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ABSTRACT. The fine structure of the acoustic and gravity mode 
multiplets of the Sun have been analyzed to infer the internal rotation 
of the Sun and upper limits of the internal magnetic field. Observed 
fine structure for 137 multiplets has been obtained (Hill T984b, 1985a, 
1985b) and the fine structure has been examined for dependence on the 
angular order, m, of the modes. The inferred angular velocity 
distribution, together with the estimated upper limits on the internal 
magnetic fields, yields a gravitational quadrupole moment, J^, of 
*7.7 x 10 . This result is consistent with the result obtained by Hill, 
Bos and Goode (1982) and has important implications for planetary tests 
of theories of gravitation. 

1• INTRODUCTION 

One of the most important tests of theories of gravitation concerns the 
rates of perihelion precession of planetary orbits, particularly 
Mercury1s orbit. In the parameterized post-Newtonian (PPN) 
representation of the metric, the predicted advance Au> of the perihelion 
per orbital period, corregtigg for Newtonian perturbations from other 
planets, is 6irGMAp/[a(1-e )c ], where X p is generally given as 

2 2 
X n = 1(2 + 2Y - 0) + — — J, , (1) 

P 5 2GMa(1 - e) d 

where M and R are the mass and radius of the Sun, G is the gravitational 
constant, a is the semi-major axis, e is the eccentricity of the 
planetary orbit, c is the speed of light, 8 and Y are Eddington-
Robertson parameters of the PPN formalism, and J 2 is the gravitational 
quadrupole moment of the Sun. The value of the term (2 + 2Y - G)/3 does 
vary from one general relativistic theory to another, and its 
determination is one of the central objectives jn planetary studies. In 
the General Theory of Relativity, for example, -̂ (2 + 2Y - 6) = 1. A more 
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general expression for A includes additional PPN parameters. However, 
they have been omitted in Equation (1) because they are negligible at 
the current level of accuracy to which Au> has been determined for 
Mercury, the primary observational result of interest here. For a 
discussion of this point and a review of the development of the PPN 
formalism, see Will (1980). 

The parameter in Equation (1), normally presumed to arise from 
centrifugal distortion, is defined such that the solar component of the 
gravitational potential outside the Sun, written in spherical polar 
coordinates (r, e, <(>) with respect to the Sun's rotational axis, is 

For Mercury, the predicted perihelion advance per unit time obtained 
from Equation (1), in seconds of arc per century, is: 

The measurement of independent of planetary observations is 
highly desirable in the determination of (2 + 2Y - B)/3 from UJ. The 
discovery of global solar oscillations by Hill and his collaborators and 
Severny, Kotov and Tsap (1976) has opened an implicit new route for an 
independent determination of J^. For a review see Hill (1978) and 
Severny, Kotov and Tsap (1976). The potential now exists for 
characterizing the deep interior of the Sun more directly than was 
previously possible. In particular, rotational splitting of otherwise 
degenerate nonaxisymmetrical modes provides averages of the interior 
angular velocity ft. Different modes weight ft differently. With a 
sufficient variety of weights the variation of ft with position can be 
determined and an improved estimate of the dynamical contribution to 
can be made. 

2. MULTIPLET FINE STRUCTURE AND THE INTERNAL ROTATION OF THE SUN 

The fine structure of the eigenfrequency spectrum of solar oscillations 
has been used to infer properties of the internal rotation of the Sun 
(Gough 1982; Hill, Bos and Goode 1982; Campbell et al. 1983; Duvall et 
al. 1984; Hill et al. 1984). The fine structure has also been used to 
infer upper limits on the magnitude of the internal magnetic field 
(Dziembowski and Goode 1984). The 9 dependent part of an ft that is 
symmetric about 6 = ir/2 for an axisymmetric system contributes odd-order 
terms in m to the fine structure; the lowest order is cubic in m 
(Hansen, Cox and Van Horn 1977; Hill 1984a) where m is the angular order 
of the eigenfunction for a given mode. This contribution, as the Sun is 
currently understood, is the primary source of the cubic and fifth-order 
terms in m. The internal magnetic fields contribute terms to the fine 
structure that are even-powers of m for an axisymmetric system 
(Dziembowski and Goode 1984). Such a description of the Sun is supported 
by considerable observational evidence about the properties of normal 
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modes (Hill, Bos and Goode 1982; Bos and Hill 1983; Hill 1984b; Hill and 
Caudell 1985; Hill 1985a, 1985b; Hill, Alexander and Caudell 1985). The 
combined effect of the Coriolis and centrifugal forces in second- and 
higher-order perturbation theory is to generate m and m terms, but 
such terms are negligible compared to the observed magnitudes of the 
cubic terms (Hill et al. 1985). Hence, study of the 9 dependence of Q is 
enabled because its manifestation is strongly decoupled from 
manifestations of other effects in the fine structure. 

3. OBSERVATIONS OF MULTIPLET FINE STRUCTURE 

Numerous highly discrepant results on rotational splitting in the 
eigenfrequency spectrum of the Sun have been presented (see Hill 1984b, 
1985a for summary). These will not be discussed here. In this analysis, 
the multiplet fine structure found in the results obtained by Hill 
(1984b, 1985a, 1985b) and Hill et al. (1985) is examined for internal 
consistency and implications for J 2« These results include observed 
values for the fine structure linear and quadratic in m for the low-
degree 5 min modes (Hill 1985a), the low-order, low-degree acoustic 
modes (Hill 1984b), and the low-degree gravity modes (Hill, Bos and 
Goode 1982, Hill 1985b). In addition, measurement of the fine structure 
terms cubic- and fifth-order in m have been obtained by Hill et al. 
(1985) for the low-order, low-degree acoustic modes. The observations 
for the 5 min modes are the differential radius observations obtained by 
Bos and Hill (1983), where the fine structure for 54 multiplets was 
obtained (Hill 1985a). The m = 0 eigenfrequencies obtained by Hill 
(1985a) are in excellent agreement with those obtained by other 
observational techniques. The observations for the low-order, low-degree 
modes are also the differential radius observations obtained by Bos and 
Hill (1983) where the fine structure for 30 multiplets was obtained 
(Hill 1984b). These findings have been confirmed by Hill and Caudell 
(1985) using the 1978 diameter observations. In 1982, the fine structure 
of two gravity mode multiplets was obtained by Hill, Bos and Goode 
(1982), again based on the observations of Bos and Hill (1983). By 
comparing the differential velocity observations of Kotov et al. (1983) 
with the differential radius observations of Bos and Hill (1983), the 
fine structure for 31 gravity mode multiplets has been obtained by Hill 
(1985b). The successful combinations of these two sets of observations 
is made possible because of the work of Hill, Tash and Padin (1985). 

The results of Hill, Bos and Goode (1982), Hill (1984b, 1985a, 
1985b.) and Hill et al. (1985), described above, combine to form a rather 
extensive set of analyses. In this series of works, a large number of 
different modes are examined, and the hypothesis that resolved members 
of multiplets have been observed and properly classified is put to 
numerous tests. The results of these analyses are found in 6 works: 
Hill, Bos and Goode (1982), Hill (1984b, 1985a, 1985b), Hill and Caudell 
(1985) and Hill, Alexander and Caudell (1985). Evidence of 146 
multiplets was obtained in these works, based on 644 resolved modes that 
were classified. The boundaries in n and I of these 146 multiplets are 
shown in Figure 1 as the enclosed areas in the eigenfrequency diagram. 
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This eigenfrequency diagram presents the m - 0 eigenfrequencies for the 
standard solar model of Saio (1982). These six works also contain a 
series of independent tests, performed to determine the probabilities 
that multiplets have been detected and correctly classified therein. 
These tests are based on the observed symmetry and horizontal spatial 
properties of the eigenfunctions. Also in this series of tests, 
observations from two different years are compared to determine the 
level of internal consistency of multiplet detection and classification. 

4. THEORY 

Splitting of adiabatic nonradial modes of stellar oscillation owing to 
slow differential rotation, based on first-order perturbation theory, 
can be written as 

Fig. 1 

Fig 1 Theoretical eigenfrequency spectrum for the standard solar model 
of Saio (1982). The acoustic and gravity modes, respectively, are 
denoted by positive and negative values, respectively, for the 
radial order. The enclosed areas contained the m - 0 modes of the 
137 multiplets (Jl * 0) used in this analysis for J . 

Fig 2 The inferred latitudinal-dependent, differential rotation as 
represented by Q 2 which is obtained by the inversion of the 
observed fine structure cubic in m. The analysis for the cubic 
term in m omitted the fifth order term in m. 
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The observed fine structure that is cubic in m has been obtained by Hill 
(1984b) and Hill et al. (1985) for the low-order, low-degree acoustic 
modes. In this analysis of the data, the fifth-order term was not 
included. Letting iL be the inferred value based on the measured cubic 
term for the example of Jl = 20, Hill et al. (1985) show that 

ft2 = ft2 - 0.461 ftM . (10) 

The observed fine structure cubic in m where the fifth-order term 
has been omitted in the data analysis has been inverted by Hill et al. 
(1985). Their findings, shown in Figure 2, have the magnitude of~?L 
decreasing below the surface,_passing through zero at * .92 R and nas 
an average value of - 10? of ftQ for the lower two thirds of the 
convection zone. This implies that the lower two thirds of the 
convection zone is rotating faster than the corresponding equatorial 
region of the convection zone. 

5.2. Inferred Radial Dependence of ftQ 

The observed fine structure that is first order in m has been obtained 
for the five min modes and gravity modes, making only quadratic fits to 
the observed multiplet eigenfrequency spectrum (Hill 1985a, 1985b). For 
the low-order, low-degree acoustic modes, a cubic fit to the observed 
fine structure was made by Hill (1984b) for the n- 1, 17 < I < 22 
multiplets and a quadratic fit to the remainder of the 30 multiplets 
classified. The extension of the cubic analysis for all 30 of the low-
order, low-degree multiplets has been made by Hill et al. (1985). It has 
been observed by Hill et al. (1985) that the procedure used in the data 
analysis must be considered when interpreting the results of inverting 
the observed fine structure. Letting ft0 be the inferred value based on 
the measured linear splitting where the cubic and fifth-order terms have 
been omitted in the data analysis, they find, for the example of I « 20, 
that 

ftQ = ftQ - 0.179 ft2 - 0.020 ft^ . (11) 

When the linear and cubic terms have been included, but the fifth-order 
term omitted, they find, for the example of % = 20, that 

ftQ = ftQ • 0.250 ft2 - 0.218 ft^ . (12) 

The inversion presented here is based on the results where the 
cubic term has been included for the low-order, low-degree acoustic 
modes and the cubic term assumed negligible for the low-degree, five 
min modes and the gravity modes. The observations used are for the 30 
low-order, low-degree acoustic modes (Hill 1984b), low-degree gravity 
modes (Hill, Bos, and Goode, 1982) and a rotational splitting for the n 
- 17, A - 1 and 2 five min mode multiplets (Hill 1.985a). The inversion 
technique is_the same as that used by Hill et al. (1985), and the 
results for ftQ - 0.25 ft2> which should be a good representation of 
wi th 
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K « pr 2[(6r) 2 -26r6r h + 4(4+1) (6r>h)2]/ ̂  , (5) 

£ - /p(r)r 2[(6r) 2 + £(£+1)(6rh)2]dr, (6) 

where those terms that are important at the current level of 
observational accuracy have been retained, the displacement 
eigenfunction is 5 = {6r, <Sr

h"|Q> sine "aS^il' p i s t h e e < 3 u i l i b r i u m v a l u e 

of the density at radius r, ana ft is written in a series of the 
orthogonal Legendre polynomials, Pn(cos 8), as 

ft(r,e) = n | Q ftn(r)Pn(cos 6) . (7) 
£ m 

Retaining the leading terms of the coefficients I ' in Equation (4), 
these coefficients can be written as 

l j , m - - k 3 m 2 - £(£ + 1)] , (8) 
2 4 (£-i) 3 

l J . - . ( I U . * ^ + B 2 [ . « ^ ] . 2 , , (9) 
^ a - | ) 5 2 ( H b 3

 2 

where (2n + 1)!! - (2n + 1)(2n - 1)...3*1 and (a) n = a(a+1)...(a+n-1)• 
The splitting kernel, K, is the same as that used by Gough (1982), Hill, 
Bos, and Goode (1982), Campbell et al. (1983) and Hill et al. (1984) in 
the study of ft. Examples of K can be found in Gough (1982) and Hill, 
Bos, and Goode (1982). With Equations (4)-(9) it is possible to show 
that, in first order perturbation theory, splitting terms due to the 
latitude-dependence of ft are decoupled from the centrifugal and higher-
order Coriolis terms. These latter effects give rise to splitting terms 
cubic and to higher, odd-order terms in m. Based on the magnitude of the 
observed first- and second-order terms in m, the magnitude of the third-
order term, due to the combined Coriolis and centrifugal forces, is 
expected to be £ 1$ of the observed cubic term reported by Hill (1984a, 
1984b) for the n • 1, £ * 20 acoustic modes. A similar result is 
expected for the fifth-order term. As noted in the Introduction, the 
effect of the internal magnetic fields is to contribute terms to the 
fine structure that are even-powers of m. Therefore, the cubic and 
fifth-order terms of m in Equation (4) are expected to be the primary 
contributors to such terms in the observed multiplet fine structure. 

5. INVERSION OF FIRST-, THIRD-, AND FIFTH-ORDER TERMS IN m 

5.1. Inferred Radial Dependence of ft2 

ft , are shown in Figure 3. The basic features of this analysis are in 
agreement with those obtained by Hill et al. (1984) and with the fine 
structures of the 31 gravity mode multiplets classified by Hill (1985b), 
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Fig 3 The inferred latitudinal-independent, differential rotation is 
represented by ftQ which is obtained by the inversion of the 
observed fine structure linear in m. The analysis for the linear 
term in m allowed for an ft2 and for a cubic term in splitting for 
the low-order, low-degree acoustic modes. 

5 . 3 . Inferred Radial Dependence of ft^ 

The fine structure fifth-order in m has been obtained and inverted by 
Hill et al. ( 1 9 8 5 ) . Although the observational results are not as 
extensive as those for the cubic terms in m, they find that appears 
to have a radial dependence quite similar to that found for iL. 

6. INFERRED DYNAMICAL CONTRIBUTION TO J 2 

The inferred ftQ, ftp and ft^ have been combined to obtain ftQ and ft2« The 
contributions of tnese two terms to have been calculated, and it is 
found that the contribution is 

This result is in good agreement with the value of J 2 obtained by Hill, 
Bos, and Goode ( 1 9 8 2 ) . However, the observation base for the two results 
is much different. In 1982 , the fine structure for 7 multiplets was 
available, whereas, the results given in Equation ( 1 2 ) are based on the 
observed fine structure of 34 multiplets and are consistent with the 
observed fine structure of 137 multiplets. 

It is important to note that the observed fine structure for the 
137 multiplets is internally consistent. This is measured by the ability 

7 . 7 x 10 ( 1 3 ) 
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to account for the observed fine structure by the ft and ftQ ~ 0.25 ft, 
given in Figures 2 and 3. The results for recent 
inferred values of J 9 are given in Table 1. 

7. CONCLUSIONS 

An estimate of the dynamical contribution to the gravitational 
quadrupole moment of the Sun has been obtained based on the observed 
multiplet fine structure of 34 multiplets which is consistent with the 
rotational splitting observed for 137 multiplets. This set of multiplets 
includes 5 min modes, low-order, low-degree acoustic modes and gravity 
modes. Their observed fine structure are found to be internally 
consistent. Dziembowski and Goode (1984) have concluded that the effects 
of the magnetic fields are not important at the current level of 
observation. It is therefore concluded that there remains a discrepancy 
similar to that noted by Hill, Bos, and Goode (1982) between the work on 
J , the planetary observation on w and the General Theory of Relativity. 

This work was supported in part by the Astronomy Division of the 
National Science Foundation and the Air Force Office of Scientific 
Research. 

TABLE 1 
Gravitational Quadrupole Moment of the Sun 

a 6 Rotational Splitting Fine Structure J 0 x 10 
Duvall et al. (1984) 0717 ± 0.04 
Hill, Bos and Goode (1982) 5.5 ± 1.3 
Hill et al. (1984)° 4.5 
current work 7.7 ± 1.8 

Visual Solar Oblateness 
Hill and Stebbins, (1975) 1.0 ± 4. 3 

Dicke, Kuhn, and Libbrecht, (1985)° 4.5 ± 2.7 
7.5 ± 0.9 

The value obtained by Gough (1982) is not included because it was based 
on a preliminary set of multiplet classifications which was in error 
(Hill 1984b). 
bBased on rotational curve of Hill et al. (1984). 
Q 
Two values are given based on whether or not a certain type of 

systematic error is taken into account. 
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DISCUSSION 

Grishchuk : what is the contribution of the Sun*s quadrupole to the mo-
motion of the perihelion. 

Hill ; about 1% of the relativistic value. 

Grishchuk : then how does this match with the estimates of 2/3(2+2y-g)= 
=1± 0.002 ? 

Will : I will answer this question in my report. 

Eichhorn : in 1977 and 1982, Dicke published estimates for Jo that are 
now considered as wrong. How sure are your own estimates ? 
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Hill : the results of 1977 and 1982 are based on simplified models, whi­
le our estimates are model independent and are based on direct numeri­
cal integration. 

Reasenberg : however, do your error estimates include the errors due to 
possible model dependence ? 

Hill : yes. 

Chechelnitsky : your graphs show smooth dependence of the angular velo­
city on coordinates. But the observations of Kotov in Crimea observa­
tory have shown that this dependence is small. 

Hill : these observations concern the solar surface. The contribution 
of the surface of the Sun to ^ is smaller than 10 and is therefore 
negligible. Our analysis shows that there is no correlation between 
the surface and the internal structure. 

Chechelnitsky : how does your model explain the 28, 31, e t c . . periods 
in Sun radiation. 

Hill : we did not analyse them. Our objective was only to estimate oo. 
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