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The κ-Statistics and Income Distribution Analysis 1

1 Introduction
The issue of income and wealth inequality has long been a focal point in
economic literature, drawing contributions from numerous esteemed scholars.
In the early stages of economic inquiry, when the discipline focused mainly
on resource allocation and societal welfare, theoretical and methodological
tools were comparatively rudimentary, and data availability was limited. As
a result, classical economists concentrated on the “functional distribution” of
income, analyzing its allocation among wages, profits, and rents. In contrast,
contemporary economists place greater emphasis on the “personal distribu-
tion” of income, which looks at how income is distributed among individuals,
irrespective of their role in production.
David Ricardo’s “Principles” extensively explored the underlying laws

governing income distribution. With the emergence of the marginalist and
neoclassical revolutions, economic focus shifted towards the general equi-
librium theory (GET), a framework still relevant today under the guise of
DSGE (dynamic stochastic general equilibrium) methodology. However, this
approach, rooted in the “representative agent” paradigm, tends to overlook
income distribution dynamics. While income distribution and inequality have
never been entirely sidelined, they have often taken a backseat to the pur-
suit of proving market equilibrium’s existence, uniqueness, and stability under
idealized assumptions.
Notably, applied mathematicians and statisticians, many hailing from Italy,

have shown significant interest in the realm of income distribution and ine-
quality. Figures such as Max Otto Lorenz, Vilfredo Pareto, Gaetano Pietra,
Umberto Ricci, Corrado Gini, and Giampaolo Zanardi have made substantial
contributions to this field, highlighting the interdisciplinary nature of the study
of economic disparities. These scholars, among others, will be acknowledged
in this Element.
Various definitions exist for income or wealth inequality, yet they converge

on the idea that unequal distribution signifies uneven access to opportunities
among individuals. The root causes of this disparity can vary widely, spanning
global, local, and individual factors.
In many countries, there is a growing acknowledgment of widening gaps in

income and wealth distribution, indicating a concerning trend towards height-
ened inequality. This consensus is underscored by various studies and reports,
highlighting the significance of this issue within both academic circles and
among policymakers.
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2 Econophysics

The issue of inequality in the distribution of income and wealth has recently
taken center stage in political debates, sparking renewed interest among schol-
ars. Key contributions to this discussion include works by Atkinson (2015),
Atkinson & Piketty (2007), Piketty (2014), and Stiglitz (2012, 2015).
For policymakers in particular, it is imperative to develop theories and

models rooted in robust empirical evidence. Thus, there is a need to utilize
precise methodologies to determine the most accurate parametric distributions
of income and wealth, as well as to identify the most reliable estimators for
measuring inequality.
Inequality is a phenomenon that fluctuates across time and space, with a

persistent presence throughout history and likely into the future. It stems from
various factors, including the behaviors of individuals holding a transferable
quantity like income or wealth, as well as broader environmental conditions
such as political, cultural, and economic contexts. The uneven distribution of
these resources underscores the disparity in opportunities among individuals.
Some contend that inequality is an inevitable outcome, while others see it as

fulfilling a social function by incentivizing advancement and progress. How-
ever, the crux of the matter lies in the detrimental effects of inequality, as it
perpetuates cycles of poverty and deprivation.While complete eradication may
prove elusive, effective control through redistributive or protective policies
is essential. These policies should prioritize crucial aspects such as ensur-
ing access to quality healthcare and education, particularly for disadvantaged
groups, as these are vital for unlocking better job prospects and opportunities.
The management of inequality is critical for its mitigation. Achieving this

goal necessitates the development and application of robust theoretical and
methodological frameworks to comprehend and gauge its extent accurately.
For example, while economic growth is typically seen as positive news, its

benefits are not always evenly distributed among individuals. In some rapidly
growing economies, we have observed an exacerbation of inequality, as only
a select few reap substantial rewards, particularly when considering both the
financial and real sectors of the economy. Therefore, true economic growth
should extend its benefits to all members of society, ideally favoring those who
are most disadvantaged. Sustainable growth is characterized by a balanced dis-
tribution of wealth, steering clear of extreme social stratification and ensuring a
high quality of life for the majority, if not all, citizens. However, achieving this
requires a thorough understanding of inequality, underpinned by robust theo-
retical frameworks and analytical tools that can accurately measure its extent
within the mechanisms of economies.
Over the years, numerous theoretical models and inequality estimators have

been proposed and explored, making it impractical to list or review them all
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The κ-Statistics and Income Distribution Analysis 3

here. Each proposal has its strengths and weaknesses, contributing to the ongo-
ing discoursewithout yielding a definitive solution. In this context, this Element
presents the most effective and up-to-date solutions available for inferring both
the parametric distribution of income and wealth, as well as the appropriate
measures of inequality. Specifically, it introduces the κ-generalized distribu-
tion and the Zanardi index of asymmetry as prominent tools in this endeavor.
These approaches offer valuable insights into understanding and addressing the
complexities of economic inequality in contemporary society.
A quantity is deemed “positive” if all its values are nonnegative. Further-

more, a positive quantity is considered “transferable” if a portion held by one
observation unit can be transferred to another without altering the total availa-
ble quantity through interaction. This transferable quantity is termed “diffused”
when the ensemble of N units possesses nonuniform shares of the total amount.
Conversely, if each unit holds an identical share of 1/N, the quantity is deemed
“equi-distributed” among individuals.
When the distribution disproportionately favors certain individuals or

groups, it is categorized as “concentrated.” Thus, while all transferable quan-
tities are inherently diffused, the degree and shape of the distribution can vary
widely, ranging from equi-distribution with minimal concentration to maxi-
mum concentration, where one unit possesses nearly the entire quantity while
the remaining N − 1 units possess negligible amounts.
We can unambiguously refer to equi-distribution when each individual holds

an equal fraction, representing the scenario with minimal concentration. How-
ever, the opposite extreme, characterized by maximum concentration, lacks a
specific term. In essence, between these theoretical extremes, lies a spectrum
of situations with varying degrees of concentration. While the term equi-
distribution implies equality, other distribution scenarios inherently involve
some degree of inequality. Although this terminology is intuitive, it may not
capture the nuanced variations effectively.
Equality can be conceptualized as a state of distribution devoid of any dispar-

ities. Conversely, when a transfer mechanism operates within a heterogeneous
population, interacting through a complex network of relationships, inequality
emerges.1 This inequality can either intensify over time as distributive imbal-
ances exacerbate or diminish as such imbalances ease. Unlike the idealized state
of equality, which represents homogeneity, inequality is a persistent condition
characterized by varying degrees of heterogeneity.
The κ-generalized distribution, initially proposed by Kaniadakis (2001) in

the field of nonlinear particle physics kinetics and further refined over the

1 For instance, refer to the zero-intelligence agents model by Yakovenko and Rosser (2009).
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4 Econophysics

following two decades, has recently found application in economics, thanks
to studies by, among others, Clementi, Di Matteo, Gallegati, and Kaniadakis
(2008), Clementi and Gallegati (2016), and Clementi, Gallegati, and Kani-
adakis (2007, 2009, 2010, 2012a, 2012b). These works demonstrate that this
distribution offers a superior fit compared to well-known functional forms such
as the Singh–Maddala, Dagum type I, and GB2 models.
The asymmetry index of the Lorenz curve, introduced by Zanardi (1964,

1965), employs a geometric decomposition method popularized by Tarsitano
(1987, 1988). Recent research by Clementi, Gallegati, Gianmoena, Landini,
and Stiglitz (2019) and Gallegati, Landini, and Stiglitz (2016) has shown that
this index outperforms the traditional Gini concentration index in measuring
inequality.
Both the κ-generalized distribution and the Zanardi index serve as essential

analytical and theoretical tools for understanding and quantifying income and
wealth distribution inequality. They are invaluable for academic research as
well as applied studies aimed at informing policy-making efforts.
This Element is structured as follows.
In Section 2, we provide a brief overview of existing methods for analyz-

ing income distribution, focusing primarily on the Lorenz curve and traditional
inequality measures. We then introduce novel insights into inequality meas-
urement by addressing the asymmetry inherent in this curve. Specifically, we
introduce the Zanardi index of asymmetry as a superior measure of inequality.
Unlike other measures, this index considers both the intensity and direction of
inequality within the distribution, facilitating comparisons even when Lorenz
curves intersect. Empirical space-time estimates and comparisons with other
indices, notably the Gini index, which only addresses concentration, support
the superiority of the Zanardi index.
Section 3 presents the κ-generalized distribution, offering comprehensive

mathematical details regarding its origin, limit cases, definitions, and funda-
mental properties. It explores the parametric specification of the Lorenz curve
and various indices associated with this distribution. Additionally, the method-
ology for parameter estimation is elucidated, along with insights gleaned from
applying this model to real income distribution data.
Section 4 provides many up-to-date applications of the κ-generalized distri-

bution to real-world income data, showing fitting results and comparing them
with those obtained from other parametric models.
Section 5 concludes this Element with essential reflections. While acknowl-

edging that no result can be deemed definitively absolute, akin to physics, some
findings can be deemed sufficiently robust until proven otherwise, especially if
they offer superior explanations for known phenomena. This Element aspires
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The κ-Statistics and Income Distribution Analysis 5

to contribute to such advancements, and we invite readers to engage in further
improving the results presented herein.

2 New Insights on the Measurement of Inequality
2.1 The Inequality Measures

The growing attention to economic inequality has revived debates on the most
suitable metric or index for measuring income inequality. Since the introduc-
tion of the Lorenz curve in 1905, which shows the share of income or wealth
accruing to the bottom x percent of the population, numerous indices have been
proposed to assess economic inequality.
The Gini (1914) coefficient stands as the predominant and extensively

employed measure of income inequality. This metric measures inequality by
calculating the area between the Lorenz curve, representing income distribu-
tion, and the line of perfect equality.
Based on the Lorenz curve, the literature on inequality has introduced alter-

native metrics, including the Pietra–Ricci index (Pietra, 1915; Ricci, 1916)
and the Zanardi index (Zanardi, 1964, 1965), which provide new insights
into income inequality. The Pietra–Ricci focuses on the redistribution needed
to achieve equality, while the Zanardi index explores the asymmetry on the
income distribution.2

Other indices, like the Theil index, are grounded in information theory
(Shorrocks, 1980; Theil, 1967), while some, like the Atkinson (1970) index,
are welfare-based measures of inequality and are more responsive to value
judgments regarding inequality aversion. Though these indices offer valuable
insights into the complex nature of inequality, each comes with its strengths and
limitations. The choice of an index depends on the specific aspect of inequality
under consideration and the societal values deemed most important.
In particular, indices that satisfy the three axiomatic conditions of (i) sym-

metry, (ii) scale invariance, and the (iii) transfer principle produce identical
rankings for distinct income distributions only if the Lorenz curves do not
intersect.3 Likewise, rankings based on the Atkinson index remain consist-
ent regardless of the level of risk aversion, only if the Lorenz curves do not

2 The Pietra–Ricci index represents the proportion of income needed for redistribution to achieve
perfect equality, visually represented as the maximum vertical distance between the Lorenz
curve and the 45-degree line. The index ranges from 0 to 1, where 0 represents perfect equality
(all incomes are the same) and 1 represents perfect inequality (one person earns all the income).

3 “Symmetry” requires that, as income levels among individuals change, a society’s assess-
ment of inequality remains unchanged. “Scale invariance” requires the inequality index to be
invariant to equi-proportional changes of the original incomes. Finally, the “transfer principle”
requires the inequality measure to change when income transfers occur among individuals in
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6 Econophysics

intersect. If the Lorenz curves intersect, then different indices can yield dif-
ferent results depending on the type of inequality to which each index is most
sensitive.
With the aim of discerning the nature of inequality, the Zanardi index dis-

tinguishes itself from the aforementioned indices by its capability to gauge the
asymmetry of Lorenz curves. Unlike the previous measures, the Zanardi index
delves into the shape of the distribution, aiding in the identification of whether
inequality predominantly stems from the conditions of the poor or from the
concentration of wealth among the richest.

2.2 Exploring the Lorenz Curve and the Gini Index Logic
It is well known that the most popular tool used to represent income distri-
bution is the Lorenz curve L ( p), whose upward and convex trend is strongly
affected by how income is concentrated/distributed among individuals. The
L ( p), whose formalization is discussed in Section 3.2.2, tells us which pro-
portion of the total income is in the hands of a given percentage of population.
If income is distributed homogeneously among individuals, the Lorenz curve
coincides with the main diagonal of a unit square, showing an absence of
income concentration.
However, real-world income distribution is characterized by disparities

between poor and rich people. This implies that less affluent individuals hold a
share of total income below an equi-distributed allocation, while wealthier indi-
viduals hold more. Consequently, for typical income distributions, the Lorenz
curve deviates from the diagonal, assuming the shape of a convex curve.
Closely tied to the representation of the Lorenz curve L ( p), the Italian statis-

tician Corrado Gini, in 1914, introduced a synthetic measure known as the Gini
coefficient. This coefficient quantifies the ratio of the area between the Lorenz
Curve and the equi-distribution line (hereinafter referred to as the concentration
area) to the area of maximum concentration. It is crucial to emphasize that the
Gini index specifically conveys information about the concentration of transfer-
able quantities. However, it falls short in capturing other critical dimensions of
inequality, such as the extent of heterogeneity, concentration, and asymmetry
inherent in income distribution (Clementi et al., 2019; Gallegati et al., 2016).
The concept of heterogeneity underscores the presence of a nonuniform dis-

tribution of economic resources among different socioeconomic groups (poor

the income distribution – in particular, inequality indices should fall with a progressive trans-
fer, that is, an income transfer from richer to poorer individuals, and rise with a regressive
transfer, that is, an income transfer from poorer to richer individuals.
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The κ-Statistics and Income Distribution Analysis 7

and rich), with implications for understanding the dynamics of income ine-
quality within a society; the concentrationmeans considering different degrees
of disparity between the classes, while the concept of asymmetry refers to the
directional disparity in the distribution of endowments.
In particular, asymmetry implies that the distribution reveals a certain direc-

tion of the income imbalance which could be “right-wards” if the rich class of
the distribution is more heterogeneous than the poor one, or “left-wards” in the
opposite scenario.4 These three concepts – concentration, heterogeneity, and
asymmetry – are crucial for a thorough understanding of inequality. Conse-
quently, it is necessary to consider alternative measures that can examine for
the shape of Lorenz curves.

2.3 The Zanardi Asymmetry Index of the Lorenz Curve
In what follows, we provide a description and an interpretation of the Zanardi
(1964, 1965) index, which can be considered as a superior measure for exam-
ining income inequality, particularly in the presence of asymmetric income
distributions. As highlighted by Clementi et al. (2019), Gallegati et al. (2016)
and Park, Kim, and Ju (2021) inequality is characterized not only by its “inten-
sity” but also by its “direction.” In this framework, the “direction” of the
inequality is discussed in terms of a positive and transferable quantity, such
as income, which is unevenly distributed among recipients. This uneven distri-
bution implies a form of “right-wing” or “left-wing” inequality concentration,
highlighting the asymmetry of the Lorenz curve L ( p).
Graphically, this situation is illustrated in Figure 2.1(a). Consider two inter-

secting Lorenz curves: one with a “bulge” in the lower-income segment (solid
line) and the other with a “bulge” in the wealthier segment (dashed line); in
this case, even though the areas enclosed by the two Lorenz curves and the
diagonal of the unit square are the same, the income share (qth) of the poor-
est fraction (pth) of the population is lower in the first distribution than in the
second, although the income concentration is exactly equal.
Figure 2.1(a) shows two contrasting scenarios: one where the rich are very

rich and get a high share of the total income, represented by the dashed curve,
and another where the poor are very poor and get a very small share of the
income, depicted by the solid curve.
In this framework, the discussion of the asymmetry of the L ( p) will be in

terms of the discriminant point D ( pd,qd), which separates the poor class from

4 If a rightward asymmetry of the Lorenz curve is detected, it indicates that the concentration on
the rich side of the distribution is greater than that on the poor side. Conversely, if we observe
a leftward asymmetry, it indicates a greater concentration on the poor side.
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8 Econophysics
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Note: See also Clementi et al. (2019).
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The κ-Statistics and Income Distribution Analysis 9

the rich one, given by the intersection of the Lorenz curve with the negative
bisector q = 1 − p, that is, the “axis of symmetry.” Thus, the share of poor
income earners within the population is given by pd and accumulates a share
qd of total income, which is larger than the income share (1 − qd) accumulated
by the (1 − pd) rich. The discriminant point D ( pd,qd) plays a relevant role,
since it separates the total area under the Lorenz curve in two sub-areas from
which the Gini indexes for the poor and the rich (Gp and Gr, respectively) can
be estimated (see Figure 2.1(b)).
Based on the discriminant point D ( pd,qd), the Zanardi (1964, 1965) index

can be defined as

Z = 2K
δ

G
, (2.1)

where K = pdqd
2 , δ = Gr − Gp denotes the disparity of concentration between

the rich and poor, and G is the overall Gini ratio. The index varies between −1
and 1, where Z< 0 means that the Lorenz curve is negatively asymmetric (or
asymmetric to the left), while for Z> 0 the curve is positively asymmetric (or
asymmetric to the right).
Therefore, if Gr >Gp then Z> 0: the poor side is less concentrated than the

rich one, or similarly the rich are more heterogeneous and concentrated than the
poor, hence the distribution disadvantages the poor as they are more within-
homogeneously poor than the rich side. In this case we face distributional
imbalance toward the top (top-inequality), as described by the dashed curve
in Figure 2.1(a). If Gr <Gp then Z< 0 and the opposite interpretation holds:
the poor exhibit greater heterogeneity and concentration compared to the rich,
suggesting an imbalance distribution toward the bottom (bottom-inequality) –
in other words, there are more ways of being poor than rich. This corresponds
to the solid curve in Figure 2.1(a). Obviously, Z= 0 if the Lorenz curve is sym-
metric and no distributional imbalances are found, therefore inequality can be
analyzed looking at the overall Gini index.
In this scenario, the Zanardi index may provide more insightful information

than the Gini index, especially for distributions that exhibit the same G (i.e.
the same level of concentration of L ( p)) but differ in the sign of Z (i.e. Z> 0,
indicating “right-wing” skewness of L ( p), or Z< 0, indicating “left-wing”
skewness of L ( p)).

2.4 Empirical Insights on Inequality
This section briefly presents some empirical evidence on inequality mea-
sures estimated using the Luxembourg Income Study (LIS) Database. The LIS
Database provides public access to granular household-level income data
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10 Econophysics

for 52 countries, including both developed and developing nations over
a period spanning 1963 to 2022.5 Using a harmonized and equivalized
dataset,6 we explore the dynamics of disposable household income across 822
distributions.7

Figure 2.2 shows the relationship between the concentration index G and
the entropy inequality indexes: mean logarithmic deviation (MLD), Theil, and
Atkinson (with inequality aversion parameter equal to 1).8 Although each index
provides a distinct viewpoint on inequality, it is possible to observe that higher
levels of concentration are associated with higher levels of distributive imbal-
ances. For lower levels of concentration, all the indices are almost equivalent
in classifying distributions, but for higher levels of concentration, the indi-
ces diverge while maintaining the same order. This pattern confirms a strong
relationship between concentration and inequality, however, it does not offer
insights into the specific nature or direction of the inequality.
Figure 2.3 illustrates the relationship between the general concentration

index G and the concentration levels on the rich (Gr) and poor (Gp) side. The
graph unveils a distributional imbalance stemming from varying concentration
levels between the two segments of the distribution – that is, the rich and poor
segments – indicating a directional aspect of inequality not fully captured by
the Gini index. Furthermore, it appears that the Gini index makes little distinc-
tion between sampling from the rich or the poor sides of the distribution. The
estimates provided in Figure 2.3 show that a 1% increase in concentration on

5 To preserve confidentiality, access to microdata is conducted remotely, meaning that the pro-
gram code is sent to LIS rather than being run directly by the user on the data. All code
for processing LIS data has been developed using R, the open-source statistical software by
R Core Team (2024), and is made available as supplementary material accompanying this
Element.

6 The LIS equivalence scale (square root of the number of household members) has been used.
Before equivalization, top and bottom coding is applied by setting boundaries for extreme
values of log-transformed disposable household income at the 75th percentile (Q3) plus 3 times
the interquartile range (Q3−Q1), and at the 25th percentile (Q1) minus 3 times the interquartile
range. To ensure representativeness, our methodology employs person-level adjusted weights.

7 The country datasets that are publicly accessible can be found listed on the LIS website at
the following URL: www.lisdatacenter.org/our-data/lis-database/. The results presented in this
section are the outcome of analyses conducted prior to the update of the LIS Database inMarch
2024, which included an additional number of datasets into the database. The subsequent Sec-
tion 4 will refer to this updated version of the LIS Database for the results of the analyses
presented therein.

8 Each index offers a different perspective on inequality, with varying sensitivities to different
parts of the income distribution and different societal preferences regarding inequality aver-
sion. TheMLD gives more weight to deviations of incomes at the lower end of the distribution,
making it sensitive to changes in the bottom part of the income distribution. The Theil index
is often used in socioeconomic contexts to understand both overall inequality and how it is
distributed across different subgroups, while the Atkinson index penalizes high incomes more
heavily than other measures like the Gini coefficient, making it sensitive to changes in the top
end of the income distribution.
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Figure 2.2 Relationship between concentration and entropy indexes of
inequality (×1,000)
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Figure 2.3 Overall Gini index, G, together with the concentration on the rich,
Gr, and the poor, Gp, sides (×100)

the rich side increases the overall concentration by approximately 0.64%, while
a similar increase on the poor side results in an approximately 0.74% boost
in overall concentration. This preliminary analysis underscores that inequity
is slightly driven by a higher concentration on the poor side rather than the
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Figure 2.4 Overall Gini index, G, together with the Zanardi index, Z

rich side. The presence of such asymmetry enables a deeper understanding
of the inequality directionality, particularly in this scenario where it is driven
by the disadvantaged group. Consequently, exploring the concentration gap
between the rich and the poor through the Zanardi index could offer valuable
insights.
For this purpose, Figure 2.4 shows the Gini concentration index (horizon-

tal axis) and the Zanardi asymmetry index (vertical axis), both estimated on
the Lorenz curves for all distributions. Gray-triangular values denote cases of
equivalent Gini paired with opposite Zanardi, indicating distributions with sim-
ilar concentration but opposite asymmetry. For such observations, an analysis
based solely on the Gini index would be misleading because, behind the same
concentration value, different forms of inequality may be hidden, that is, top-
inequality cases (above the horizontal axis) and bottom-inequality cases (below
the horizontal axis).
At this point in the analysis, we can draw some preliminary conclusions:

1. The income distributions for the entire sample turn out to be very heter-
ogeneous in terms of income concentration (Gini values ranging from a
maximum of 0.6626 to a minimum of 0.1887).

2. Such distributions exhibit significant inequality or asymmetry in both the
rich and poor segments, as described by the Zanardi index (with values
ranging from a maximum of 0.1253 to a minimum of −0.1932).
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The κ-Statistics and Income Distribution Analysis 13

In order to eliminate these distributional gaps, wealth transfers should be
implemented to nullify both concentration (G = 0) and inequality (Z = 0). The
Pietra–Ricci index (H) takes this aspect into account.
With reference to Figure 2.1(b), the Pietra–Ricci index measures the max-

imum distance of the Lorenz curve q = L ( p) from the equi-concentration
segment, that is, the vertical distance of the critical point from the line of per-
fect equality. Starting with an income distribution characterized by G > 0 and
Z , 0, it is possible to calculate the amount of income to transfer from a group
(whether rich or poor) to achieve a distribution in which G = 0 and Z = 0,
indicating the absence of inequality. As shown in Figure 2.5(a), as concentra-
tion levels increase, it will be necessary to transfer larger amounts of income to
eliminate inequality. Thus, with reference to Figure 2.5(b), for values of Z < 0,
it will be necessary to transfer a portion H of the total income from the poor
class to the rich class to completely eliminate concentration and inequality –
akin to a “Matthew” effect. In the case of Z > 0, on the other hand, the opposite
will be necessary: transferring a portion of the total income from the rich class
to the poor class – a kind of “Robin Hood” effect.

2.4.1 Examining the Inequality over Time

The analysis of inequality presented so far, while informative, is quite gen-
eral and does not fully allow for an understanding of the time evolution of
inequality. Furthermore, a misleading understanding of the concept of ine-
quality becomes evident when solely focusing on the overall Gini index. A
country-specific analysis provides a deeper understanding of the various forms
of inequality within an economy, highlighting trends and potential divergences
between the Gini and Zanardi indices.
With this purpose, Figures 2.6–2.9 show the time series of the Gini and

Zanardi indices for a subset of countries with the highest number of consecutive
years of data within the time period from 1990 to 2021. For the sake of expo-
sition, we classify these economies into four groups: Anglo-Saxon countries
(Canada, the United Kingdom, and the United States); Western European coun-
tries (France and Germany); Southern European countries (Italy and Spain);
and Northern European countries (Denmark, Norway, and Sweden).
The United States (Figure 2.6(a)) shows an almost constant increase in the

G concentration index throughout the period considered, with the exception of
the last few years, where there is a marked decrease in theG index from values
close to 0.39 to values close to 0.37. However, concerning the type of the ine-
quality, there is a cyclical fluctuation between negative values of the Z index
and values close to zero for almost the entire period. This increased inequal-
ity on the poor side, as indicated by negative Z values, is attributed to greater
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Figure 2.5 Overall Gini index against the Pietra–Ricci index (a); the Zanardi

index against the Pietra–Ricci (b)
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Figure 2.6 Temporal evolution of the Gini (bullets, left scale) and Zanardi

(squares, right scale), Anglo-Saxon countries
Note: The horizontal line represents the zero reference line for the Zanardi index.

heterogeneity within the lower-income group, where individuals experience
higher levels of poverty. These disparities on the side of the poor are mitigated
in three time periods: 2000–2001, 2005–2006, and 2014–2015, during which
the Zanardi index approaches zero, indicating a reduction in income distribu-
tion asymmetry, albeit with persistently high-income concentration values as
indicated by the Gini index. In 2020–2021, however, the distribution undergoes
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Figure 2.6 (Cont.)

a shift, as indicated by the positive Z values associated with an increase of ine-
quality, this time in favor of the rich-side. The income distribution shows an
increase in heterogeneity within the richer class, with the emergence of a seg-
ment of wealthy individuals holding significant shares of income within the
richer class (i.e. the super-rich).
A similar trend, albeit with lower values, is observed for Canada (Figure

2.6(b)). The concentration levels of G increase throughout the first decade, sta-
bilizing at values around 0.32 in the following ten years, and then fluctuating
with a tendency to decrease in the last period. Although the Gini index shows an
almost constant trend, the Z index valuesmove further away from the symmetry
line, especially in the last ten years, with a significant increase in concentration
(hence heterogeneity) among the poor (bottom-inequality).
The case of the United Kingdom in Figure 2.6(c) differs and is, in some

respects, the opposite of the United States and Canada, showing a downward
trend in both the G and Z indices. The Zanardi index shows how, in the United
Kingdom, the distributive imbalance has always favored the richer, with a
tendency towards values close to zero only in recent years. We are there-
fore seeing a general reduction in concentration and inequality, particularly
within the wealthy class, indicating a shift from a top-inequality profile to a
bottom-inequality one.
Countries in Western Europe, like France and Germany, generally have

lower levels of income concentration (Figure 2.7). France’s Gini index shows
a relatively stable trend over time, while Germany’s Gini index depicts a rising
trend. Both countries exhibit positive imbalances in income distribution, as
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(b)
Figure 2.7 Temporal evolution of the Gini (bullets, left scale) and Zanardi

(squares, right scale), Western European countries
Note: The horizontal line represents the zero reference line for the Zanardi index.

reflected by consistently positive values of Z. Consequently, a significant por-
tion of total income in these economies is unequally distributed, with a larger
proportion going to the rich while a smaller proportion is shared among the
poor.
The situation in Southern European countries, specifically Italy and Spain,

presents another interesting pattern (Figure 2.8). The Gini index shows
relatively stable values over the years, around 0.33–0.35 for both countries.
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Figure 2.8 Temporal evolution of the Gini (bullets, left scale) and Zanardi

(squares, right scale), Southern European countries
Note: The horizontal line represents the zero reference line for the Zanardi index.

Conversely, the Zanardi index consistently falls below the symmetry line for
both economies, indicating strongly negative Z values. The two countries
have seen a notable rise in bottom-inequality, leading to increased poverty
among individuals. While the trend in Spain does not seem to be improving,
Italy has experienced a significant decline in bottom-inequality, reflected in
progressively less negative Z values, at least until the first half of the 2000s,
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(b)
Figure 2.9 Temporal evolution of the Gini (bullets, left scale) and Zanardi

(squares, right scale), Northern European countries
Note: The horizontal line represents the zero reference line for the Zanardi index.

before reverting to worsening. Once more, this particular case highlights the
limit of the Gini index in accurately capturing inequality. The similar and con-
stant concentration values might erroneously imply a similarity between the
two economies, which is not what real data tell us.
The same conclusion applies to the Northern European countries referred to

in Figure 2.9, where despite initially displaying relatively low levels ofG, there
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(c)
Figure 2.9 (Cont.)

has been a significant shift in inequality dynamics between the rich and the poor
over time. For instance, in countries like Denmark, there has been a transition
from highly negative Zanardi index values to values approaching the symmetry
line. On the other hand, Norway and Sweden have observed increased bottom-
inequality since 2006, with Norway experiencing a notable shift in trend in the
last year.
This simple empirical analysis offers a clear demonstration of the importance

of incorporating asymmetry into the analysis of inequality. It offers essential
insights for a discussion on the accurate interpretation of inequality. In conclu-
sion, these results call for a more detailed approach to understanding income
inequality, moving beyond the conventional analysis focused solely on Lorenz
curve concentration or entropy indices, in favor of a more detailed analysis that
can also emphasize asymmetries in income distributions.

3 The κ-Generalized Distribution
3.1 Introduction

Mathematical statistics is dominated by two large families of distributions.
The first is the exponential family, whose main characteristic is that it con-
tains distributions that decay exponentially. Three important members of the
exponential family are mentioned below. The first distribution is the general-
ized gamma distribution, with the probability density function (PDF) f (x) given
by fγ (x) =Nxαν−1exp (−H (x)), where N is the normalization constant and
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H (x) = δxα, with α, δ > 0, ν > 0, x > 0. A second distribution from the fam-
ily of exponential distributions is the generalized logistic distribution, which is
defined starting from its survival function S (x) = λ/(λ − 1 + exp (H (x))), where
λ > 0, which is connected to f (x) by f (x) = −d S (x) /d x. The standard logistic
distribution corresponds to λ= 2 and α= 1. A third distribution is the Weibull
distribution, which corresponds to the case λ= 1 of the second distribution, and
its survival function is given by S (x) = exp (−H (x)).
Besides the exponential family, a second family is that of distributions whose

tails are described by the Pareto law f (x) ≈Ax−p, with p> 1. This family of
distributions contains three commonly used distributions defined by the sur-
vival function as follows: the first is the log-logistic distribution, with S =
1/(1 + H); the second is the Burr Type XII or Sing-Maddala distribution, with
S = (1 + H)−r and r > 0; finally, the third distribution is that of Dagum, with
S = 1 − Hr (1 + H)−r.
In the distributions of the second family, the monomial function H (x) is the

same as the one that occurs in the first family. Apart from this common point,
there is no other correlation between the two families of distributions. It can
also be noted that the three distributions of the second family are the simplest to
construct, but there are a variety of other distributions that have asymptotically
Pareto tails.
This dichotomy between these two families of statistical distributions leads

to some problems on a theoretical level if we keep in mind that there are a
large number of systems that are well described by exponential models for low
values of the variable x while these models gradually turn into power-law tail
models for increasing values of x.
The problem thus arises as to whether the second family of models must

be proposed independently of the first family, as has been done in the past, or
whether the models of the second family must be replaced by another family
which is a deformation of the models of the first family. In the last two decades,
this idea has been developed and it has shown that is possible to propose a
unique family of models, different from the two above-discussed families. The
new family of models, for x → 0 reduces to the first exponential family,
while for x → ∞ behaves differently to the second family but it also presents
Pareto power-law tails. This was possible thanks to the physical mechanism
emerging in special relativity which deforms the ordinary exponential func-
tion and replaces it with a new function, the so-called κ-exponential function
defined as

expκ (x) =
(√
1 + κ2x2 + κx

) 1
κ
, (3.1)
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with 0 < κ < 1 (Kaniadakis, 2001, 2002, 2005). For x → 0 or equivalently
for κ → 0, the κ-exponential reduces to the Euler ordinary exponential, that
is, expκ (x) ≈ exp (x), whereas for x → ∞ the κ-exponential reduces to Pareto
law, that is, expκ (x) ≈ |2κx|± 1

κ .9

The κ-deformed version of the three distributions of the exponential family
can be introduced easily as follows (Kaniadakis, 2021):

(i) κ-deformed generalized gamma distribution; it is defined through its PDF
as

fκ (x) = (1 + κν) (2κ)ν
Γ

(
1
2κ +

ν
2

)
Γ

(
1
2κ − ν

2

) αδν
Γ (ν)x

αν−1expκ (−δxα) , (3.2)

with 0 < ν < 1
κ . In the κ → 0 limit, the density function reduces to

the ordinary Generalized Gamma density f (x) = |α |δν
Γ(ν) x

αν−1exp (−δxα).
Asymptotically for x → ∞, the density function behaves according to
fκ (x) ∝ xαν−1− α

κ .
(ii) κ-deformed generalized logistic distribution; the survival function of the

distribution is given by

Sκ (x) =
λ

λ − 1 + expκ (δxα)
, (3.3)

with λ > 0. In the κ → 0 limit, the function (3.3) reduces to ordinary gen-
eralized logistic survival function Sκ (x) = λ/(λ − 1 + exp (δxα)), while
for x → ∞ it behaves according to Sκ (x) ∝ x− α

κ .

9 It is important to point out once again that the function expκ (x) arises naturally within the
theory of special relativity. The recently published review paper by Kaniadakis (2024) on
κ-statistical mechanics focuses on its foundations and collects the most important applica-
tions appeared in the literature in this field in recent years. The self-duality property of the
κ-exponential, that is, expκ (−x) expκ (x) = 1, which is identical to that of the ordinary expo-
nential, makes expκ (−x) a special deformation of the ordinary exponential. By sacrificing the
self-duality property, it is possible to define other deformations of the exponential function.
The best known in the literature is that of expq (−x) that leads to the non-extensive statisti-
cal mechanics that has found important applications in econophysics (e.g. Ribeiro, 2020, and
references within). Recall that given two arbitrary functions f (−x) and g (−x), it is always pos-
sible to correlate them so that f (−x) = g (T (−x)). If the transformation T (−x) is particularly
simple, one can imagine a possible relationship between the theoretical models based on the
functions f (−x) and g (−x). The transformation T (−x) that connects the functions expκ (−x)
and expq (−x) is already known (Kaniadakis, 2001) and has no physical relevance. Therefore,
κ-statistical mechanics, which arises in the framework of special relativity, and q-statistical
mechanics, which describes the so-called non-extensive phenomenology, are different theo-
ries, even though both predict statistical distributions that tend asymptotically to the Pareto
law. Rather, it is very interesting that the transformations T (−x) connecting expq (−x) to the
Burr-type XII or Sing-Maddala distribution and to the Dagun distribution are particularly sim-
ple, as they are a reparametrization or a power-law transformation. This emphasizes the very
close connection between the above statistical distributions, which have been used extensively
in econophysics.
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(iii) κ-deformed Weibull distribution; the special case corresponding to λ = 1
of the previous distribution is the κ-deformed Weibull distribution with
survival or reliability function given by

Sκ (x) = expκ (−δxα) . (3.4)

The κ-deformed Weibull distribution is the κ-deformed distribution that
undoubtedly has found extensive applications, particularly in economics
(Clementi, 2023; Clementi et al., 2008; Clementi & Gallegati, 2016, 2017;
Clementi et al., 2007, 2009, 2010, 2012a, 2012b; Clementi et al., 2016;
Clementi & Gianmoena, 2017) and in seismology (Hristopulos & Baxevani,
2022; Hristopulos, Petrakis, & Kaniadakis, 2014, 2015). Its cumulative distri-
bution function Fκ = 1 − Sκ writes as

Fκ (x) = 1 − expκ (−δxα) , (3.5)

while the related PDF fκ (x) = dFκ (x)
d x becomes

fκ (x) =
αδxα−1

√
1 + κ2δ2x2α

expκ (−δxα) . (3.6)

After noticing that

fκ (x) = hκ (x) Sκ (t) , (3.7)

with

hκ (x) =
αδxα−1

√
1 + κ2δ2x2α

, (3.8)

we deduce that hκ (x) represents the hazard function of the model.
The derivation with respect x of the survival function permits to obtain easily

its rate equation in the form

d Sκ (x)
d x

= −hκ (x) Sκ (x) . (3.9)

The integration of this first-order linear ordinary differential equation with the
initial condition Sκ (0) = 1 permits to write the survival function in the form

Sκ (x) = exp (−Hκ (x)) , (3.10)

where Hκ (x) is the cumulative hazard function, defined by means of the
integral

Hκ (x) =
x∫

0

hκ (u)d u. (3.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
44

63
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009446341


24 Econophysics

After performing the latter integral, the explicit form of the cumulative hazard
function is obtained as

Hκ (x) =
1
κ
arcsinh (κδxα) , (3.12)

which in the κ → 0 limit reduces to the standard Weibull cumulative hazard
function H0 (x) = H (x) = δxα.
A direct comparison between Equations (3.4) and (3.10), incorporating

the expression of the cumulative hazard function as provided in Equation
(3.12), yields the already established second representation of the κ-exponential
function, namely

expκ (x) = exp
(
1
κ
arcsinh (κx)

)
, (3.13)

so that the κ-Weibull survival function assumes the form

Sκ (x) = exp
(
−1
κ
arcsinh (κδxα)

)
. (3.14)

The remainder of the section is devoted to elucidating the main statistical
properties of the κ-deformed Weibull distribution, also known in econo-
physics literature as the κ-generalized distribution after Clementi et al. (2007).
This distribution, employing a marginally distinct parameterization from the
κ-deformed Weibull, where δ = β−α, offers a cohesive framework for describ-
ing real-world data, encompassing the power-law tails observed in empirical
distributions of income and wealth.10

The κ-generalized distribution has showcased remarkable efficacy and is fre-
quently viewed as a superior alternative to other commonly utilized parametric
models. Initially introduced in 2007 and subsequently refined in subsequent
years, this model traces its roots back to the realm of κ-generalized statistical
mechanics (Kaniadakis, 2001, 2002, 2005, 2009a, 2009b, 2013). It possesses
a bulk closely resembling that of the Weibull distribution, with an upper tail
that follows a Pareto power law for high levels of income and wealth. This
characteristic enables it to offer an intermediate perspective between the two
previously mentioned descriptions.

10 Econophysics has significantly contributed to the study of income and wealth distributions
by adopting a data-driven approach inspired by statistical physics, diverging from the tradi-
tional axiomatic methods of economics. This interdisciplinary effort introduced new models
to describe income andwealth distributions. Among these, Chami Figueira,Moura, andRibeiro
(2011) proposed a comprehensive model combining the Gompertz curve and Pareto’s law to
fit the entire income distribution. The Gompertz curve represents the majority of lower-income
individuals, while the Pareto law captures the wealthiest segment, with an exponential approx-
imation for middle incomes. Despite these advances, finding a universally accepted single
function remains an open challenge.
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3.2 The κ-Generalized Model for Income Distribution
3.2.1 Definitions and Fundamental Properties

AvariableX following a κ-generalized distribution, denotedX∼ κ-gen (α, β, κ),
is characterized by a PDF given by11

f (x;α, β, κ) = α

β

(
x
β

)α−1 expκ [− (x/β)α]√
1 + κ2 (x/β)2α

, x > 0, (3.15)

where α, β > 0 and κ ∈ [0,1). The cumulative distribution function (CDF) of
this distribution is formulated as

F (x;α, β, κ) = 1 − expκ [− (x/β)α] . (3.16)

Figure 3.1 visually depicts the properties of the κ-generalized PDF and
the complementary CDF (a.k.a. the survival function), referred to as 1 −
F (x;α, β, κ), under various parameter configurations. In each pair of plots, two
parameters remain constant while the third is adjusted to demonstrate its effect
on the distribution.
The constant β acts as a scale factor, representing the income dimension.

Thus, it incorporates the monetary unit, facilitating adjustments for inflation
and allowing for cross-country comparisons of income distributions expressed
in different currencies. Increases in β correspond to global rises in individual
income and average income levels.
On the other hand, the parameters α and κ are dimensionless and shape the

distribution. α primarily affects the region near the distribution’s origin, while
both α and κ influence the distribution’s upper tail. A higher κ leads to a thicker
upper tail, while increasing α narrows both tails and concentrates probability
mass around the distribution’s peak.
As κ approaches 0, the κ-generalized distribution tends towards the Weibull

distribution.12 This convergence is evident from

lim
κ→0

f (x;α, β, κ) = α

β

(
x
β

)α−1
exp [− (x/β)α] (3.17)

11 From now on, the subscript κ will be dropped in formulas unless it is essential for clarity.
For a comprehensive understanding of the properties of the κ-generalized distribution, readers
can refer to Clementi and Gallegati (2016) and the additional sources cited therein. A heuristic
derivation of the κ-generalized density, showcasing its natural emergencewithin the framework
of κ-deformed analysis, is presented in Clementi et al. (2016) and Landini (2016).

12 The Weibull distribution, primarily studied in engineering literature, is known as the stretched
exponential distribution in physics when α < 1. Although sporadic, there have been instances
of its use in economics for modeling income data. Some applications can be found in the works
of Atoda, Suruga, and Tachibanaki (1988), Bartels (1977), Bartels and van Metelen (1975),
Bordley, McDonald, and Mantrala (1996), Brachmann, Stich, and Trede (1996), Espinguet
and Terraza (1983), McDonald (1984), and Tachibanaki, Suruga, and Atoda (1997).
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Figure 3.1 κ-generalized PDF (top) and complementary CDF (bottom)
across different parameter values

Note: The complementary CDF is plotted on double-log axes to accentuate the right-tail
behavior of the distribution.
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Figure 3.1 (Cont.)
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Figure 3.1 (Cont.)

and

lim
κ→0

F (x;α, β, κ) = 1 − exp [− (x/β)α] . (3.18)

As x approaches 0 from the positive side, the distribution behaves like the
Weibull model. Conversely, for large x, it tends towards a Pareto distribution
of the first kind, characterized by a scale parameter k = β (2κ)− 1

α and a shape
parameter a = α

κ , expressed as
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f (x;α, β, κ) ∼
x→+∞

aka

xa+1
(3.19)

and
F (x;α, β, κ) ∼

x→+∞
1 −

(
k
x

)a
. (3.20)

Thus, it adheres to the weak Pareto law, as defined by Mandelbrot (1960).13

The closed-form expression for the quantile function, derived from Equation
(3.16), is

F−1 (u;α, β, κ) = β
[
lnκ

(
1

1 − u

)] 1
α

, 0 < u < 1, (3.21)

where lnκ (·) represents the deformed logarithmic function, defined as the
inverse function of (3.1), namely lnκ

[
expκ (x)

]
= expκ [lnκ (x)] = x. It is

expressed as

lnκ (x) =
xκ − x−κ

2κ
, x ∈ R+. (3.22)

Thus, random numbers from a κ-generalized distribution can be easily gener-
ated using the inversion method.
The median of the distribution is

xmed = F−1 (0.5;α, β, κ) = β [lnκ (2)]
1
α , (3.23)

and the mode occurs at

xmode = β

[
α2 + 2κ2 (α − 1)
2κ2

(
α2 − κ2

) ] 1
2α

×

√√√
1 +

4κ2
(
α2 − κ2

)
(α − 1)2[

α2 + 2κ2 (α − 1)
]2 − 1


1
2α (3.24)

if α > 1; otherwise, the distribution is zero-modal with a pole at the origin.
The rth raw moment of the κ-generalized distribution is given by

⟨xr⟩ =
∫ ∞

0
xrf (x;α, β, κ)d x = βr (2κ)− r

α
Γ
(
1 + r

α

)
1 + r

α κ

Γ

(
1
2κ − r

2α

)
Γ

(
1
2κ +

r
2α

) , (3.25)

13 Alternative formulations of the Pareto law were proposed by Kakwani (1980), expressed as
limx→+∞

xf(x)
1−F(x) = a, and by Esteban (1986), stated as limx→+∞

[
1 + xf ′(x)

f(x)

]
= −a. Given that

lim
x→+∞

xf (x;α, β, κ)
1 − F (x;α, β, κ) =

α

κ
= a and lim

x→+∞

[
1 +

xf ′ (x;α, β, κ)
f (x;α, β, κ)

]
= −α

κ
= −a,

it follows that the κ-generalized distribution also adheres to these alternate versions of the weak
Pareto law.
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where Γ (·) denotes the gamma function, and it exists for −α < r < α
κ .

Particularly,

⟨x⟩ = β (2κ)− 1
α

Γ

(
1 + 1

α

)
1 + 1

α κ

Γ

(
1
2κ − 1

2α

)
Γ

(
1
2κ +

1
2α

) (3.26)

represents the mean of the distribution, and

〈
x2
〉
− ⟨x⟩2 = β2 (2κ)− 2

α


Γ

(
1 + 2

α

)
1 + 2 κ

α

Γ

(
1
2κ − 1

α

)
Γ

(
1
2κ +

1
α

)
−

Γ

(
1 + 1

α

)
1 + κ

α

Γ

(
1
2κ − 1

2α

)
Γ

(
1
2κ +

1
2α

) 
2

(3.27)

denotes the variance.

3.2.2 Assessing Income Inequality through the κ-Generalized
Distribution

In economics, the notion of inequality traces its roots to Pareto’s early inves-
tigations (Pareto, 1895, 1896, 1897a, 1897b), which revealed that roughly 80
percent of total income/wealth was held by the top 20 percent. Subsequently,
Lorenz (1905) introduced the Lorenz curve, a widely employed method for
gauging income/wealth inequality. This curve compares the actual income
or wealth distribution with an equal distribution. Under perfect equality, the
Lorenz curve aligns with the diagonal of a unit square. Any deviation from this
diagonal signifies a more unequal distribution.
The Lorenz curve for a positive and transferable random variable X with

a CDF F (x) and a finite mean ⟨x⟩ =
∫
xdF (x) is defined as presented by

Gastwirth (1971)

L (u) = 1
⟨x⟩

u∫
0

F−1 (t)d t, u ∈ [0,1] . (3.28)

By employing the closed-form expression of the quantile functionF−1 (u) of the
κ-generalized distribution, the Lorenz curve can be represented as indicated by
Okamoto (2013)

L (u) = Ix
(
1 +

1
α
,
1
2κ

− 1
2α

)
, x = 1 − (1 − u)2κ , (3.29)

where Ix (·, ·) denotes the regularized incomplete beta function, defined in
terms of the incomplete beta function and the complete beta function, as
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Figure 3.2 Lorenz curves for two κ-generalized distributions

Ix (·, ·) = Bx(·, ·)
B(·, ·) . The curve exists if and only if α

κ > 1. Specifically, if Xi ∼
κ-gen (αi, βi, κi) for i= 1,2, the conditions for the Lorenz curves of X1 and X2
not to intersect are elaborated in Clementi et al. (2010) as

α1 ≥ α2 and
α1
κ1

≥ α2
κ2
. (3.30)

The Lorenz curves of two κ-generalized distributions X1 and X2 with param-
eters chosen according to (3.30) are illustrated in Figure 3.2. The depicted
curves indicate that X1 exhibits less inequality than X2, as the Lorenz curve
of X1 neither intersects nor falls below that of X2.
Economists have employed different statistical metrics to measure income

and wealth inequality. Among these, the coefficient introduced by Gini (1914)
is prominent. Starting from the general definition provided by Arnold and
Laguna (1977), the Gini coefficient associated with the κ-generalized distri-
bution is derived as

G = 1 − 2α + 2κ
2α + κ

Γ

(
1
κ − 1

2α

)
Γ

(
1
κ +

1
2α

) Γ ( 1
2κ +

1
2α

)
Γ

(
1
2κ − 1

2α

) . (3.31)

Employing the Stirling approximation for the gamma function and taking the
limit as κ → 0 in Equation (3.31), and after simplification, we obtain G =
1 − 2− 1

α , representing the explicit form of the Gini coefficient for the Weibull
distribution. Additionally, for κ → 0 and α = 1, the exponential distribution
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emerges as a special limiting case of the κ-generalized distribution with a Gini
coefficient of one half (Drăgulescu & Yakovenko, 2001).
Although the Gini coefficient is widely used, it assumes specific patterns of

income disparities across different distribution segments. It is most sensitive to
transfers around the middle of the distribution and less responsive to changes
among the extremely wealthy or impoverished (Allison, 1978). In contrast,
the generalized entropy class of inequality measures (Cowell, 1980a, 1980b;
Cowell & Kuga, 1981a, 1981b; Shorrocks, 1980) offers a range of indices sen-
sitive to inequality across various distribution segments. The formula for this
class of inequality indices in terms of the κ-generalized parameters is provided
by (Clementi et al., 2009)

GE(θ) = 1
θ2 − θ


(
β

m

)θ 
(2κ)− θ

α

1 + θ
α κ

Γ

(
1
2κ − θ

2α

)
Γ

(
1
2κ +

θ
2α

) Γ (1 + θ

α

) − 1

 , (3.32)

where θ , 0,1 and m = ⟨x⟩ denotes the mean of the distribution. This class
allows different forms of inequality measures depending on the value assigned
to θ, indicating the index’s sensitivity to income differences across various
distribution segments – a more positive or negative θ corresponds to greater
sensitivity of GE (θ) to income differences at the top or bottom of the distri-
bution. Notable limiting cases, derived when θ is set to 0 and 1, are the MLD
index

MLD = lim
θ→0

GE(θ) = 1
α

[
γ + ψ

(
1
2κ

)
+ ln(2κ) − α ln

(
β

m

)
+ κ

]
, (3.33)

where γ = −ψ (1) is the Euler-Mascheroni constant and ψ (z) = Γ′ (z) /Γ (z) is
the digamma function, and the Theil (1967) index:

T = lim
θ→1

GE(θ) = 1
α

[
ψ

(
1 +

1
α

)
− 1
2
ψ

(
1
2κ

− 1
2α

)
− 1
2
ψ

(
1
2κ
+

1
2α

)
− ln(2κ) + α ln

(
β

m

)
− ακ

α + κ

]
, (3.34)

where the former is more sensitive to changes in the middle of the distribution,
while the latter is more responsive to variations in the upper tail (Jenkins, 2009;
Sarabia, Jordá, & Remuzgo, 2017).14

14 Equation (3.32) encounters limitations when θ = 0 and θ = 1 due to the expression
(
θ2 − θ

)
becoming zero in both cases. To address this issue, we resort to l’Hôpital’s rule, which facili-
tates the evaluation of limits of indeterminate forms through derivatives. Expressions for these
specific values of θ are thus derived using this rule. For any GE (θ) index other than the cases
θ = 0, 1, straightforward derivation through substitution is feasible. For further elucidation on
this matter, refer to, for instance, Clementi and Gallegati (2016).
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Lastly, the inequality measures family introduced by Atkinson (1970) can be
derived from (3.32) using the relationship (Cowell, 2011; Jenkins, 2009)

A (ϵ) = 1 − [ϵ (ϵ − 1)GE (1 − ϵ) + 1] 1
1−ϵ , ϵ > 0, ϵ , 1, (3.35)

where ϵ = 1 − θ represents the inequality aversion parameter. As ϵ increases,
A (ϵ) becomes more sensitive to changes in lower incomes and less responsive
to alterations in top incomes (Allison, 1978). The limiting expression of (3.35)
is A (1) = 1 − exp(−MLD).15

3.2.3 Estimation

The estimation of parameters in the κ-generalized distribution can be achieved
through maximum likelihood estimation, providing estimators known for their
advantageous statistical properties (Ghosh, 1994; Rao, 1973). For a set of
independent sample observations x = {x1, . . . ,xn, }, the likelihood function is
expressed as

L (x; θ) =
n∏
i=1

f (xi; θ)wi =

n∏
i=1


α

β

(
xi
β

)α−1 expκ [− (xi/β)α]√
1 + κ2 (xi/β)2α


wi

, (3.36)

where f (xi; θ) represents the PDF, θ = {α, β, κ} denotes the vector of unknown
parameters, wi is the weight assigned to the ith observation, and n is the sample
size. This formulation leads to determining the partial derivatives with respect
to α, β, and κ for the log-likelihood function

l (x; θ) = ln [L (x; θ)] =
n∑
i=1

wi ln [ f (xi; θ)] , (3.37)

which translates into solving the following system of equations
n∑
i=1

wi
∂

∂α
ln [ f (xi; θ)] = 0, (3.38)

n∑
i=1

wi
∂

∂β
ln [ f (xi; θ)] = 0, (3.39)

n∑
i=1

wi
∂

∂κ
ln [ f (xi; θ)] = 0. (3.40)

15 All the measures discussed here depend on distributional moments, the existence of which
relies on conditions ensuring the convergence of relevant integrals. Specifically, the Gini
coefficient (3.31) is valid if and only if the distribution’s mean ⟨x⟩ =

∫ ∞
0 xf (x;α, β, κ)d x

converges, a requirement fulfilled only when α
κ > 1. As noted by Kleiber (1997), paramet-

ric income distribution models face similar challenges of existence as those encountered by
popular inequality measures.
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However, obtaining explicit expressions for the maximum likelihood estima-
tors of the three κ-generalized parameters poses a challenge due to the absence
of feasible analytical solutions. Therefore, resorting to numerical optimization
algorithms becomes imperative to tackle the maximum likelihood estimation
problem.

3.2.4 Utilizations of κ-Generalized Models in Analyzing
Income and Wealth Data

Over the past two decades, the κ-generalized model has found extensive
application in analyzing income and wealth data across various real-world
contexts.
The initial investigation, led by Clementi et al. (2007), scrutinized household

incomes in Germany, Italy, and the United Kingdom during 2001–2002. Their
study revealed a notable agreement between the model and empirical distribu-
tions across all income tiers, particularly within the intermediate range where
deviations were noted when using the Weibull model and pure Pareto law for
interpolation.
Subsequent studies extended the application of the κ-generalized distribution

to Australian household incomes in 2002–2003 (Clementi et al., 2008) and US
family incomes in 2003 (Clementi et al., 2008, 2009). In both instances, the
model provided a comprehensive depiction of the income spectrum and yielded
accurate estimations of inequality measures, such as the Lorenz curve and Gini
coefficient.
Comparative analyses, pivotal for assessing relative performance, were also

undertaken. For example, Clementi et al. (2010) examined household income
distributions in Italy spanning from 1989 to 2006. Their results showcased the
superior performance of the κ-generalized model over three-parameter com-
petitors, such as the Singh–Maddala and Dagum type I distributions, except
for the GB2 distribution, which features an additional parameter. Similar eval-
uations were conducted for household income datasets from Greece, Germany,
the United Kingdom, and the United States, demonstrating the superiority of
the κ-generalized model, particularly in modeling the right tail of the data
(Clementi, 2023; Clementi et al., 2012a). Additionally, Clementi and Gallegati
(2016) concluded that the κ-generalized distribution offered a superior fit to the
data and more precise estimates of income inequality compared to alternatives,
leveraging household income data from 45 countries extracted from the LIS
Database.
The application of the κ-generalized distribution extends to examining pecu-

liarities within survey data on net wealth, defined as gross wealth minus total
debt (Clementi & Gallegati, 2016; Clementi et al., 2012b). These datasets often
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feature significant occurrences of households or individuals with either null or
negative wealth. The model for wealth distribution, based on the κ-generalized
distribution, comprises a mixture of an atomic and two continuous distribu-
tions. The atomic distribution caters to economic units with zero net worth,
while negative net worth data are described by a Weibull function. Conversely,
positive net worth values are characterized by the κ-generalized model out-
lined in Equation (3.15). Analyzing US net worth data from 1984 to 2011
(Clementi et al., 2012b), the κ-generalized mixture model for wealth distribu-
tion demonstrated remarkable accuracy, surpassing finite mixture models based
on the Singh–Maddala and Dagum type I distributions for positive net worth
values. A similar examination carried out by Clementi and Gallegati (2016)
explored net wealth data from nine distinct countries.

4 Modeling Income Data Using the κ-Generalized Distribution
In the following, we explore the ability of the κ-generalized model in describ-
ing real-world income distributions. Initially, we present the outcomes of fitting
the κ-generalized distribution to LIS income data, demonstrating its accuracy
in representing real-world data. Subsequently, we assess the performance of
the κ-generalized distribution against alternative parametric models proposed
in the literature for income distribution. These models are applied to all avail-
able national datasets within the income micro-database currently utilized.
As previously noted in Section 2.4 of this Element, the statistical analyses
presented here are based on LIS microdata updated in March 2024, incorpo-
rating additional datasets into the database and thereby broadening the scope
of distributions that can be analyzed.

4.1 Results of Fitting to Empirical Distributions
Figures 4.1–4.4 illustrate the outcomes of fitting the κ-generalized model to
empirical income data, reflecting the household income distribution in key
countries categorized into the four groups discussed in Section 2.4.1: the United
States, emblematic of the Anglo-Saxon countries group; Germany, represent-
ing the Western European countries group; Italy, representing the Southern
European countries group; and Sweden, representing the Northern European
countries group. These four cases correspond to the latest available data years
for the respective countries within the LIS Database, specifically 2022 for the
United States, 2020 for Germany and Italy, and 2021 for Sweden.
The best-fitting parameter values were determined using maximum likeli-

hood estimation, as discussed in Section 3.2.3. This yielded the parameter
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Disposable household income
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Figure 4.1 The κ-generalized distribution fitted to household income data for
the United States in 2022

Note: The solid line depicts the κ-generalized model, which fits the data across the
entire income spectrum, from low to high incomes, including the middle-income range.
This model is contrasted with the Weibull (dashed line) and Pareto power-law (dotted
line) distributions. The complementary cumulative distribution is plotted on a double-
log scale, emphasizing the distribution’s behavior in the right tail. The Lorenz curve
plot compares the empirical and theoretical curves, where the solid gray line represents
the Lorenz curve of a society with equal income distribution. The Q–Q plot of sample
percentiles versus theoretical percentiles of the fitted κ-generalized model shows an
excellent fit, with corresponding percentiles closely aligned along the 45-degree line
from the origin.
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(d) Q–Q plot

Figure 4.1 (Cont.)

estimates shown in Table 4.1. The very small errors indicate precise param-
eter estimation. By comparing the observed and fitted probabilities in panels
(a) and (b) of the figures, it becomes apparent that the κ-generalized distri-
bution holds great potential for accurately describing the data across their
entire range, from the low-to-medium income region to the high-income Pareto
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(b) Complementary cumulative distribution

Figure 4.2 The κ-generalized distribution fitted to household income data for
Germany in 2020

Note: See note to Figure 4.1.
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Figure 4.2 (Cont.)
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(b) Complementary cumulative distribution

Figure 4.3 The κ-generalized distribution fitted to household income data for
Italy in 2020

Note: See note to Figure 4.1.
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Figure 4.3 (Cont.)
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(b) Complementary cumulative distribution

Figure 4.4 The κ-generalized distribution fitted to household income data for
Sweden in 2021

Note: See note to Figure 4.1.

power-law regime, encompassing the intermediate region where a clear devia-
tion is evident when using two different curves.
Panel (c) of the same figures displays the empirical data points for the

Lorenz curve, overlaid with the theoretical curve derived from Equation (3.29)
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Figure 4.4 (Cont.)

using the parameter estimates in place of α and κ. This curve is represented
by the solid line in the plots and exhibits an exceptional fit to the data.
Additionally, the plots juxtapose the empirical Lorenz curve with the theoret-
ical curves associated with the Weibull and Pareto distributions, respectively
defined as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
44

63
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009446341


44 Econophysics

Table 4.1 Estimated κ-generalized parameters for selected LIS country
datasets

Country Year α β κ

Germany 2020
2.579 30,999.950 0.735
(0.028) (161.972) (0.020)

Italy 2020
2.076 18,634.850 0.569
(0.030) (159.347) (0.026)

Sweden 2021
2.564 351,933.240 0.619
(0.031) (2,104.757) (0.022)

United States 2022
1.790 56,138.910 0.636
(0.009) (189.766) (0.009)

Note: Estimated standard errors in parentheses.

lim
κ→0

L (u) = P
(
1 +

1
α
,− ln (1 − u)

)
, (4.1)

where P (·, ·) denotes the lower regularized incomplete gamma function, and

lim
x→∞

L (u) = 1 − (1 − u)1− 1
a . (4.2)

As evident, these curves capture only a fraction of the overall narrative.
The linear development observed in the quantile–quantile (Q–Q) plot of

sample percentiles against the fitted κ-generalized distribution, along with its
limiting cases, depicted in panels (d) of Figures 4.1 through 4.4, confirms the
validity of the model. It also highlights that theWeibull and Pareto distributions
offer only partial and incomplete descriptions of the data.
To indirectly evaluate the precision of parameter estimation, we computed

predicted values for mean and median disposable household income, along
with two inequality measures: the Gini coefficient and the Atkinson coeffi-
cient, where the latter’s inequality aversion parameter was set to 0.5 and 1.
These computations entailed substituting the estimated parameters into the rel-
evant expressions detailed in Sections 3.2.1 and 3.2.2. The results of these
calculations are shown alongside their respective empirical counterparts in
Figure 4.5 (for mean and median values) and Figure 4.6 (for inequality mea-
sures).16 The empirical data were obtained from statistics provided by LIS staff
under the LIS Inequality and Poverty Key Figures for the countries and years
considered.17

16 Here, we consider the entire time span for which data for the four countries under consideration
are available in the LIS Database.

17 The full set of LIS Inequality and Poverty Key Figures is accessible in an Excel workbook,
which can be downloaded from www.lisdatacenter.org/data-access/key-figures/.
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(a) Germany
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(b) Italy
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Figure 4.5 Observed mean and median values of disposable household
income compared with the predicted values based on the κ-generalized model
Note: To directly compare absolute monetary values across different LIS datasets, mean
andmedianmonetary values have been converted into 2017USDPPPs by dividing them
by the corresponding year’s LIS PPP, which combines CPI (Consumer Price Index) and
PPP (Purchasing Power Parity) deflators to compare real amounts across countries and
over time.
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(d) United States

Figure 4.5 (Cont.)

As can be observed, the predictions derived from the κ-generalized distribu-
tion are largely encompassed by the confidence intervals constructed around the
empirical values in the vast majority of cases.18 This confirms the remarkable

18 In the figures, the vertical bars denote symmetric 95 percent normal-approximation confidence
intervals for the empirical values of the statistics, calculated using the bootstrap resampling
method with 999 replications.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
44

63
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009446341


The κ-Statistics and Income Distribution Analysis 47
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Figure 4.6 Observed Gini and Atkinson indices of disposable household
income compared with the predicted values based on the κ-generalized model

agreement between the model and the sample observations. Furthermore, the
agreement between the estimates derived from the κ-generalized distribution
and the sample values of the considered statistics remains excellent even when
considering their temporal trend. Indeed, as shown in Table 4.2, the correlation
coefficients between the time series of the considered statistics calculated from
the data and those obtained from the estimation of the κ-generalized model are
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(d) United States

Figure 4.6 (Cont.)

close to unity and all highly significant (the corresponding p-value is less than
0.001 in all cases).
The good performance of the κ-generalized distribution can also be appre-

ciated by considering its ability to replicate the temporal trend of the Zanardi
asymmetry index. As shown in Figure 4.7, the temporal pattern of the predicted
Zanardi index values closely mirrors that of the corresponding empirical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
44

63
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009446341


The κ-Statistics and Income Distribution Analysis 49

Table 4.2 Correlation between selected distributional statistics computed
from the data and the corresponding estimates implied by the fitted

κ-generalized model

Statistic
Country Time span Mean Median G A (0.5) A (1)

Germany 1973–2020
0.999 0.997 0.992 0.969 0.974
(0.000) (0.000) (0.000) (0.000) (0.000)

Italy 1977–2020
0.999 0.997 0.988 0.973 0.982
(0.000) (0.000) (0.000) (0.000) (0.000)

Sweden 1975–2021
1.000 1.000 0.998 0.990 0.988
(0.000) (0.000) (0.000) (0.000) (0.000)

United 1963–2022
0.999 0.999 0.985 0.962 0.980
(0.000) (0.000) (0.000) (0.000) (0.000)

Note: Values in parentheses denote p-values for testing whether the correlation coeffi-
cient is statistically significant.

estimates calculated from the sample data and discussed in Section 2.4.1
of this Element.19 The correlation coefficient values between the empirical
Zanardi index and the corresponding estimates from the κ-generalized model,
as presented in Table 4.3, corroborate the findings from the visual examination
of the figure: all correlation coefficients indeed indicate a strong association
between these series, being highly significant with p-value lesser than 0.001 in
all cases.

4.2 Comparison of Alternative Income Parametric Models
In this section, we present comparisons of the performance between the
κ-generalized distribution and other parametric models introduced in exist-
ing literature. Specifically, we evaluate the κ-generalized model’s ability to
approximate empirical income distributions against the three-parameter Singh–
Maddala (Singh & Maddala, 1976) and Dagum type I (Dagum, 1977) func-
tional forms. These models are characterized, respectively, by the following
probability densities

f (x; a,b,q) = aqxa−1

ba [1 + (x/b)a]1+q
, x > 0, a,b,q > 0, (4.3)

19 Figure 4.7, which considers the same countries and time intervals as the analysis presented
in Section 2.4.1, does not display the empirical estimates of the Zanardi index to avoid over-
crowding the graphs. Zanardi index estimates derived from the κ-generalized distribution were
obtained through numerical approximation of areas under the Lorenz curve expressed in the
Gini coordinate system (see e.g. Clementi et al., 2019, and references therein).
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Figure 4.7 The Zanardi asymmetry index based on the κ-generalized model
Note: The horizontal line represents the zero reference line for the Zanardi index.
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Figure 4.7 (Cont.)

f (x; a,b,p) = apxap−1

bap [1 + (x/b)a]p+1
, x > 0, a,b,p > 0. (4.4)

Kleiber and Kotz (2003) offer analytical expressions for distribution functions,
moments, and tools for inequality measurement, such as the Lorenz curve
and the Gini coefficient. Additionally, Chotikapanich, Griffiths, Hajargasht,
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Table 4.3 Correlation between the implied and sample estimates of the
Zanardi asymmetry index

Country Time span Correlation p-value

Canada 1990–2019 0.991 0.000
Denmark 1992–2016 0.967 0.000
France 1990–2018 0.641 0.001
Germany 1990–2019 0.895 0.000
Italy 1991–2020 0.975 0.000
Norway 1991–2021 0.976 0.000
Spain 1990–2019 0.980 0.000
Sweden 1992–2021 0.927 0.000
United Kingdom 1990–2021 0.927 0.000
United States 1990–2021 0.853 0.000

Note:The p-value is for testingwhether a correlation coefficient is significantly different
from zero.

Karunarathne, and Rao (2018) and Jenkins (2009) provide formulas for
generalized entropy measures of the GB2 distribution, from which the
Singh–Maddala and Dagum versions can be readily derived.20

Our comparisons involve all country datasets included in the LIS Database
after the March 2024 update, except for those that are excluded from the calcu-
lation of LIS Inequality and Poverty Key Figures. The total number of income
distributions considered amounts to 858. For space reasons, maximum likeli-
hood estimates for the parameters of the three models under consideration are
not presented here but are available upon request.
Given that a “good” model of income distribution should not only accurately

capture the shape of empirical distributions but also closely align with them in
a manner consistent with economic welfare considerations, we assess the per-
formance of the three scrutinized models by analyzing the accuracy of selected
distributional statistics implied by parameter estimates. These statistics include:
the mean; the Gini index, G; the mean logarithmic deviation, MLD; the Theil
index, T; the Atkinson index with the inequality aversion parameter set to 1,
A (1). For each examined model, the accuracy of predictions regarding these

20 Let X be a random variable following the generalized beta distribution of the second kind
(GB2) with parameters a, b, p, and q, denoted as X ∼ GB2 (a, b, p, q). The Singh–Maddala
distribution arises as a special case of the GB2 distribution when p = 1, while the Dagum type
I distribution emerges when q = 1. For further insights into other special cases, refer to Kleiber
and Kotz (2003) and McDonald (1984).
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Figure 4.8 Percentage of occurrences in which the Singh–Maddala, Dagum
type I and κ-generalized models achieve the lowest absolute percentage error
between predicted values for key distributional summary measures and their

sample counterparts

statistics is determined by computing the absolute percentage error using the
formula

APE =
|P − A|

A
× 100. (4.5)

Here, P represents the predicted values and A represents the actual sample
estimates.
The results are summarized in Figure 4.8, which illustrates the percentage of

cases where each model achieves the lowest APE for the distributional statis-
tics under consideration. The κ-generalized distribution consistently exhibits a
closer match between implied and sample estimates of the mean compared to
the Singh–Maddala and Dagum type I models. Conversely, the Gini coefficient
estimates are often more accurate for the latter models than for the compet-
ing κ-generalized distribution. Therefore, while the estimation procedure of the
κ-generalized parameters appears to have generally preserved the mean char-
acteristic across most analyzed country datasets, it has often poorly modeled
intra- and/or inter-group variation. However, when examining income dispar-
ities across different parts of the income distribution, the κ-generalized model
yields relatively more accurate estimates than its competitors for the mean log-
arithmic deviation, the Theil index, and the Atkinson inequality measure A(1).
Given that theMLD index is sensitive to differences in middle incomes, while
the T andA(1) indices aremore attuned to variations at the upper and lower ends
of the income distribution respectively, these findings consistently support the
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κ-generalized model’s closest approximation to the income distribution shape
in a significant number of cases.

5 Conclusion
The κ-generalized distribution model was originally proposed by Kaniadakis
(2001) within the context of developing a relativistic interpretation of statistical
mechanics for kinetic particles. Since then, it has garnered significant atten-
tion in the field of economics, particularly through the works of Clementi et
al. (2007, 2008, 2009, 2010, 2012a, 2012b). Notably, in the realm of income
and wealth distribution analysis, Clementi and Gallegati (2016) provide a
comprehensive reference on this topic.
This probabilistic model defines a new family of distributions character-

ized by some real parameters θ, indicated by K (θK). It includes either the
exponential family E (θE) and the power-law family P (θP). It grasps either
concentration phenomena about the expected value and inequality induced by
the tails. This is due to the fact that, beyond numerical transformations of data,
this model is based on functional deformations of the limited and finite sup-
port X ⊂ R of a positive and transferable quantity for which the probability
field is not isotropic. Differently said, for a given positive-transferable quan-
tity X and a finite sample Ωn = {ω} of n observation units, this model well
describes the distribution of masses X(ω) ∈ X as if their order of magnitude
were able to deform the shape of the probability field I = [0,1] mainly on the
right tail, where few observations far from the expected value weigh more than
the majority on the left side fairly below the mean. The κ-generalized man-
ages such quantities that behave strangely:21 that is, cases where below a given
threshold ξ ∈ X the quantity follows the probabilistic principles of the expo-
nential family, i.e., when X (ω) ≤ ξ, while beyond it the quantity follows the
probabilistic principles of the power-law family, that is, when X (ω) > ξ.
The superior capability of the κ-generalized model in describing positive-

transferable quantities, which arise from countless repeated interactions among
diverse individuals, such as exchanging portions of a given endowment like
income or wealth, stems precisely from its relativistic nature. This charac-
teristic underscores that the probabilistic principles governing such quantities
vary across their spectrum of values. This differentiation, akin to a weak anal-
ogy with Einstein’s special relativity, underpins the κ-generalized model’s
ability to shape the probability landscape significantly, particularly impacting
concentration and inequality measures.

21 For the mathematics of strange quantities, see Landini (2016).
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Conceptually, this can be illustrated as follows: within the observation units
ω ∈ Ωn, those where X (ω) ≤ ξ exhibit bosonic behavior, akin to particles not
subject to an exclusion principle. Here, many different individuals may possess
similar levels of wealth within the range [0, ξ] ⊂ X, implying X (ω) ∼ E (θE).
Conversely, observations where X (ω) > ξ display fermionic behavior, adher-
ing to an exclusion principle. In this regime, only a few individuals may attain
similar levels of wealth within the interval (ξ,+∞) ⊂ X. Although bosonic-like
incomes are prevalent while fermionic-like ones are rare, the latter typically
accumulate the majority of wealth compared to the former.
While it is commonly assumed that the scenario described above is typical,

exceptions do exist. Indeed, it is a matter of record that a fermion-like recipient
such as Elon Musk may possess more wealth than a boson-like individual, like
many of us, and that there are generally more bosons than fermions. However,
there are instances, be it in certain countries or at different times within the
same country, where the rich-fermions exhibit greater heterogeneity than the
poor-bosons, or vice versa.
When the fermions demonstrate greater heterogeneity in wealth compared

to the poor-bosons, concentration on the affluent side of the distribution sur-
passes that on the impoverished side, denoted as Gr > Gp. This situation
arises when there are more pathways to wealth than to poverty, characterizing
the top-inequality scenario identifiable through the Zanardi index of inequal-
ity. Specifically, in cases where the asymmetry index of the Lorenz curve is
positive, Z > 0.
Conversely, in scenarios where the bosons are more heterogeneously impov-

erished than the rich-fermions are wealthy, concentration on the impoverished
side of the distribution outweighs that on the affluent side, denoted asGp > Gr.
This circumstance occurs when there are more avenues to poverty than to
wealth, delineating the bottom-inequality case discernible through the Zanardi
index, which reveals a negative asymmetry, Z < 0, of the associated Lorenz
curve.
Considering this perspective, the Zanardi asymmetry index of the Lorenz

curve emerges as a fitting measure of inequality for several reasons. Firstly, the
Z index aligns with the econophysics interpretation of the κ-generalized proba-
bilistic model, which capitalizes on the differentiated concentrations of bosons
and fermions to effectively model distributions of positive-transferable quanti-
ties such as income and wealth. This alignment underscores its superiority over
alternative models in capturing the nuances of wealth distribution.
Secondly, the Z index possesses the capability to identify distributional

imbalances across both space and time, a feature unmatched by any other index,
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including the renowned Gini index, which is confined solely to assessing the
overall concentration of the distribution.
Thirdly, the Z index remains robust for space-time comparisons, even in

scenarios involving intersecting Lorenz curves. In contrast, traditional mea-
sures like the Gini index may yield inaccurate results in such cases, as they
disregard the directional aspects of inequality stemming from imbalances in
concentration between rich fermions and poor bosons.
In conclusion, this Element presents two significant analytical findings

within the framework of econophysics theory, bolstered by empirical estimates
drawn from a comprehensive and up-to-date database encompassing countries
worldwide across various time periods.
Firstly, this Element establishes compelling evidence supporting the suita-

bility of the κ-generalized model for fitting distributions of strange quantities.
These quantities, representing positive-transferable assets, arise from the intri-
cate interactions among heterogeneous agents within a complex economic
system, exchanging portions of their endowments. Through empirical analysis,
it becomes evident that the κ-generalized effectively captures the dynam-
ics of such distributions, offering a robust framework for understanding the
underlying mechanisms.
Secondly, this Element provides clear insights into the Zanardi asymmetry

index of the Lorenz curve, demonstrating its efficacy as the most appropri-
ate measure of inequality for strange quantities such as income and wealth.
By offering a comprehensive interpretation, it underscores the importance of
this index in accurately quantifying and assessing the disparities within these
economic quantities.
In summary, these findings not only contribute to advancing our understand-

ing of economic systems from a physics-inspired perspective but also offer
practical insights into effectively modeling and measuring the distribution and
inequality of vital economic resources.
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