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Abstract. Verification of theoretical predictions of an oscillating behavior of the fine-structure
constant, α, with cosmic time requires high precision measurements at individual redshifts,
while in earlier studies the mean ∆α/α values averaged over wide redshift intervals were usually
reported. This requirement can be met via the Single Ion Differential α Measurement (SIDAM)
procedure. We apply SIDAM to the FeII lines associated with the damped Lyα system observed
at z = 1.15 in the spectrum of HE0515–4414. The weighted mean calculated on the base of
carefully selected 34 FeII pairs is 〈∆α/α〉 = (−0.07± 0.84)×10−6. The precision of this estimate
represents a large improvement over previous measurements of ∆α/α.
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1. Introduction

The Sommerfeld fine-structure constant, α ≡ e2/�c, which describes electromagnetic
and optical properties of atoms, is the most suitable for time variation tests in both
laboratory experiments with atomic clocks and astronomical observations (for a review
see, e.g., Barrow 2005).

The question whether or not the fine-structure constant varied at different cosmological
epochs can be answered only through observations of quasar absorption-line spectra. The
main requirement of such studies – precise line position measurements at the level of
10−7-10−8 – can be fulfilled only at giant optical telescopes equipped by high resolution
spectrographs.

Theoretically the effects of inhomogeneous space and time evolution of α were consid-
ered by Marciano (1984) and Mota & Barrow (2004). Most recently Fujii (2005) suggested
a damped-oscillation-like behavior of α as a function of cosmic time t. It is apparent that
to study such irregular changes in α, we need to achieve high precision in the measure-
ments of ∆α/α at individual redshifts, contrary to the averaging procedure over many
redshifts which is usually used to decrease uncertainties of the mean values 〈∆α/α〉
(Murphy et al. 2004, and references therein).

The uncertainties of individual values of ∆α/α = (αz − α0)/α0, (here α0 and αz are
the values of α at epoch z = 0 and at redshift z, respectively) are currently known at
the level of a few ppm (parts per million) (Quast et al. 2004; Chand et al. 2004). In
both cases the standard many-multiplet (MM) method (Dzuba et al. 2002) has been
used. Further modification of the MM method (Levshakov et al. 2005) resulted in a new
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methodology for probing the cosmological variability of α on base of pairs of FeII lines
observed in individual exposures from a high resolution spectrograph (henceforth referred
to as SIDAM – Single Ion Differential α Measurement).

The basic idea behind SIDAM was to avoid the influence of small spectral shifts due
to ionization inhomogeneities within the absorbers and due to non-zero offsets between
different exposures. The individual offsets can affect the shape of the line profiles during
rebinning and coadding procedures when exposures are combined together to increase
the signal-to-noise (S/N) ratio (examples are given in Levshakov et al. 2005).

2. Results
In our recent paper (Levshakov et al. 2006) we showed that SIDAM can provide a sub-

ppm precision in a single redshift ∆α/α measurement and that this level of accuracy is
caused by unavoidable intrinsic instrumental imperfections and systematic errors inher-
ited from the uncertainties of the wavelength scale calibration. We analyzed high quality
spectra of the bright intermediate redshift quasar HE0515–4414 (zem = 1.73, B = 15.0;
Reimers et al. 1998). The observations were acquired with the UV-Visual Echelle Spec-
trograph (UVES) at the VLT 8.2m telescope at Paranal, Chile, and the spectral data
were retrieved from the ESO archive.

We found that the weighted mean of the ensemble of n = 34 ∆α/α values calculated on
the base of carefully selected FeII lines from the z = 1.15 absorber is equal to 〈∆α/α〉 =
−0.07 ± 0.84 ppm (1σ C.L.). This value is lower than 2 ppm expected at z = 1.15 from
the damped-oscillatory model by Fujii (2005). However, the error of 〈∆α/α〉 is not small
enough to verify or reject Fujii’s model. To probe the oscillatory behavior of α, very
accurate measurements at higher redshifts are required where the amplitude of ∆α/α is
expected to be ∼5 ppm.

The value 〈∆α/α〉=−5.7±1.1 ppm found by Murphy et al. 2004 is based on a sample
of 143 absorption systems observed with the HIRES/Keck spectrograph and ranging
from z = 0.2 to 4.2. Now, the higher accuracy of 〈∆α/α〉 (better than 1 ppm) obtained
from the analysis of the individual FeII system at z = 1.15 poses a problem whether the
Keck ensemble average contains some undetected systematic errors.

As a conclusion, it is worthwhile to note that the achieved accuracy of ∆α/α is unique
for the standard UVES configuration and that further improvement at the sub-ppm
level can be attained only with increasing spectral resolution and instrumental stability
performances such as, for instance, a fiber link producing a stable illumination at the
entrance of the spectrograph and allowing continuous simultaneous comparison spectrum.
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