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PERIODIC SOLUTION AND STABILITY PROBLEM 

Diliberto's mathematical theory (i) on the periodic surfaces originates from a conjecture that 
the existence of a family of periodic surfaces, which, if true, would establish the stability of the 
orbits and the validity of the algorithm for finding approximate solutions. The union of the 
trajectories through an invariant curve is called a periodic surface. 

The equations of motion for a dynamical system of two degrees of freedom, including the 
motion of an artificial satellite around the oblate Earth's gravitational field, are transformed to 

i + A@;(01( e2,ri,r2), 

(i = i , 2) 

where A = o corresponds to the undisturbed motion. A periodic surface of this system of 
equations is the graph of a pair of analytic functions 

defined for all (6lt 62), and for some neighbourhood of A = o, with period 2TT in 6t and such 
that, if pi = Si (rv r2, A), then the solution rt (<p), Oi(<p) taking on the initial values r{ ((p0) = pit 

0i(<Po) = ri satisfy 
rfo) = StiOfo), 62(<p), A] 

for —oo < <p < +oo. The torus which is an example of a periodic two-surface depends on 
two parameters p± and p2, the radii of its normal cross sections. The central mathematical 
problem is whether there exists a nested complete family of periodic two-surfaces when the 
perturbation parameter A is not zero. 

Diliberto et al. (2) described their expansion technique for finding the periodic surfaces, and 
a simple requisite condition which a co-ordinate system must satisfy so as to allow the possibility 
of such expansions and the determination of at least one co-ordinate system which satisfies the 
prerequisite condition. I t was shown that the energy integral has a simple form in terms of the 
co-ordinates used. From this it follows that, if one component of the surface is known to a 
given order, then the other component can be found to the same order directly from the energy 
integral. Diliberto et al. initiated numerical studies for the application of the theory to the 
study of the orbits of artificial satellites and gave the formulae for the approximate numerical 
solution. 

Thus they announced, for the case where the only term in the perturbation potential is the 
second zonal harmonic and is sufficiently small, the existence of the family of periodic orbits of 
arbitrary inclination, the existence of a quadruple family of periodic orbits of arbitrary eccen­
tricity, and the property that these two families plus that at zero inclination include all periodic 
orbits with common axial angular momentum with periods continuously approaching that of 
the corresponding Keplerian orbits as the perturbation tends to zero. 

For the motion of a satellite around an axially symmetric planet Haseltine (3) proved that 
there are three one-parameter families, in the sense that, if a value of the parameter is chosen, 
then the corresponding periodic orbit exists when the perturbation potential is small enough. 

Kyner (4) discussed the mathematical problem of the orbits about an oblate planet. He 
referred to the method of averaging for constructing a new set of approximating formulae, 
which cannot be a solution but have the novel feature of being accompanied by error estimates. 
This method of averaging is developed by Struble (5) independently of the more general theory 
developed by Bogoliubov and Mitropolski. The first-order formulae are free from the difficulties 
common to most general perturbation method as in the solutions at the critical inclination and 
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for small eccentricities. Thus Kyner proved the existence of periodic solutions after the fashion 
of the recent works of Cesari and Hale but by a method different from Diliberto's. It was shown 
that the only possible generating orbits are circular orbits of arbitrary inclination, orbits in the 
equatorial plane, and orbits at the critical inclination. Macmillan's classical paper is criticized. 

According to Diliberto (6), Krein studied linear differential equations with periodic co­
efficients and proved that there are certain Hamiltonian systems such that arbitrary periodic 
Hamiltonian perturbations of them have only stable motions. By Floquet's theorem this 
implies that in terms of a perturbation parameter the given Hamiltonian system is diagonalizable 
to a constant matrix whose roots are all purely imaginary. Diliberto proves that for a linear 
perturbation these characteristic roots are analytic in the parameter. This establishes the 
stability of the motion. 

Some time ago Siegel and Moser (7) discussed the stability of a motion of two degrees of 
freedom and obtained several elegant theorems. Kolmogorov and Arnold proved the existence 
of almost-periodic solutions of Hamiltonian systems. Moser (8) invented a new technique, 
which he called a smoothing operator, for constructing the solution of a non-linear differential 
equation by extending the usual iteration process of Picard. He then proceeded (9) to prove a 
criterion of stability of periodic solutions, and studied the perturbation theory for almost-
periodic solutions for undamped non-linear differential equations. Recently Moser (10) 
referred to the invariant-point theorem by Poincare and Birkhoff for the existence of periodic 
solutions, that is, by studying the area-preserving mappings of a ring-domain into itself. 
Moser (11) proved a theorem which guarantees the existence of closed invariant curves of such 
a mapping. Closed invariant curves correspond to almost-periodic solutions of the differential 
equation which generates the mapping, and are important for the study of stability of periodic 
solutions. 

Cronin (12), on the other hand, introduced the idea of topological degree for a criterion of 
stability of periodic solutions in the perturbation problems, which is identical with the 
criterion of Andronov and Witt on the van der Pol equations. 

Conley (13) proved the existence of some new long-period periodic solution in the plane 
restricted three-body problem. Auslander (14) and Seibert (15) considered the prolongation 
of orbits by his method of continuing the orbits beyond their omega limit sets in the sense of 
Birkhoff and generalized the stability in the sense of Liapounov. 

Choudhry (16) has discussed the existence of direct and retrograde symmetric periodic 
orbits, as referred to the rotating axes, in the restricted three-body problem in three dimensions. 
The periodic orbits obtained by analytic continuation from the generating periodic orbits touch 
the generating orbits, so that they correspond to the periodic solutions of Schwarzschilds's 
type. 

Huang (17), on the other hand, obtained a stability criterion of the periodic orbits in the 
restricted three-body problem based on the eigenvalues of a fourth order matrix. 

New classes of periodic orbits in the restricted three-body problem have been found by 
Aksenov (18) enclosing both of the finite mass bodies, and by Demin (19) in the vicinity of 
trajectories for the problem of two fixed centres with Thiele's variables, both according to 
Poincare's method. Krasinski (20) has developed a theory of double collision trajectories in the 
restricted three-body problem, symmetric and asymmetric, with Levi-Civita's regularization, 
similar to Poincare's theory of periodic orbits. Petrovskaya (21) has found the values of dis­
turbing masses and other characteristics which give the convergence of the series representing 
the periodic solutions of the planar restricted three-body problem. Volkov (22) has obtained 
symmetric periodic solutions for the three-body problem with finite dimensions as a continua­
tion of the works of Kondurar. Merman (23) proved the existence of almost-periodic solutions 
in the planar restricted three-body problem. 
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