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With the improvements of the observational technology for the new surveys the number of
asteroid detections is rapidly increasing. For this reason we must use very efficient methods to
compute orbits with these data. We have to identify observations taken in different nights as
belonging to the same asteroid. If we do not have an efficient algorithm for that, the unidentified
observation database can increase without control, and we risk to detect the same objects
multiple times.

For this problem we deal with very short arcs (VSAs) of asteroid observations. A VSA is
usually not enough to compute an orbit; however, by linear or quadratic interpolation, we can
compute an attributable A = (α, δ, α̇, δ̇) at the mean epoch of the observations, that is a vector
whose components are the topocentric angular position and velocity of the asteroid (Milani and
Gronchi 2010). To define an orbit we only need to know the topocentric radial distance ρ and
radial velocity ρ̇ of the observed body at that epoch.

The linkage problem consists of computing one or more preliminary orbits by using the infor-
mation encoded in two attributables. Among the different ways to deal with this problem, we
can consider the first integrals of Kepler’s motion to derive equations for this purpose (see Taff
& Hall 1977). An alternative procedure is the classical orbit determination method by Gauss
(1809), which uses three angular positions (α, δ) of the asteroid, typically belonging to three dif-
ferent VSAs. In this case the preliminary orbits are computed by solving a polynomial equation
of degree 8.
With modern telescopes the number N of observations per night is very large. This yields a
huge number of computations in the identification procedure. Using Gauss’ method for the
identification problem we have to solve O(N 3 ) polynomial equations. If instead we use a linkage
algorithm, we have to apply it O(N 2 ) times. Therefore, if we could find a polynomial equation
for the linkage problem with low degree, we would significantly decrease the computational
complexity of the problem.

With the first integrals of the two-body motion we can indeed write polynomial equations for
the linkage. Gronchi et al. (2010) used the conservation of angular momentum and energy to
write equations of degree 48. Subsequently, Gronchi et al. (2011) considered the Laplace-Lenz
vector projected along a suitable direction in place of energy, thus reducing to 20 the degree.

We present here a recent achievement with the first integrals approach (see Gronchi et al.
2015). By a combination of all the integrals we derive a polynomial equation of degree 9 in the
topocentric radial distance of the asteroid at the mean epoch of one of the two attributables.
More precisely, given two attributables A1 ,A2 at times t̄1 , t̄2 , we consider the algebraic system

c1 = c2 , L1 = L2 , E1 = E2 , (0.1)

where c,L, E are the expressions of the angular momentum, the Laplace-Lenz vector and the
energy. The indexes 1,2 refer to the epochs. System (0.1) is composed by 7 equations in the 4
unknowns (ρ1 , ρ2 , ρ̇1 , ρ̇2 ). We search for a polynomial system, consequence of (0.1), which leads
to a univariate polynomial equation with low degree.
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Figure 1. Intersection of the curves defined by q = 0 (black), p1 = 0 (light grey) and p2 = 0
(dark grey). The point (ρ1 , ρ2 ) = (0.0438, 0.2713), marked by an asterisk, represents the right
solution.

After elimination of ρ̇1 , ρ̇2 and some algebraic manipulations we are left with a system of 3
bivariate polynomials q = p1 = p2 = 0, which can be reduced to a system of two univariate
polynomials of degree 10, whose greatest common divisor has degree 9.

As a test case we consider the asteroid (101955) Bennu. We link 5 observations made on
September 11, 1999 together with 11 observations made on March 30, 2000. In Figure 1 we
show the curves q = p1 = p2 = 0 and the computed solution, after discarding non-real and
non-positive solutions.

We conclude by comparing the new method with the methods presented in Gronchi et al.
(2010, 2011) in terms of computational time. These algorithms were run 1000 times for a test
case with asteroid (99942) Apophis, using observations made in June and December 2004. We
found that the new algorithm, with a polynomial of degree 9, improves the performance by one
and two orders of magnitude with respect to the other methods, with polynomials of degree 20
and 48.
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