩ U
= (J ∩ U2)(J1 ∩ U), hence J̃1 = (J ∩ U2)J1 and H̃1 = (J ∩ U2)(J1 ∩ U)H1. We claim that:

(i) J1 ∩ U2 =H1 ∩ U2;

(ii) IndJ̃
1

H̃1 Θβ ' 1J∩U2 ⊗ η.

The first claim comes from the definitions in [Ste01, p. 131]. Indeed J1 ∩ SpF (V 2) =H1 ∩
SpF (V 2) = P1(Λ2). For the second, we note first that 1J∩U2 ⊗ η does define a representation
of J̃1 since J ∩ U2 normalises (J1, η) and η|J1 ∩ U2 = η|H1 ∩ U2 is a multiple of ψβ, trivial
on U2 (β2 = 0). Frobenius reciprocity gives a non-zero intertwining operator between those
representations, which are irreducible (recall from § 4.1 that IndJ̃

1

H̃1 Θβ|J1 = η).

We have λ= κ⊗ σ, with σ an irreducible cuspidal representation of J/J1 ∼= SL2(kF ). In
particular, σ is generic and its restriction to J̃1/J1 is a sum of non-degenerate characters. On
the other hand, the second claim above, plus Theorem 4.3, tell us that κ is trivial on J ∩ U2. 2

5. Non-generic representations

Our goal in this section is to show that the positive-level supercuspidal representations which
are in the list of Theorem 2.1 are indeed non-generic. For cases (I), (II) and (III) we prove
that whenever there is no maximal unipotent subgroup on which the function ψβ is a character
(see Proposition 3.4), an irreducible supercuspidal representation of G= Sp4(F ) with underlying
skew semisimple stratum [Λ, n, 0, β] is not generic. The main tool here is the criterion given
in Proposition 1.6, hence we work out in some detail the restriction of ψβ to one-parameter
subgroups. This technique also provides us with a last piece of argument to settle non-genericity
in case (IV).

5.1 The function ψβ on some one-parameter subgroups
In a given symplectic basis (e−2, e−1, e1, e2) of V , we denote by Uk, for k ∈ {−2,−1, 1, 2}, the
following root subgroup:

Uk = {1 + xtk; x ∈ F} with tk(ej) =

{
e−k if j = k;
0 otherwise.

It is attached to a long root and has a filtration indexed by s ∈ Z: Uk(s) = {1 + xtk : x ∈ psF }.
Let β be an element of A and let ψβ be the function on G defined by ψβ(x) = ψ(tr β(x− 1)),

x ∈G. For k in {−2,−1, 1, 2}, let ε(k) be the sign of k.
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Lemma 5.1. Fix g ∈G and k in {−2,−1, 1, 2}. Let s ∈ Z.

(i) For any x in F we have ψβ(1 + x gtk) = ψ(ε(k)xh(ge−k, βge−k)).

(ii) The character ψβ of gUk is non-trivial on gUk(s) if and only if s≤−νFh(ge−k, βge−k).

Proof. We keep the usual notation gu= gug−1, ug = g−1ug. We have, for x ∈ F ,

ψβ(1 + x gtk) = ψ(tr(βx gtk)) = ψ(tr(xβgtk)) = ψ(x(βg)k,−k)

while the (k,−k) entry of βg is (βg)k,−k = ε(k)h(e−k, βge−k) = ε(k)h(ge−k, βge−k). 2

5.2 Proof for a maximal simple stratum

We work in this section with a maximal simple stratum [Λ, n, 0, β] in EndF V , satisfying the
assumption in Theorem 2.1 given as follows, in terms of the form δ (see (3.3) and § 3.2).

(i) The extension E = F [β] is a biquadratic extension of F with fixed points E0 under x 7→ x̄;
in particular, NE/E0

(E×) = F×E×2
0 .

(ii) The subset D(V ) = {βδ(v, v) : v ∈ V, v 6= 0} of E×0 is the NE/E0
(E×)-coset in E×0 that does

not contain the kernel of trE0/F .

Note that lattice duality with respect to the form δ, defined by L# = {v ∈ V : δ(v, L)⊆ pE}
for L an oE-lattice in V , coincides with lattice duality with respect to h. We may and do assume
that the self-dual lattice chain Λ satisfies Λ(i)# = Λ(d− i), i ∈ Z, with d= 0 or 1. We also may
and do assume that Λ is strict, i.e. has period two.

Lemma 5.2. Pick v0 in V such that Λ(i) = piEv0 for i ∈ Z. We have νEδ(v0, v0) = 1− d and, for
v ∈ V and s in Z,

νFh(v, βv) =
1

e(E0/F )
νE0(βδ(v, v));

νFh(v, βv) = s ⇐⇒ v ∈ Λ
(
s+

1
2

(n+ d− 1)
)
− Λ

(
s+

1
2

(n+ d+ 1)
)
.

Proof. We have h(v, βv) =−2 trE0/F (βδ(v, v)) (§ 3.2); the first statement is thus a consequence
of the following property:

Let x be an element of the F×E×2
0 -coset in E×0 that does not contain the kernel of

trE0/F . Then νF trE0/F x= (1/e(E0/F ))νE0x.

Indeed we have νF trE0/F x= (1/e(E0/F ))[νE0x+ νE0(1 + x̃/x)] where x 7→ x̃ is the Galois
conjugation of E0 over F . Let x and y in E×0 such that x̃/x and ỹ/y belong to −1 + pE0 and let
u= x/y. Then ũ/u belongs to 1 + pE0 , which implies that u belongs to F×E×2

0 (easy to check
according to the ramification of E0 over F ). Hence, x and y are in the same F×E×2

0 -coset, that
must be the coset containing the kernel of trE0/F .

The second statement is now immediate. We can write v ∈ V as v = uv0 with u ∈ E. Then

νFh(v, βv) =
1

e(E0/F )
1

e(E/E0)
[νE(βδ(v0, v0)) + νE(uū)]

hence νFh(v, βv) = 1
2(−n+ 1− d) + νEu. 2
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We now fix a symplectic basis (e−2, e−1, e1, e2) adapted to Λ: there are non-decreasing
functions αs : Z→ Z such that

Λ(j) =
⊕

s∈{−2,−1,1,2}

p
αs(j)
F es (j ∈ Z). (5.3)

Proposition 5.4. For any g ∈ P (Λ), for any k ∈ {−2,−1, 1, 2}, the character ψβ of gUk is non-
trivial on gUk ∩ P[n/2]+1(Λ).

Proof. Note first that P (Λ) normalises P[n/2]+1(Λ), so gUk ∩ P[n/2]+1(Λ) is equal to gUk(s), where
s ∈ Z is defined by Uk ∩ P[n/2]+1(Λ) = Uk(s). Using Lemma A2 for our lattice sequence Λ of period
two we obtain, for x ∈ F ,

1 + xtk ∈ P[n/2]+1(Λ) ⇐⇒ ∀j, x tkΛ(j)⊂ Λ
(
j +

[
n

2

]
+ 1
)

⇐⇒ ∀j, e−k ∈ Λ
(
j − 2αk(j) +

[
n

2

]
+ 1− 2νFx

)
⇐⇒ νΛ(e−k)≥max {j − 2αk(j); j ∈ Z}+

[
n

2

]
+ 1− 2νFx

⇐⇒ νΛ(e−k)≥ νΛ(ek) +
[
n

2

]
+ 1− 2νFx

⇐⇒ 2νFx≥ 2νΛ(ek) +
[
n

2

]
+ 2− d.

Hence, s= νΛ(ek)+1+[([n/2]− d+ 1)/2]; we have to prove s≤−νFh(ge−k, βge−k) (Lemma 5.1).
Since g belongs to P (Λ) we have by Lemmas 5.2 and A2:

νFh(ge−k, βge−k) = νFh(e−k, βe−k) =−νΛ(ek) + d− 1− 1
2(n+ d− 1)).

The condition we need is thus [([n/2]− d+ 1)/2]≤ 1
2(n− d− 1) which holds for n≥ 1 (the right-

hand side is an integer by Lemma 5.2). 2

We now derive Theorem 2.1 in this case: the representation π is not generic. Indeed if it
was, we could find, by Proposition 1.6, some g ∈ P (Λ) and some k ∈ {−2,−1, 1, 2} such that λ
contains the trivial character of gUk ∩ J . In particular, the restriction of λ to P[n/2]+1(Λ) would
contain the trivial character of gUk ∩ P[n/2]+1(Λ). Since this restriction is a multiple of ψβ this
is impossible.

5.3 Proof for a maximal semi-simple or non-maximal simple stratum
In this section we treat cases (II) and (III) simultaneously in Theorem 2.1, using the following
result.

Lemma 5.5. Under the assumption of case (II) in Theorem 2.1, any splitting V = V 1⊥V 2 of V
into two one-dimensional E-vector spaces splits the lattice chain Λ, that is, for any t ∈ Z,

Λ(t) = Λ1(t)⊥Λ2(t) with Λi(t) = Λ(t) ∩ V i, i= 1, 2.

Proof. We know from Proposition 3.4 (ii) that the given assumption amounts to the fact that
the quadratic form v 7→ h(v, βv) on V has no non-trivial isotropic vectors, which implies that
the anti-hermitian form δ on V defined by h(av, w) = trE/F (aδ(v, w)) for all a ∈ E, v, w ∈ V ,
is anisotropic. From [Bla02, §A.2], the lattice chain underlying Λ is thus the unique δ-self-dual
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oE-lattice chain in V . On the other hand δ-self-dual oE-lattice chains Λi in V i, i= 1, 2, can be
summed into a δ-self-dual oE-lattice chain in V . Unicity implies that Λ is obtained in this way. 2

We can now let [Λ, n, 0, β], with Λ = Λ1 ⊥ Λ2, β = β1 + β2 and n= max{n1, n2}, be a
maximal skew semi-simple stratum or a non-maximal skew simple stratum in EndF V : we place
ourselves in the situation of case (II) or case (III) in Proposition 3.4, case (II) being obtained
by letting E1 = E2 = E and β1 = β2 = β. In particular, E1 = F [β1] is always isomorphic to
E2 = F [β2] and one checks easily that the conditions (ii) or (iii) in Proposition 3.4 are equivalent
to saying that the symplectic form satisfies:

for all v1 ∈ V 1 and all v2 ∈ V 2, −h(v1, βv1)h(v2, βv2) /∈NEi/F (E×i ).

For an homogeneous treatment regardless of the ramification over F of the quadratic
extensions involved, we use the conventions explained in Appendices A.1 and A.2, namely the
lattices sequences Λ1, Λ2 and Λ are all normalised in such a way that they have period four
over F and duality given by d= 1.

Lemma 5.6. Let v1 ∈ V 1, v2 ∈ V 2 and v = v1 + v2 ∈ V . Let e = e(Ei/F ):

(1) νFh(v, βv) = min{νFh(v1, β1v1), νFh(v2, β2v2)};
(2) νΛ(v)≥ 2νFh(v, βv)−max{2νE1β1/e, 2νE2β2/e}.

Proof. (1) We have h(v, βv) = h(v1, β1v1) + h(v2, β2v2). The assertion follows if the valuations
of h(vi, βivi), i= 1, 2, are distinct. If they are equal and finite, write h(v, βv) = h(v1, β1v1)
(1 + h(v2, β2v2)/h(v1, β1v1)). Since h(v2, β2v2)/h(v1, β1v1) cannot be congruent to −1 mod pF
(its opposite would be a square, hence a norm) the result follows.

(2) From Lemma A4 and part (1) we obtain νΛ(v) = mini=1,2 νΛi(vi) = mini=1,2(2νFh(vi, βivi)
− 2νEiβi/e) whence the result. 2

We fix symplectic bases {ei, e−i} of V i, i= 1, 2, adapted to Λi and use Notation 5.3. We
denote by 11 and 12 the orthogonal projections of V onto V 1 and V 2, respectively.

We need information on the intersection of one-parameter subgroups gUk with subgroups
of G of the following form (with a1, a2 positive integers and a= max{a1, a2}):

L= (1 + aa1(Λ1) + aa2(Λ2) + aa(Λ)) ∩G.

Lemma 5.7. Let g ∈ P (Λ); let gi = νΛ(1i(ge−k)) ∈ Z ∪+∞. Then

gUk ∩ L= gUk(s) with s=
[
νΛ(ek) + maxi=1,2{ai − gi}+ 3

4

]
.

Proof. We have, for x ∈ F and g ∈G (see [BK99, § 2.9]),

1 + x gtk ∈ L ⇐⇒ x gtkΛ(j)⊆ Λ1(j + a1) + Λ2(j + a2) for any j ∈ Z.

Since tk Λ(j) = p
αk(j)
F e−k we have, if g belongs to P (Λ):

1 + x gtk ∈ L ⇐⇒ ∀j, xge−k ∈ Λ1(j + a1− 4αk(j)) + Λ2(j + a2 − 4αk(j))
⇐⇒ for i= 1, 2, ∀j, 4νFx+ gi ≥ j − 4αk(j) + ai.

We conclude with Lemma A2. 2

We now apply this lemma to the subgroup L obtained with ai = [ni/2] + 1, i= 1, 2. Define
integers l1 and l2 by li = νFh(1i(ge−k), βi1i(ge−k)). From Lemmas 5.1 and 5.7, the character ψβ
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of gUkg−1 is non-trivial on gUkg
−1 ∩ L if and only if[

νΛ(ek) + maxi=1,2{[ni/2] + 1− gi}+ 3
4

]
≤−min{l1, l2}.

On the other hand we have gi = 2li − 2νEiβi/e by Lemma A4, and Lemma A3 relates
ni =−νΛi(βi) and νEiβi; in any case, one checks

max
i=1,2

{[
ni
2

]
+ 1− gi

}
= ε− 2 min{l1, l2} with ε= 0 or 1.

It follows that ψβ is non-trivial on gUkg
−1 ∩ L if and only if νΛ(ek)≤−2 min{l1, l2} − ε, that

is, νΛ(ek)≤−2νFh(ge−k, βge−k)− ε. Now Lemma 5.6 gives us

νΛ(ge−k)≥ 2νFh(ge−k, βge−k)−max
{

2νE1β1

e
,

2νE2β2

e

}
.

Since g belongs to P (Λ), we have νΛ(ge−k) = νΛ(e−k) =−νΛ(ek) (Lemma A2), which implies the
desired inequality. We have just proven the following.

Proposition 5.8. For any g ∈ P (Λ), for any k ∈ {−2,−1, 1, 2}, the character ψβ of gUkg
−1 is

non-trivial on gUkg
−1 ∩ L, where

L=
(
I + a[n1/2]+1(Λ1) + a[n2/2]+1(Λ2) + a[n/2]+1(Λ)

)
∩G.

At this point we can derive Theorem 2.1 in cases (II) and (III) as in the previous section:
the representation π is not generic. Indeed if it was, we could find, by Proposition 1.6, some
g ∈ P (Λ) and some k ∈ {−2,−1, 1, 2} such that λ contains the trivial character of gUk ∩ J . In
particular the restriction of λ to the above subgroup L would contain the trivial character of
gUk ∩ L. Since this restriction is a multiple of ψβ this is impossible.

5.4 Non-genericity in the degenerate case (IV)
We let again [Λ, n, 0, β], with Λ = Λ1 ⊕ Λ2, β = β1 + β2 and n= max{n1, n2}, be a skew semi-
simple stratum in EndF V , but we assume that one of the two simple strata involved is
null (case (IV)). Although there does exist a maximal unipotent subgroup on which ψβ is a
character, this character is then degenerate (Proposition 3.4 and Remark 3.5). We show that
the corresponding supercuspidal representation is non-generic, using Proposition 4.6 and the
Criterion 1.6.

Criterion 1.6 involves conjugacy by elements in an Iwahori subgroup. We find it convenient
to use the standard Iwahori subgroup, and to use an Iwahori subgroup normalising the lattice
chain Λ. These conditions can both be fulfilled at the possible cost of exchanging Λ1 and Λ2,
that is, we have to complicate notation and let {1, 2}= {r, s} with [Λr, nr, 0, βr] not null and
[Λs, ns, 0, βs] = [Λs, 0, 0, 0]; in particular, n= nr.

Since the proof is rather technical, we first sketch it, assuming β2 = 0. In a symplectic basis
as in § 3.3, ψβ does define a character of the upper and lower triangular unipotent subgroups,
trivial on the long root subgroups U±2 corresponding to the null stratum but non-trivial on the
other long root subgroups U±1. As in the previous case, we have a subgroup L of J on which
λ restricts to a multiple of ψβ. We show that for any Iwahori conjugate gU±1, ψβ is non-trivial
on gU±1 ∩ L. Next we identify subsets X2 and X−2 of I such that, for g ∈X±2, ψβ is again
non-trivial on gU±2 ∩ L. The last step is to show that for g ∈ I −X±2, if the representation λ
contains the trivial character of gU±2 ∩ J , then it contains the trivial character of U±2 ∩ J , this
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last possibility being excluded by Proposition 4.6. Hence, by Proposition 1.6, the representation
induced from λ cannot be generic.

We pick a symplectic basis (e−2, e−1, e1, e2) of V adapted to Λ and such that P (Λ) contains
the standard Iwahori subgroup I consisting of matrices with entries in oF which are upper
triangular modulo pF . We normalise lattice sequences Λ1 and Λ2 such that they have period
four over F and duality invariant one and define ε= 0 if Λr contains a self-dual lattice, ε= 1
otherwise (Appendix A.2). Let

L= (I + a1(Λs) + a[n/2]+1(Λr) + a[n/2]+1(Λ)) ∩G.

This is a subgroup of H1 (from the definition [Ste01, p. 131]) on which θ restricts to ψβ
(see [Ste05, Lemma 3.15]).

Lemma 5.9. Let k in {−2,−1, 1, 2}. For y ∈ P (Λ), define yr = νΛ(1r(ye−k)), ys = νΛ(1s(ye−k))
and lr = νFh(1r(ye−k), βr1r(ye−k)). The character ψβ of yUky

−1 is non-trivial on yUky
−1 ∩ L if

and only if either 1r(ye−k) = 0 or 1r(ye−k) 6= 0 andyr ≤ νΛ(e−k) +
[
n

2

]
+ 1− 2ε

ys ≥−νΛ(e−k) + 4lr + 1.

Proof. We have h(v, βv) = h(vr, βrvr) (for v = v1 + v2, vi ∈ V i), so, with Lemmas A4 and A3,

νFh(v, βv) = t ⇐⇒ 1r(v) ∈ Λr
(

2t+
[
n

2

]
+ 1− ε

)
− Λr

(
2t+

[
n

2

]
+ 1− ε+ 1

)
.

In particular, if 1r(ye−k) = 0, the character ψβ is trivial on yUky
−1 (Lemma 5.1).

We now assume 1r(ye−k) 6= 0 and from Lemma A4 we obtain

yr = 2lr +
[
n

2

]
+ 1− ε. (5.10)

We apply Lemma 5.7 to L:

yUky
−1 ∩ L= yUk(t)y−1 with t=

[
νΛ(ek) + max{1− ys, ε− 2lr}+ 3

4

]
.

Using Lemma 5.1 we conclude that the character ψβ of yUky−1 is non-trivial on yUky
−1 ∩ L if

and only if t≤−lr whence the result (note that νΛ(ek) =−νΛ(e−k) by Lemma A2). 2

Lemma 5.11. Let y ∈ I. If |k|= r, or if |k|= s and 1r(ye−k) /∈ Λr(νΛ(e−k) + [(n+ 1)/2]), the
character ψβ of yUky

−1 is non-trivial on yUky
−1 ∩ L.

Proof. Since y belongs to P (Λ) we certainly have 1r(ye−k) ∈ Λr(νΛ(e−k)), 1s(ye−k)
∈ Λs(νΛ(e−k)), and

either: (a) 1r(ye−k) /∈ Λr(νΛ(e−k) + 1); or
(b) 1r(ye−k) ∈ Λr(νΛ(e−k) + 1) and 1s(ye−k) /∈ Λs(νΛ(e−k) + 1).

(5.12)

Assume first that part (a) holds. Then the first condition in Lemma 5.9 is satisfied and the second
will hold if −νΛ(e−k) + 4lr + 1≤ νΛ(e−k). However, we have yr = 2lr + [n/2] + 1− ε (see (5.10)),
whence

4lr = 2
(
νΛ(e−k)−

[
n

2

]
− 1 + ε

)
≤ 2νΛ(e−k)− 1.
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Hence,

if y ∈ P (Λ) and 1r(ye−k) /∈ Λr(νΛ(e−k) + 1), then ψβ is non-trivial on yUky
−1 ∩ L. (5.13)

The discussion now relies on |k|. If |k|= r and y ∈ I, then part (a) holds and (5.13) gives the
result. If now y ∈ I and |k|= s, we are left with case (b) in (5.12); in particular, ys = νΛ(e−k).
We only have to check that the assumption 1r(ye−k) /∈ Λr(νΛ(e−k) + [(n+ 1)/2]) implies the two
inequalities in Lemma 5.9, which is straightforward since, when ε= 1, n is even (Lemma A3). 2

Lemma 5.14. Let |k|= s and y ∈ I such that 1r(ye−k) ∈ Λr(νΛ(e−k) + [(n+ 1)/2]). Define
z = 1 + Z − Z̄ with Z(e−k) =−y−1

−k,−k1
r(ye−k) and Z(et) = 0 for t 6=−k. Then z belongs to

P[(n+1)/2](Λ), contained in J ∩ I, and 1r(zye−k) = 0.

Proof. One checks easily that z belongs to I and 1r(zye−k) = 0. It remains to show that Z
belongs to a[(n+1)/2](Λ). We have, using notation (A1) and Lemma A2:

Z ∈ a[(n+1)/2](Λ) ⇐⇒ Z p
α−k(t)
F e−k ⊆ Λ

(
t+

[
n+ 1

2

])
for any t ∈ Z

⇐⇒ Ze−k ∈ Λr
(
t− 4α−k(t) +

[
n+ 1

2

])
for any t ∈ Z

⇐⇒ 1r(ye−k) ∈ Λr
(

max
t∈Z
{t− 4α−k(t)}+

[
n+ 1

2

])
⇐⇒ 1r(ye−k) ∈ Λr

(
νΛ(e−k) +

[
n+ 1

2

])
. 2

With this in hand we are ready to conclude as follows.

Proposition 5.15. If the representation IndGJ λ has a Whittaker model, there exists k ∈ {−s, s}
such that λ contains the trivial character of Uk ∩ J = Uk ∩ P (Λs).

Proof. Recall from Proposition 1.6 that if the representation IndGJ λ has a Whittaker model, there
exists k ∈ {−2,−1, 1, 2} and y ∈ I such that λ contains the trivial character of yUky−1 ∩ J . Note
that if (k, y) is such a pair, so is (k, zyx) for any z ∈ J ∩ I and x ∈ I ∩NG(Uk).

Assume that we are in this situation and pick such a pair (k, y). Since the restriction of
λ to L is a multiple of ψβ, Lemma 5.11 tells us that we must have |k|= s and 1r(ye−k)
∈ Λr(νΛ(e−k) + [(n+ 1)/2]). The proposition is then an immediate consequence of the following
fact:

(∗) The double class (J ∩ I)y(I ∩NG(Uk)) contains an element of J ∩ I, indeed of I ∩ P (Λs).

Let us now prove this fact. Assume first that k = s= 2 (then r = 1). Using the standard
Iwahori decomposition of y ∈ I and the fact that upper triangular matrices normalise U2 we
may assume that y is a lower triangular unipotent matrix. Now since 11(ye−k) belongs to
Λr(νΛ(e−k) + [(n+ 1)/2]) we may change y into zy where z is defined in Lemma 5.14. Note
that z is also lower triangular unipotent, hence so is zy. Since 11(zye−k) = 0, zy has the following
shape:

zy =


1 0 0 0
0 1 0 0
0 b 1 0
c 0 0 1

 .
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The middle block
(

1 0
b 1

)
centralises U2 so the double class contains

(
1 0 0 0
0 1 0 0
0 0 1 0
c 0 0 1

)
which belongs

to I ∩ SpF (V 2) hence to P (Λ) ∩ SpF (V 2) = P (Λ2). The case k =−s=−2 is identical, replacing
lower triangular by upper triangular. The cases k = s= 1 and k =−s=−1 are obtained similarly,

using conjugation by w =
( 0 0 1 0

0 0 0 1
$F 0 0 0
0 $F 0 0

)
or w−1, elements of GSp4(F ) normalising I, to obtain a

convenient Iwahori decomposition for the initial element y. 2

We are at last ready to prove non-genericity of supercuspidal representations coming from
case (IV), which will finish the proof of Theorem 2.1. The group Uk ∩ J above is equal to
J ∩ U ∩B× for some unipotent subgroup U chosen as in Proposition 4.6, indeed we have
k ∈ {−s, s} so Uk is a long root subgroup attached to the two-dimensional space in which we
have a null stratum. We know from Proposition 4.6 that the restriction of λ to Uk ∩ J , a sum
of non-trivial characters, cannot contain the trivial character. Hence, IndGJ λ does not have a
Whittaker model.
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Appendix A. Normalisation of lattice sequences

We gather in Appendices A.1 and A.2 the technical information about direct sums of lattice
sequences that we need in several parts of the paper. Specifically, in most cases we deal with
direct sums of self-dual lattice sequences in two-dimensional symplectic spaces and it will be
convenient to homogenise their F -periods and duality invariants.

Then we proceed with preliminary results in view of the proof of Proposition 4.1
in Appendix A.4.

A.1 Self-dual lattice sequences

Let Λ be an oF -lattice sequence in a finite-dimensional F -vector space V and let ak(Λ), k ∈ Z,
be the corresponding filtration of A. We define

νΛ(v) = max{i ∈ Z; v ∈ Λ(i)} (v ∈ V ); νΛ(g) = max{i ∈ Z; g ∈ ai(Λ)} (g ∈A).

When V is equipped with a symplectic form h, lattice duality with respect to h is defined by
L# = {v ∈ V : h(v, L)⊆ pF } for L an oF -lattice in V . An oF -lattice sequence Λ in V is self-dual
if there is an integer d(Λ), the duality invariant of Λ, such that Λ(t)# = Λ(d(Λ)− t).

We now let Λ be a self-dual lattice sequence of period e in V and we pick a symplectic basis
(e−2, e−1, e1, e2) adapted to Λ: there are non-decreasing functions αs : Z→ Z such that

Λ(j) =
⊕

s∈{−2,−1,1,2}

p
αs(j)
F es (j ∈ Z). (A1)

We need the following straightforward property.

Lemma A2. For k in {−2,−1, 1, 2}, we have

νΛ(ek) =−νΛ(e−k) + d(Λ)− 1 = max{j − eαk(j); j ∈ Z}.
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Proof. Since the period of Λ is e, the two sets {j − eαk(j); j ∈ Z} and {i ∈ Z; αk(i) = 0} coincide:
the valuation of ek is the maximum of either one. Next we use duality to check that

e−k /∈ Λ(x+ d) ⇐⇒ e−k /∈ Λ(−x)# ⇐⇒ h(e−k, p
αk(−x)
F ek) /∈ pF ⇐⇒ αk(−x)≤ 0. 2

A.2 Normalisation of our lattice sequences
We start as in § 2.1 case (III) with an orthogonal decomposition V = V 1 ⊥ V 2 and not null skew
simple strata [Λi, ni, 0, βi] in EndF (V i). We let Ei = F [βi]. We find it convenient to normalise
the lattice sequences Λi in such a way that their sum Λ is given by Λ(t) = Λ1(t)⊥ Λ2(t) for any
t ∈ Z, and is self-dual. This will be the case provided that Λ1 and Λ2 have the same period and
d(Λ1) = d(Λ2) = 1 (see [Ste05], for instance).

The quadratic form v 7→ h(v, βiv) on V i has no non-trivial isotropic vectors, since the anti-
hermitian form δi on V i defined by h(av, w) = trEi/F (aδi(v, w)) for all a ∈ Ei, v, w ∈ V i, is
anisotropic. Let vi be a basis of V i over Ei. There is some ui in Ei, satisfying ūi =−ui, such that
this form reads δi(xvi, yvi) = uixȳ for all x, y ∈ Ei. Since Ei is tame over F , lattice duality is the
same for h and δi, namely Λi(t)# = {v ∈ V i; δi(v, Λi(t))⊂ pEi}. We have here (ptEi

vi)# = pdi−t
Ei

vi
with di = 1− νEui. Hence, up to a translation in indices, the unique self-dual oEi-lattice chain
(Li)i∈Z in V i satisfies one of three possibilities:

(i) Ei is ramified over F and di = 0;

(ii) Ei is unramified over F and di = 0;

(iii) Ei is unramified over F and di = 1.

In the two first cases we put L′i(t) = Li([t/2]) and obtain a lattice sequence with duality
invariant d′i = 1; in the third case we keep L′i = Li. In the ramified case we put Λi = L′i: it has
period four. We now need to put Λi = 2L′i in the second case, Λi = 4L′i in the third case, and we
obtain a normalisation of our oEi-lattice sequences in Vi such that their period is four and duality
invariant one. We use the following straightforward properties of Λi, in each of the three cases
above.

Lemma A3. Normalise the lattice sequence Λi such that its period over F is four and d(Λi) = 1.

(i) If Ei is ramified over F , then νΛi(V i − {0}) = 2Z + 1 and νΛi(βi) = 2νEi(βi) + 1.

(ii) If Ei is unramified over F and Λi contains a self-dual lattice, then νΛi(V i − {0}) = 4Z + 2
and νΛi(βi) = 2(2νEi(βi) + 1).

(iii) If Ei is unramified over F and Λi does not contain a self-dual lattice, then νΛi(V i − {0}) =
4Z and νΛi(βi) = 4νEi(βi).

We need to relate, under these conventions, the valuations relative to the lattice chains Λi

with the valuations over F of the quadratic forms h(v, βiv), v ∈ V i.

Lemma A4. Let ei = e(Ei/F ) and normalise the lattice sequence Λi such that its period over
F is four and d(Λi) = 1. For any v ∈ V i we have

νΛi(v) = 2νFh(v, βiv)− 2νEiβi
ei

.

Proof. For v in V i and a in Ei we have h(av, βiav) = NEi/F (a)h(v, βiv). The map v 7→ h(v, βiv)
on V i is thus constant on the sets Λi(t)− Λi(t+ 1), hence factors through the valuation νΛi : there
is a map φ, defined on the image of νΛi and with values in Z, such that νFh(v, βiv) = φ(νΛi(v))
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for any non-zero v in V i. Periodicity over Ei implies φ(t+ 2ei) = φ(t) + ei, t ∈ Z: computing one
value of φ is enough. We certainly have νFh(v, βiv) = (1/ei)(νEiβi + νEiδi(v, v)), whence:

(i) if Ei is ramified over F , then Λi(1) = Λi(0) = Λi(1)# so νΛi(v) = 1 implies νEiδi(v, v) = 1
and νFh(v, βiv) = 1

2(νEiβi + 1);

(ii) if Ei is unramified over F and Λi contains a self-dual lattice, then Λi(2)# = Λi(−1) = Λi(2)
so νΛi(v) = 2 implies νEiδi(v, v) = 1 and νFh(v, βiv) = νEiβi + 1;

(iii) if Ei is unramified over F and Λi does not contain a self-dual lattice, then Λi(0)# = Λi(1)
=$FΛi(0) so νΛi(v) = 0 implies νEiδi(v, v) = 0 and νFh(v, βiv) = νEiβi. 2

A.3 Some intersections

The following Lemma and Corollary were suggested by Vytautas Paskunas. In the proofs, we
may (and often do) ignore the condition that the stratum and character be skew, since the results
in the skew case follow immediately by restriction to G, that is, we actually prove the statements
for σ-stable semisimple strata in GL4. To ease notation, this will be implicit so that, in the proofs
below, U should be a σ-stable maximal unipotent subgroup of GL4, etc.

First we need some notation in the semisimple case. For [Λ, n, 0, β] a semisimple
stratum in V with splitting V =

⊕2
i=1 V

i, we write A=
⊕2

i,j=1 A
ij in block notation, where

Aij = HomF (V j , V i) = 1jA1i and 1i is the projection onto V i with kernel V 3−i. For k =
(k1, k2) ∈ Z2, with k1 ≥ k2 ≥ 1, define

ak = ak(Λ) =

(
a11
k1

a12
k1

a21
k1

a22
k2

)

with a
ij
t = 1jat1i, and Uk(Λ) = 1 + ak. This extends the usual notation Uk(Λ) = 1 + ak(Λ), k ∈ Z,

k ≥ 1.

Lemma A5. Let [Λ, n, 0, β] be a semisimple stratum in A, with splitting V =
⊕l

i=1 V
i, 1≤ l ≤ 2.

Suppose also that F [β] is of maximal degree over F , and let U be a maximal unipotent subgroup
of G. Write B for the centraliser in A of β. For k ≥m≥ 1, we have

((Um(Λ) ∩B)Uk(Λ)) ∩ U = (Uk(Λ) ∩ U).

We remark that the proof below is just for the case which interests us here (so that there are
at most two pieces in the splitting) but it is straightforward to generalise the lemma to the case
where there are an arbitrary number of pieces.

Proof. We prove the corresponding additive statement. Writing U = 1 + N, bm = am(Λ) ∩B, it is

(bm + ak) ∩ N = ak ∩ N.

Note that, since B = F [β], the lattice bm contains no non-trivial nilpotent elements. We show
that, for 1≤m< k,

(bm + ak) ∩ N⊂ (bm+1 + ak) ∩ N
and the result follows at once by an easy induction. So suppose that ε ∈ bm is such that
(ε+ ak) ∩ N 6= ∅. In particular, (ε+ am+1) ∩ N 6= ∅ so there exists s > 0 such that εs ∈ asm+1.
However, then εs ∈ bsm+1 so (by [Bus87], working block-by-block), the coset ε+ bm+1 contains
a nilpotent element, which must be zero. We deduce that ε ∈ bm+1, as required. 2
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For [Λ, n, 0, β] a semisimple stratum in V with splitting V =
⊕2

i=1 V
i, we write

Msp = AutF (V 1)×AutF (V 2), Usp = 1 +A12, Psp =MspUsp and Ūsp = 1 +A21.

Corollary A6. Let [Λ, n, 0, β] be a semisimple stratum in A, with splitting V =
⊕l

i=1 V
i,

1≤ l ≤ 2, and let U be a maximal unipotent subgroup of G. Write B for the centraliser in A of
β. We suppose that:

(i) U has an Iwahori decomposition with respect to (Msp, Psp);

(ii) U ∩B× is a maximal unipotent subgroup of B×.

Then, for k1 ≥ · · · ≥ kl ≥m≥ 1 and k = (k1, . . . , kl), we have

((Um(Λ) ∩B)Uk(Λ)) ∩ U = (Um(Λ) ∩B ∩ U)(Uk(Λ) ∩ U). (A7)

Again the statement is easily generalised to the case when the splitting has more than two
pieces. Note also that, in the simple case, condition (i) is empty while condition (ii) is implied,
for example, by the condition ψβ|Uder

= 1 (see [BH98, Proposition 2.2]). This is not true for
semisimple strata.

Proof. First we reduce to the simple case. We note that Uk(Λ) and B× ⊂Msp have Iwahori
decompositions with respect to (Msp, Psp). Since U also has such a decomposition, we are reduced
to proving that we have equality in (A7) when we intersect both sides with Usp, with Msp and
with Ūsp, respectively. Since B ⊂Msp, this is immediate for the unipotent radicals Ūsp, Usp.
Hence, we are reduced to the intersection with Msp, which, block-by-block, is just the simple
case.

So now suppose that [Λ, n, 0, β] is a simple stratum. As in Lemma A5, we prove the
corresponding additive statement: writing U = 1 + N, it is

(bm + ak) ∩ N = (bm ∩ N) + (ak ∩ N), (A8)

where k = k1. We reduce to the case where E = F [β] is maximal and invoke Lemma A5.
Write d= [E : F ]; then, in the flag corresponding to U ,

{0}= V0 ⊂ V1 ⊂ · · · ⊂ VN = V,

the subspace Vdi is an E-subspace, for 0≤ i≤N/d. Let U0 = 1 + N0 be the unipotent subgroup
corresponding to the maximal E-flag

{0}= V0 ⊂ Vd ⊂ · · · ⊂ Vdi ⊂ · · · ⊂ VN = V

and let P0 = 1 + P0 the corresponding parabolic subgroup. There exists an E-decomposition
V =

⊕N/d
i=1 Wi of V such that for 0≤ i≤N/d, Vdi =

⊕i
j=1 Wj and such that for every t ∈ Z,

Λ(t) =
⊕N/d

i=1 Λ(t) ∩Wi (as a suitable variant of, e.g., [Wei74, § II.1]). Let L0 be the corresponding
Levi component of P0 and let Ū0 = 1 + N̄0 be the unipotent subgroup opposite U0 with respect
to L0.

The lattices bm and ak have (additive) Iwahori decompositions with respect to N̄0, P0 (see
[BH96, § 10]) so

(bm + ak) ∩ P0 = bm ∩ L0 + bm ∩ N0 + ak ∩ L0 + ak ∩ N0

and we have

(bm + ak) ∩ N = (bm + ak) ∩ P0 ∩ N = (bm ∩ L0 + ak ∩ L0) ∩ N + bm ∩ N0 + ak ∩ N0.
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Hence, we are reduced to showing

(bm ∩ L0 + ak ∩ L0) ∩ N = bm ∩ L0 ∩ N + ak ∩ L0 ∩ N,

which is the same as (A8) in L0, where we can work block-by-block. In each block, the field
extension E is maximal, so we have indeed reduced to the maximal case, which is Lemma A5. 2

Finally, we need one more similar result, in the case of a minimal semisimple stratum: in this
case the extra conditions of the previous corollary are not satisfied.

Lemma A9. Let [Λ, n, 0, β] be a skew semisimple stratum, with splitting V = V 1 ⊕ V 2, 1≤ l ≤
2. Suppose that βi = 11β1i is minimal, for i= 1, 2 and that [Λ, n, n− 1, β] is not equivalent to
a simple stratum. Assume also (without loss of generality) that n1 ≥ n2 ≥ 1. Put ki = [ni/2] + 1,
for i= 1, 2, and k = (k1, k2). Then H1 = (U1(Λ) ∩B)Uk(Λ) and, if U is a maximal unipotent
subgroup of G on which ψβ defines a character:

H1 ∩ U = Uk(Λ) ∩ U.

Proof. We work under the conventions made in the Appendix A.2. The subgroup U is necessarily
given (see Proposition 3.4) by a flag of the following form:

{0} ⊂ 〈v1 + v2〉 ⊂ 〈v1 + v2, v−1 − v−2〉 ⊂ 〈v1, v2, v−1 − v−2〉 ⊂ V,

where vi ∈ V i are non-zero vectors such that h(v1, β1v1) =−h(v2, β2v2) = µ and v−1 = µ−1β1v1,
v−2 =−µ−1β2v2. In particular, {vi, v−i} is a symplectic basis for V i, adapted to Λi.

That H1 = (U1(Λ) ∩B)Uk(Λ) is clear from the definition. For the intersection property, we
need the following lemma.

Lemma A10. Put ν = νΛ1(v1)− νΛ2(v2) and let Ei,j be the linear map sending vj to vi and all
other basis elements to zero. We have

νΛ(E1,2) = ν, νΛ(E−2,−1) = n1 − n2 − ν. (A11)

Furthermore, if n1 ≥ n2, then 0≤ ν ≤ n1 − n2.

Proof. Computing the valuations of E1,2 and E−2,−1 is simple checking. Lemma A4 combined
with our assumption on v1, v2 implies ν =−2νE1β1/e1 + 2νE2β2/e2. The inequality 0≤ ν ≤
n1 − n2 then follows from Lemma A3. 2

Write U = 1 + N. Then the elements of N can be written (as matrices with respect to the
basis {v1, v−1, v2, v−2})

x=


a e −a c
−d −b d −b
a e+ f −a c+ f
d b −d b

 ,

for a, b, c, d, e, f ∈ F .
Now suppose that x as above also lies in the lattice (in block matrix form, each block 2× 2)(

am ak1
ak1 ak2

)
,

for some m< k1. Then, using (A11), we obtain:

• aE2,1 ∈ ak1 so aE1,1 = aE1,2E2,1 ∈ ak1+ν ;
• bE−1,−2 ∈ ak1 so bE−1,−1 = bE−1,−2E−2,−1 ∈ ak1+n1−n2−ν ;
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• (c+ f)E2,−2 ∈ ak2 so (c+ f)E1,−2 = (c+ f)E1,2E2,−2 ∈ ak2+ν ;
• cE1,−2 ∈ ak1 so fE1,−2 ∈ amin{k1,k2+ν} and

fE1,−1 = fE1,−2E−2,−1 ∈ amin{k1+n1−n2−ν,k2+n1−n2};

• (e+ f)E2,−1 ∈ ak1 so (e+ f)E1,−1 = (e+ f)E1,2E2,−1 ∈ ak1+ν .

Writing t= min{ν, n1 − n2 − ν, k2 + n1 − n2 − k1} ≥ 0, we have aE1,1, bE−1,−1, eE1,−1 ∈ ak1+t ⊂
am+1. In particular, looking at the ‘top-left’ block of x, we have(

a e
−d −b

)
∈
(

0 0
−d 0

)
+ am+1.

Now we prove that, for m≤ k2 and k = (k1, k2),

((Um(Λ) ∩B)Uk(Λ)) ∩ U = Uk(Λ) ∩ U.

By Lemma A5, we have

((Um(Λ) ∩B)Uk(Λ)) ∩ U ⊂ ((Um(Λ) ∩B)Uk2(Λ)) ∩ U = Uk2(Λ) ∩ U.

Then we need only prove, for k2 ≤m< k1 (the additive statement),(
bm + ak1 ak1

ak1 ak2

)
∩ N⊂

(
bm+1 + ak1 ak1

ak1 ak2

)
.

However, we have seen above that, if ε ∈
(
bm 0
0 0

)
is such that ε+ ak contains an element of

N, then ε+
(
am+1 0

0 0

)
also contains a nilpotent element. However, then (as in the proof of

Lemma A5) ε+
(
bm+1 0

0 0

)
also contains a nilpotent element, which must be zero. Hence, ε ∈ bm+1,

as required. 2

A.4 Proof of Proposition 4.1
It remains to prove Proposition 4.1: if θ ∈ C(Λ, 0, β) is a skew semisimple character and U is a
maximal unipotent subgroup of G such that ψβ|Uder

= 1, then

θ|H1∩ U = ψβ|H1∩ U .

As in the Appendix A.3, we actually prove the same statement for σ-stable semisimple strata in
GL4, and the result follows by restriction to G. We remark that a skew element β generating a
field such that [F [β] : F ] = 2 is necessarily minimal. We proceed on a case-by-case basis.

Simple case (cases (I) and (II)). We proceed by induction on r =−k0(β, Λ). We make the
following additional hypothesis:

(∗) there exists a simple stratum [Λ, n, r, γ] equivalent to [Λ, n, r, β] such that ψγ |Uder
= 1.

In particular, we can then use the inductive hypothesis for the stratum [Λ, n, 0, γ] with the same
unipotent subgroup U . Note that this hypothesis is certainly satisfied when β is minimal, since
we can take γ = 0. We show later that it is also satisfied in the other cases that are relevant to
us here.

We have H1(β, Λ) = (U1(Λ) ∩B)H [r/2]+1(β, Λ) (see [BK93, § 3.1]) so, by Corollary A6, H1 ∩
U =H [r/2]+1 ∩ U . Moreover, H [r/2]+1(β, Λ) =H [r/2]+1(γ, Λ) and θ|H[r/2]+1 = θ0|H[r/2]+1ψβ−γ , for
some θ0 ∈ C(Λ, 0, γ). However, by the inductive hypothesis, θ0 agrees with ψγ on H [r/2]+1 ∩ U
and the result follows.
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To finish, we must show that (∗) is satisfied. The only case to consider is when [Λ, n, 0, β]
is a skew simple stratum with F [β] maximal (of degree four) and r =−k0(β, Λ)< n. Then
[Λ, n, r, β] is equivalent to some skew simple stratum [Λ, n, r, γ0], with γ0 minimal and F [γ0] of
degree two over F . Note that, since p 6= 2, all extensions are tame here. Note also that the flag
corresponding to the unipotent subgroup U is given by Vi = 〈v, βv, . . . , βi−1v〉, for some v ∈ V
with h(v, βv) = 0. Also put ζ = h(βv, β2v) 6= 0, and d=−vF (ζ).

Let P (X) =X2 + λ ∈ F [X] be the minimal polynomial of γ0 and put e−2 = v, e−1 = βv,
e1 = ζ−1P (β)v, e2 =−βζ−1P (β)v − kβv, where k = ζ−2h(βv, β2v)− 2λζ−1 (this is a symplectic

basis). With respect to this basis, β has matrix

(
0 −λ 0 µ
1 0 k 0
0 ζ 0 λ
0 0 −1 0

)
for some µ ∈ F . For i, j ∈ {±1,±2},

write Ei,j for the linear map sending ej to ei and all other basis vectors to zero. We then have
E−2,−1 ∈ an, E1,−1 ∈ ade−r.

Write β = γ0 + c0, with c0 ∈ a−r. Then β2 + λ= c0γ0 + γ0c0 + c2
0 ∈ a−n−r. From the matrix

description of β, we obtain that

β2 + λ=


0 0 −(µ+ kλ) 0
0 kζ 0 (µ+ kλ)
ζ 0 kζ 0
0 −ζ 0 0

 .

Then:

• (µ+ kλ)E−1,2 ∈ a−n−r and (µ+ kλ)E−2,2 = (µ+ kλ)E−2,−1E−1,2 ∈ a−r;

• ζE1,−1 ∈ a−r.

Hence,

c=


0 0 0 µ+ kλ
0 0 0 0
0 ζ 0 0
0 0 0 0

 ∈ a−r.

Put γ = β − c. Then [Λ, n, r, γ] is a stratum as required by hypothesis (∗).

Minimal semisimple case (case (III)). Now suppose that [Λ, n, 0, β] is a skew semisimple
stratum, with splitting V = V 1 ⊕ V 2, 1≤ l ≤ 2, that βi = 11β1i is minimal, for i= 1, 2 and that
[Λ, n, n− 1, β] is not equivalent to a simple stratum. Assume also (without loss of generality)
that n1 ≥ n2 ≥ 1. Put ki = [ni/2] + 1, for i= 1, 2, and k = (k1, k2). Then, by Lemma A9,
H1 = (U1(Λ) ∩B)Uk(Λ) and H1 ∩ U = Uk(Λ) ∩ U . However, by the definition of θ, it agrees
with ψβ on Uk(Λ) so the result follows.

Degenerate semisimple case (case (IV)). Now suppose that [Λ, n, 0, β] is again a skew semisimple
stratum, but with β2 = 0. In this case it is straightforward to see that the flag defining U must
be given by

{0} ⊂ V1 = 〈v2〉 ⊂ V2 = 〈v2, v1〉 ⊂ V3 = V1 ⊕ V 1 ⊂ V4 = V,

where v2 ∈ V 2 and v1 ∈ V 1. In particular, U satisfies the extra conditions in Corollary A6. Putting
k1 = [n1/2] + 1 and k2 = 1, we have H1 = (U1(Λ) ∩B)Uk(Λ) so, by Corollary A6,

H1 ∩ U = (U1(Λ) ∩B ∩ U)(Uk(Λ) ∩ U) = Uk(Λ) ∩ U.

As in semisimple case (I), the result now follows by the definition of semisimple characters.
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Non-minimal semisimple case (case (III)). Finally, suppose that [Λ, n, 0, β] is a skew semisimple
stratum, with splitting V = V 1 ⊕ V 2, 1≤ l ≤ 2, that βi = 11β1i is minimal, for i= 1, 2 but that
[Λ, n, n− 1, β] is equivalent to a simple stratum. Let r =−k0(β, Λ). As in the simple case, we
show that

(∗) there exists a simple stratum [Λ, n, r, γ] equivalent to [Λ, n, r, β] such that ψγ |Uder
= 1.

(Indeed, γ will be minimal.) The proof is then the same as that in the simple case, since we can
use the simple case for γ. In this case we invoke Lemma A5 to show that H1 ∩ U =H [n/2]+1 ∩ U .

As in the simple case, the flag corresponding to the unipotent subgroup U is given by
Vi = 〈v, βv, . . . , βi−1v〉, for some v ∈ V with h(v, βv) = 0. So v = v1 + v2, with vi ∈ V i such that
h(v1, β1v1) =−h(v2, β2v2). Note that, for i= 1, 2, {vi, βivi} is a basis for V i, with respect to
which βi has matrix

(
0 λi
1 0

)
, for some λi ∈ F . Also, let Ei denote the linear map in Aii which

sends βivi to vi and vi to zero; then Ei ∈ aiin .

Let [Λ, n, r, γ0] be a skew simple stratum equivalent to [Λ, n, r, β], with γ0 ∈Msp, and let
X2 − λ be the minimal polynomial of γ0 over F . For i= 1, 2, let γi ∈Aii have matrix

(
0 λ
1 0

)
, with

respect to the basis {vi, βivi} of V i. Since β − γ0 ∈ a−r, we get that λ− λi ∈ aii−n−r, for i= 1, 2,
so (λ− λi)Ei ∈ aii−r. Hence βi − γi ∈ aii−r and γ = γ1 + γ2 is as required, since γv = βv.

This completes the proof of Proposition 4.1. 2

Remarks. It surely will not have escaped the reader’s notice that the methods in each case are
rather similar. It may well be possible to unify the cases into a single proof but we have not been
able to do this. We also note that we could not have used [BH98, Lemma 2.10] here, since the
proof given there unfortunately does not work. It seems likely that the result there is true (at
least in the tame case, as here) but we have not (yet) been able to find a proof.
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