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Abstract

For Fredholm equations of the first kind with continuous kernels we investigate the uniform
convergence of a general class of regularization methods. Applications are made to Tikhonov
regularization and Landweber's iteration method.
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1. Introduction

It is well known that a Fredholm integral equation of the first kind, that is, an
equation of the form

(1) f k(s,t)x(t)dt = g ( s ) , a < s ^ b ,
"a

where k{-, •) is a square integrable kernel is ill-posed [5], i.e., the solution x does
not depend continuously (in the L2-sense) on the data g. Equation (1) may be
written abstractly as the operator equation
(2) Kx = g

where K is the compact linear integral operator on the Hilbert space L2[a, b]
generated by the kernel k( •, •).

In practical situations the data g results from measurement and consequently
only an approximate version gs satisfying

(3) ' l l * - *1<«.
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where S is a known error level, is available (|| • || refers to the L2-norm). By a
regularization method for (2) is meant a family {£%a}a>0 of continuous operators
and a parameter choice a = a(8) such that

s^x a s 8 - * 0

where x is the (unique) minimal norm solution of (2) (actually our results hold
true if (2) is least squares soluble and x is the minimal norm least squares
solution). A general class of regularization methods for operator equations in
Hilbert space may be constructed by setting @a = Ra(K)K* where AT* is the
adjoint of K, K = K *K and {Ra} is a family of continuous real valued functions
on [0,||A:||2] satisfying

(4) tRa(t) -» 1 as a -» 0 for each / > 0

and

(5) for all a > 0, t > 0.

Some general results, framed entirely within the context of Hilbert space, on the
convergence of such methods are presented in [1]. In this note we consider the
case of a continuous kernel and establish some corresponding results on uniform,
rather than mean, convergence.

2. General results

For notational convenience, we set

xa = Ra(K)K*g and xs
a = Ra(K)K*gs.

The convergence traits of these approximations depend upon the functions

and

[o, 0.

We state two basic results; proofs may be found in [1] (or [2]). Below, R(T) and
N(T) will designate the range and nullspace, respectively, of the operator T.

THEOREM 1. ||x - x

O(u(a,p)).

» 0 as a -» 0 and if x <= R(KV), then \\x - xa\\ =

THEOREM 2. ||xa - xs
a\\ < S^Cr(a).
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In each of the theorems above the norm is that induced by the Hilbert space
inner product, e.g., the L2-norm. In what follows we will denote the uniform norm
by II • Hoo, but continue to view K as an operator on L2[a, b\.

THEOREM 3. Suppose the kernel k is continuous on [a, b] X [a, b]. Ifx e R(K *),
then \\x — x j l^ —* 0 as a —» 0. Moreover, if x e R(KVK*) for some v > 0, then
II* - *JL = <>("(«. "))•

PROOF. Let ks(t) = k(t, s) and suppose x = K*w, where w e
Note that since the functions Ra are continuous, and hence are uniform limits

of polynomials, we have Ra(K)K* = K*Ra(K), where K= KK*. For any
s e [a, b], we then have

xo(*) - x(s) = Ra(K)K*g(s) - K*w(s)

= K*[Ra(K)Kx - w](s) = (ks,wa - w)
where (•, •) is the L2 inner product and wa = Ra(K)Kx.

By Theorem 1 (applied to K * rather than K), wa converges in mean to w, the
minimal norm solution of K*w — x. Remembering that k is continuous, we find
that \\xa — x\\x < M||wa - w|| -» 0 as a -» 0 for a suitable constant M.

If x(= R(K"K*), then x = K*w where w e R(K"). Therefore by Theorem 1
\\wa ~ WW = O(u(a< ")) a n d hence | |x a — x\\x = O(u(a, v)) as above.

We now deal with the case in which only approximate data gs satisfying (3) are
available and we suppose that the regularization parameter is a function of the
error level, say a = a(S) -* 0 as S -* 0.

THEOREM 4. Ifk is continuous andx e R(K*), then \\xa - xl\\x = O(r(a)S).

PROOF. AS in the previous proof, (xa - xl)(s) = (ks, za - zf) where za =
Ra(K)g and zf = Ra(K)gs. Therefore by (3) and the definition of r(a), we have
II*. - *fll. < Mr(a)8.

THEOREM 5. Ifk is continuous, x e R(K*) and 8 = O(l/r(a)), then \\x - xl\\x

-* 0 as 8 -» 0.

PROOF. By Theorem 3 we know that \\x — xa\\x -* 0 as a = a(5) -» 0. There-
fore it suffices to consider xa — xs

a. By Theorem 4, ||jca - x8
a\\x is bounded. Also,

for s, s' e [a, b]

K(s) - xs
a(s) - xa(s') + xs

a(s')\ = | ( ^ - k,, Ra(K)(g ~ gS))\
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and, as k(-, •) is uniformly continuous, {xa- x^} is a uniformly bounded
equicontinuous family.

Moreover, S^Jr(a) = 8r(a)/ }jr(a) -» 0 as 8 -> 0, since r(a) -» oo as a -» 0
(see [1], [2]). Therefore by Theorem 2, ||jca - JC*|| -> 0 as S -» 0, and it follows
that ||JC» - xf II -» 0 as 8 -» 0.

all oo

It should be stressed that the theorems above require that the approximate data
gs lies near g only in the L2-sense, but not in uniform norm.

3. Two examples

The most familiar example of a regularization method is Tikhonov regulariza-
tion in which Ra(t) = (a + /) x, i.e., xa = (a / + K)~1K*g. In this case Theo-
rem 5 specializes to give a result of Khudak [3].

COROLLARY 1. If k is continuous, x e R(K*) and a = O(8), then \\x - xl\\x

-» 0 as 8 -» 0.

For this method we have w(«, v) = a" for 0 < v < 1, and r(a) = I/a (see [1],
[2]). Using Theorems 3 and 4 we obtain

COROLLARY 2. If k is continuous and x e R(K"K*) for some v with 0 < *» < 1,
then \\x - XJIB, = O(a'). Moreover, if a = C81/("+1>, /Aen ||x - xfl^ =

As a second instance of the theory we consider Landweber's iteration method
[4]. In this method we assume \\K\\ < -Jl, which is no restriction as (2) may be
multiplied by a constant to make it so. The iteration is given by

xo = K*g, xn+1 = (I-K)xn + K*g

and the role of a is assumed by the iteration number n (more precisely 1/n). In
this case we have

* » ( 0 = E ( l " 0 y . r(«) = « + l, U(n,p) = (n + i y (v > 1).
7 = 0

We then obtain the following generalization of a result of Landweber.

COROLLARY 3. / / k is continuous and x e R(K*), then \\x - xn||0O -> 0 as
n -* oo. Moreover, if x e R(K"K) for some v > \, then \\x — xn\\x = O(n~").
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For the case of imprecise data we have

COROLLARY 4. / / k is continuous, x e R(K*) and n = n(8) and satisfies
S = O(\/n), then \\x - xs

n\\x -» 0 as S -» 0. Moreover, if x <= R(K"K*)for some
[8-1A" + 1)], then \\x - x*^ = O(S'A" + 1)).

In particular we see that if x is "regular" enough, i.e., x e R(K'K*) for v large
enough, then a uniform order of accuracy arbitrarily near to the optimal order
O(S) can be attained by Landweber's iteration. Such regularity generally implies
a certain order of smoothness for x and, in the case of Volterra kernels,
satisfaction of certain boundary conditions. Finally we note that saturation
results for Tikhonov regularization show that nearly optimal orders of conver-
gence are not possible for that method (see [1]).
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