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SUMMARY

Respiratory syncytial virus (RSV) is the most common cause of documented viral respiratory

infections, and the leading cause of hospitalization, in young children. We performed a

retrospective time-series analysis of all patients aged <18 years with laboratory-confirmed RSV

within a network of multiple affiliated academic medical institutions. Forecasting models of

weekly RSV incidence for the local community, inpatient paediatric hospital and paediatric

intensive-care unit (PICU) were created. Ninety-five percent confidence intervals calculated

around our models’ 2-week forecasts were accurate to ¡9.3, ¡7.5 and ¡1.5 cases/week for the

local community, inpatient hospital and PICU, respectively. Our results suggest that time-series

models may be useful tools in forecasting the burden of RSV infection at the local and

institutional levels, helping communities and institutions to optimize distribution of resources

based on the changing burden and severity of illness in their respective communities.
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INTRODUCTION

In the USA, respiratory syncytial virus (RSV) is the

most common cause of documented viral respiratory

infections, and the leading cause of hospitalization,

in young children [1, 2]. Caring for infants and children

with RSV places a substantial burden on resources

in both the outpatient and inpatient settings [3].

Children with risk factors, such as chronic lung dis-

ease, congenital heart disease and neuromuscular

impairment, are at increased risk of morbidity and

mortality from RSV infection [4–7].

The increased availability of highly sensitive and

specific methods for the detection of viral pathogens,

such as immunochromotography, direct fluorescent

antibody, shell vial culture and polymerase chain

reaction testing, has improved our ability to identify

and survey infectious agents. RSV demonstrates

a seasonal predominance in its presentation; how-

ever, it is difficult to predict with sufficient accuracy

to allow prospective planning the beginning and

end of the viral season as well as periods of peak in-

cidence [8].

In the USA, voluntary reporting to the National

Respiratory and Enteric Virus Surveillance System

(NREVSS) of the Centers for Disease Control and

Prevention is the main method by which RSV activity

is tracked at the national and regional levels [9]. RSV

Alert, an active surveillance programme created by

MedImmune, also tracks RSV activity at the national,

regional and local levels [10]. Both systems work with

a network of laboratories in nearly every state to
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provide up to date surveillance data of RSV incidence

[9, 10].

For decision makers at the local or institutional

levels, surveillance that distinguishes between mild

disease, which comprises most children who develop

RSV, from moderate to severe disease requiring hos-

pitalization or intensive care, could aid in the opti-

mization of resource allocation. Furthermore, having

a mechanism that not only tracks RSV activity but

also provides decision makers with accurate forecasts

of future activity might facilitate specific hospital or

clinic staffing positions and real-time alterations of

elective surgical schedules.

In recent years time-series modelling has been in-

creasingly employed as a useful tool in infectious

disease surveillance [11–14] and resource utilization

[14–17]. Relatively easy to construct, time-series

analysis allows not only for the modelling of time-

ordered data but also provides the capability to fore-

cast future observations. Model parameters can be

updated in real time to adjust to fluctuations in the

behaviour of a particular time-series and maximize

the model’s predictive abilities.

We hypothesized that a series of interrelated time-

series models could be constructed based on analysis

of historical data from our local community and

hospital that would effectively capture the periodicity

of RSV infection in children and forecast the inci-

dence of RSV within our local community, hospital

and paediatric intensive-care unit (PICU).

METHODS

The Institutional Review Board of Johns Hopkins

Hospital approved this study. We performed a retro-

spective cohort study identifying all patients aged

<18 years who underwent laboratory testing for RSV

at one of the Johns Hopkins medical institutions in

Maryland between 1 October 2002 and 30 September

2008. Laboratory-confirmed viral infection was de-

fined as identification of RSV from a nasopharyngeal

or endotracheal specimen by immunochromoto-

graphy, direct fluorescent antibody, tube viral culture

or shell vial culture. The date of infection was defined

as the date that the specimen was obtained. Multiple

positive specimens from an individual patient col-

lected within 28 days of one another were considered

a unique case.

The subset of patients admitted to the Johns

Hopkins Hospital Children’s Center, a 180-bed urban

academic children’s hospital with approximately 8400

admissions per year, and to the Johns Hopkins

Hospital PICU, a 26-bed PICU with approximately

1800 admissions per year, with laboratory-confirmed

RSV were identified. We designated three source

categories : community, inpatient and PICU. For each

sample, cases of RSV were aggregated by week

and partitioned into experimental (1 October 2002 to

30 September 2007) and validation (1 October 2007 to

30 September 2008) datasets.

For each sample, the experimental dataset was

plotted as a time-series and assessed for stationarity

using the Augmented Dickey–Fuller test for unit

roots. Type I error was set at 0.05. The autocorrelation

and partial autocorrelation functions were calculated

and plotted to aid in the initial identification of base

models. Multiple candidate models were constructed

relative to the base models based on the minimization

of Akaike’s Information Criterion (AIC) [18]. To

examine the relationship of RSV incidence between

the community setting (predominantly mild disease),

the inpatient setting (moderate to severe disease) and

PICU (severe disease), we constructed inpatient and

PICU models that included community incidence

variables. Maximum-likelihood testing was employed

to determine inclusion or exclusion of specific model

parameters at a significance level of 0.10. Maximum-

likelihood estimation was used to calculate model

parameter coefficients.

To assess the performance of each candidate model

at forecasting, 1- and 2-week forecasts were derived

and plotted against the corresponding validation

dataset. Root mean squared errors (RMSEs) of the

forecasts were calculated to derive 95% confidence

intervals about the forecasts. The models with the

lowest RMSE of 2-week forecasts were considered

optimal. All calculations were performed using Stata/

IC v. 10.1 (Stata Corporation, USA).

RESULTS

Community sample

A total of 1499 cases of laboratory-confirmed RSV

infection in children who underwent testing at one

of the Johns Hopkins medical institutions were in-

cluded in the analysis. Cases of RSV infection were

aggregated by week and partitioned into experimental

(1132 cases) and validation (367 cases) datasets.

Figure 1 displays the time-series plot of the exper-

imental dataset, which was stationary (Mackinnon

approximate P value <0.001).
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The plot of the autocorrelation function resembled

adampened sinewavewhile the partial autocorrelation

function cuts off at lag 8, suggesting an autoregressive

process of order 8 [AR(8)] as the base model. The

community base model can be expressed as:

Zt=wtx1Ztx1+wtx2Ztx2+wtx3Ztx4

+wtx5+wtx6Ztx6+wtx7Ztx7+wtx8Ztx8+at,

where Zt=community RSV cases for week t ; Ztxi=
community RSV cases for week t – i ; wtxi=weighted

coefficient for community RSV cases for week t – i ;

and at=white noise term for week t.

The AIC for the base model was 1291. An auto-

regressive model with significant lags at lag 1 week

(P<0.001), lag 2 weeks (P<0.001), lag 3 weeks (P=
0.04), lag 5 weeks (P<0.001), lag 6 weeks (P=0.04)

and lag 8 weeks (P=0.02) minimized the AIC (1288)

and RMSE (4.67) of 2-week forecasts. The optimal

community model can be expressed as:

Zt=0�5754Ztx1+0�4596Ztx2x0�1089Ztx3

+0�2054Ztx5x0�1191Ztx6x0�1106Ztx8+at,

where Zt=community RSV cases for week t ;

Ztxi=community RSV cases for week t – i ; and at=
white noise term for week t. Figure 2a displays the

plot of community incidence of RSV cases against

2-week forecasts.

The RMSEs for the 1- and 2-week forecasts of the

community model were 3.66 and 4.67, respectively.

Ninety-five percent confidence intervals calculated

around the community model’s forecasts were accu-

rate to¡7.32 cases/week for the 1-week forecasts and

¡9.34 cases/week for the 2-week forecasts. On average

for the validation time period, the true community

RSV activity was underestimated by 0.68 case/week

for the 1-week forecasts and by 1.08 cases/week for

the 2-week forecasts.

Inpatient sample

A total of 631 children with laboratory-confirmed

RSV infection required admission to the Johns

Hopkins Hospital Children’s Center. Cases of RSV

infection were aggregated by week and partitioned
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Fig. 1. Weekly incidence of respiratory syncytial virus
(RSV) in children for the Johns Hopkins medical insti-
tutions (community), Johns Hopkins Hospital Children’s

Center (inpatient) and Johns Hopkins Hospital paediatric
intensive-care unit (PICU) for 2002 to 2007.
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Fig. 2. Plots of (a) community incidence, (b) inpatient inci-

dence, (c) PICU incidence of RSV cases vs. model estimates,
forecasting 2 weeks into the future for 2005–2008.
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into experimental (499 cases) and validation (132

cases) datasets. Figure 1 displays the time-series plot

of the experimental dataset, which was stationary

(Mackinnon approximate P value <0.001).

The plot of the autocorrelation function resembled

a dampened sine wave while the partial autocorre-

lation function cuts off at lag 9, suggesting an auto-

regressive process of order 9 [AR(9)] as the base

model.

The AIC for the base model was 1010. Systematic

removal of parameters from the inpatient base model

did not minimize the AIC. Inclusion of a variable of

community RSV incidence at lag 1 week reduced the

AIC to 994. An autoregressive model with significant

lags at lag 1 week (P<0.001), lag 2 weeks (P<0.001),

lag 3 weeks (P<0.001), lag 6 weeks (P=0.04), lag 7

weeks (P=0.01), lag 8 weeks (P=0.03), lag 9 weeks

(P=0.02) and community lag 1 week (P<0.001)

minimized the AIC (991) and RMSE (3.75) of 2-week

forecasts.

The optimal inpatient model can be expressed as:

Xt=0�1873Xtx1+0�3721Xtx2+0�2017Xtx3

x0�1341Xtx6+0�1657Xtx7+0�1157Xtx8

x0�1536Xtx9+0�2494Ztx1+at,

where Xt=inpatient RSV cases for week t ; Xtxi=
inpatient RSV cases for week t – i ; Ztx1=community

RSV cases for week t – 1; and at=white noise term

for week t. Figure 2b displays the plot of inpatient

incidence of RSV cases against 2-week forecasts.

The RMSEs for the 1- and 2-week forecasts of

the inpatient model were 3.3 and 3.75, respectively.

Ninety-five percent confidence intervals calculated

around the inpatient model’s forecasts were accurate

to¡6.6 cases/week for the 1-week forecasts and¡7.5

cases/week for the 2-week forecasts. On average, for

the validation time period the true inpatient RSV ac-

tivity was overestimated by 1.11 cases/week for the

1-week forecasts and by 1.14 cases/week for the

2-week forecasts.

PICU sample

A total of 140 children with laboratory-confirmed

RSV infection required admission to the Johns

Hopkins Hospital PICU. Cases of RSV infection were

aggregated by week and partitioned into experimental

(113 cases) and validation (27 cases) datasets. Figure 1

displays the time-series plot of the experimental data-

set, which was stationary (Mackinnon approximate

P value <0.001).

The plot of the autocorrelation function resembled a

dampened sine wave while the partial autocorrelation

function cuts off at lag 9, suggesting an autoregressive

process of order 9 [AR(9)] as the base model.

The AIC for the base model was 623. Systematic

removal of parameters from the PICU base model did

not minimize the AIC. Inclusion of a variable of

community RSV incidence at lag 1 week reduced the

AIC to 574. An autoregressive model with significant

lags at lag 1 week (P<0.001), lag 9 weeks (P=0.06)

and community lag 1 week (P<0.001) minimized the

AIC (561) and RMSE (0.76) of 2-week forecasts.

The optimal PICU model can be expressed as:

Yt=0�1745Ytx1x0�1529Ytx9+0�0899Ztx1+at,

where Yt=PICU RSV cases for week t ; Ytxi=PICU

RSVcases forweek t – i ;Ztx1=communityRSV cases

for week t – 1; and at=white noise term for week t.

Figure 2c displays the plot of PICU incidence of RSV

cases against 2-week forecasts.

The RMSE for both the 1- and 2-week forecasts of

the PICU model was 0.76. Ninety-five percent confi-

dence intervals calculated around the PICU model’s

forecasts were accurate to ¡1.52 cases/week for both

the 1- and 2-week forecasts. On average for the vali-

dation time period, the true PICU RSV activity was

overestimated by 0.12 case/week for the 1-week fore-

casts and by 0.07 case/week for the 2-week forecasts.

DISCUSSION

The impact of RSV on resource utilization during

seasonal epidemics can be substantial in both the

outpatient and inpatient settings [3, 19]. Isolation

procedures, bed utilization, availability of human re-

sources (physicians, nurses, respiratory therapists) and

medical equipment (ventilators, nebulization systems)

are just a few of factors inherent to resource utiliz-

ation affected by the seasonal influx of patients with

RSV. Our identified models, derived from historical

data from our institution and local community pro-

duced accurate 1- and 2-week forecasts of RSV inci-

dence in our community, hospital and PICU. We

believe these models can be used prospectively to

anticipate and adjust, in real-time, resource allocation.

The current surveillance systems provided by

NVRESS and the RSV Alert programme provide

invaluable information in tracking RSV activity in

the USA. The data, however, is often aggregated over

large regional or metropolitan areas and does not

provide information regarding severity of illness.
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Our multi-tiered approach, while specific to our

community and institution, provides hospital leader-

ship with personalized data and forecasts to address

the changing burden on the institution.

RSV is an enveloped RNA paramyxovirus trans-

mitted predominantly through direct contact although

transmission through respiratory droplet can also

occur [8, 20]. While helpful in reducing the spread of

virus to other patients, in the hospital isolation pro-

cedures can impact resource utilization by limiting

nursing ratios and closing available beds [7]. Accurate

forecasting could help hospital leadership prepare for

changes in resource needs brought on by the demands

of a surge in viral respiratory admissions.

Our study has a number of limitations. Our model

is specific to a single community and institution and

we have no evidence to suggest that it can be gen-

eralized to other institutions or communities. Despite

the specificity of the model, our objective was to de-

sign models particular to our own community and

institution. While further work is required to assess

if similar models can be constructed for institutions

in other locales, our experience suggests that these

models work well at the local and institutional levels.

The possibility of reaching institutional bed ca-

pacity certainly exists especially during times of peak

respiratory viral illness incidence. Patients requiring

admission to the hospital or PICU but who are re-

ferred to other institutions during these capacity events

cause under-reporting of the true demand on the in-

stitution and have the potential to affect future fore-

casts. While we do not have specific information

on patients with RSV referred to other institutions

during high-capacity events, we surmise that the fre-

quency of these events is rare.

During periods of high incidence of other respirat-

ory viruses, namely influenza, children with mild viral

respiratory illness may be more likely to undergo

testing leading to the potential discovery of an in-

creased number of RSV cases at the community level.

For our period of study, there was no correlation be-

tween seasons with unusually high incidence of influ-

enza (e.g. 2003–2004) and the incidence of RSV at the

community level.

We used methods common in time-series analysis,

calculation of RMSE of forecasts, to compare our

candidate models. These methods are most helpful

when the loss associated with forecasting error is

symmetric, in other words, when underestimating the

true value is worth the same as overestimating the true

value. In our study, it can be argued that the costs

associated with underestimating RSV incidence are

greater than the costs associated with overestimating

incidence. Our optimal models for the inpatient hos-

pital and PICU, overestimated RSV incidence, on

average, by 1.14 and 0.07 cases/week, respectively.

Our optimal community model, while underesti-

mating RSV incidence on average, did so by only 1.08

cases/week.

Our results suggest that time-series models may

be useful tools in forecasting the burden of RSV in-

fection at the local and institutional levels, helping

communities and institutions to optimize distribution

of resources based on the changing burden and sev-

erity of illness in their respective communities.
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