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A geometric approach to Orlov’s theorem
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Abstract

A famous theorem of D. Orlov describes the derived bounded category of coherent
sheaves on projective hypersurfaces in terms of an algebraic construction called graded
matrix factorizations. In this article, I implement a proposal of E. Segal to prove
Orlov’s theorem in the Calabi–Yau setting using a globalization of the category of
graded matrix factorizations (graded D-branes). LetX ⊂ P be a projective hypersurface.
Segal has already established an equivalence between Orlov’s category of graded matrix
factorizations and the category of graded D-branes on the canonical bundle KP to P.
To complete the picture, I give an equivalence between the homotopy category of
graded D-branes on KP and Dbcoh(X). This can be achieved directly, as well as
by deforming KP to the normal bundle of X ⊂KP and invoking a global version of
Knörrer periodicity. We also discuss an equivalence between graded D-branes on a
general smooth quasiprojective variety and on the formal neighborhood of the singular
locus of the zero fiber of the potential.
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1. Introduction

The work in this paper was motivated by an attempt, proposed by Ed Segal in [Seg09], to
understand [Orl09b, Theorem 3.11]. In order to state the theorem, we need to set up some
preliminaries. Let X ⊂ Pn be a projective hypersurface of degree w with defining equation W ∈
R := C[x0, . . . , xn]. The version of Orlov’s theorem in which we are interested is a comparison
between Dbcoh(X) and the category of graded matrix factorizations of W .

In order to define the category of graded matrix factorizations, it is convenient to first
define the plain category of (ungraded) matrix factorizations (after [Eis80]) and then describe
the modifications necessary to yield the graded case. A matrix factorization of W is a Z/2Z-

Received 11 January 2011, accepted in final form 24 November 2011, published online 10 July 2012.
2010 Mathematics Subject Classification 14F05 (primary), 18G35 (secondary).
Keywords: matrix factorizations, D-branes, brane transport.

The author was partially supported by NSF grant DMS/9043787.
This journal is c© Foundation Compositio Mathematica 2012.

https://doi.org/10.1112/S0010437X12000255 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X12000255


I. Shipman

graded free R-module P together with an odd (or degree 1) R-linear endomorphism dP which
satisfies d2

P =W · idP . If P and Q are matrix factorizations, then HomR(P, Q) is again a
Z/2Z-graded free R-module. Moreover, there is a natural differential on HomR(P, Q), given on
homogeneous morphisms φ by d(φ) = dQ ◦ φ− (−1)deg(φ)φ ◦ dP . Thus, HomR(P, Q) is a Z/2Z-
graded complex. The category MFΓ(W ) of matrix factorizations is the C-linear category whose
objects are matrix factorizations of W and where the vector space of morphisms between P and
Q is H0(HomR(P, Q), d). This category admits a natural triangulated structure in which [2]∼= id.

Now, view R as a graded ring with deg(xi) = 1. If M is a graded R-module, we write M(k) for
the shifted module withM(k)i =Mk+i. A grading-preserving map φ :M →M ′ induces a grading-
preserving map M(k)→M ′(k), which we denote by φ(k). Let P be a matrix factorization of
W whose underlying module is graded. Note that since the degree of W is w 6= 0, d cannot be
graded. However, since P is Z/2Z-graded as well, the map d breaks into a pair of maps

P0
α−−→ P1

β−→ P0.

The matrix factorization P is a graded matrix factorization when α is graded and β has degree w
in the sense that α : P1→ P0(w) is graded. The category MFΓ(W ) of graded matrix factorizations
(after [Orl09b, HW05]) is the category whose objects are graded matrix factorizations and where
the space of morphisms between P and Q is H0(Homgr

R (P, Q)). The superscript gr denotes the
subspace of degree-preserving module maps. The category of graded matrix factorizations also
admits a triangulated structure. However, the ‘homological’ shift interacts nontrivially with the
R-module shift in the sense that [2]∼= (w). So, the category of graded matrix factorizations is
fully Z-graded.

Theorem 3.11 [Orl09b]. Let X ⊂ Pn be a nonsingular hypersurface of degree w with defining
equation W .

(i) If w < n+ 1, then there is a fully faithful exact functor MFΓ(W )→Dbcoh(X).

(ii) If w = n+ 1, then there is an equivalence Dbcoh(X)∼= MFΓ(W ).

(iii) If w > n+ 1, then there is a fully faithful exact functor Dbcoh(X)→MFΓ(W ).

Remark 1.1. This is an imprecise version of Orlov’s theorem. He not only constructs the fully
faithful comparison functors but also describes the orthogonals to their essential images.

Inspired by the work of Witten [Wit93], Segal proposed an alternative proof of this theorem,
focusing on the Calabi–Yau case. There are two parts to his proposition, and he completed
the first part in his article [Seg09]. He first provides a framework for studying graded matrix
factorizations over schemes and stacks. In this context, we adopt the terminology of the physics
community and refer to these analogs of graded matrix factorizations as graded D-branes. In
this framework, a DG category DBrΓ(Y, F ) is associated to any scheme (or algebraic stack) Y
equipped with a regular function F and some other data responsible for the graded structure. We
will discuss the construction in the next section, while in this section we will ignore the grading
data to simplify the presentation. Let µw be the group of wth roots of unity acting by scaling
on An+1. The DG category associated to the quotient stack [An+1/µw] and W (which descends
to the quotient stack since W is invariant under µw) is a DG enhancement of the triangulated
category of graded matrix factorizations.

Write P = Pn. We can view W as a section of OP(w) and thus as a regular function W
on Y =OP(−w) which is linear on the fibers of the projection Y → P. There is a canonical
birational morphism Y → An+1//µw, and the function W on Y is the pullback of the function
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induced by W on An+1//µw. However, there is a closer relationship between Y and [An+1/µw]:
they are the GIT quotients of An+1 × A1 under the action of C× with respect to the identity
and inverse characters, and their distinguished functions descend from a function on An+1 × A1.
Segal formulated a principle that if X1 99KX2 is a rational, birational morphism between Calabi–
Yau stacks identifying W1 and W2, then there should be a corresponding quasi-equivalence
DBrΓ(X1, W1)'DBrΓ(X2, W2). This motivates the following theorem.

Theorem 3.3 [Seg09]. Assume that w = n+ 1. Then there is a family of quasi-equivalences

DBrΓ([An+1/µw], W )'DBrΓ(Y, W )

indexed by Z.

Remark 1.2. Segal’s theorem holds for any action of C× on a vector space where the sum of the
weights is zero. In fact, his method establishes a trichotomy as in Orlov’s theorem, depending
on the sign of the sum of the weights.

The next step in the proposal is to construct an equivalence [DBrΓ(Y, W )]'Dbcoh(X).
We achieve this by a direct argument. However, we shall also explore a geometric technique in
which the data used to define the categories mutates in a pleasant way and the functors used
to compare the categories are extremely simple. With respect to the embedding of X into Y
along the zero section, the normal bundle NX/Y is isomorphic to OX(w)⊕OX(−w). Let p be
a local coordinate on Y =OP(−w) which is linear along the fiber and which vanishes to first
order along the zero section. Then locally W has the form fp where f is a function that is
constant along the fibers and which vanishes to first order along X. So W vanishes to second
order along X and upon degeneration induces a homogeneous function W̄ of weight 2 on the
normal bundle. In fact, the induced function is a tautological function, the distinguished section
ofOX(w)⊗OX(−w)⊂ Sym2 N∨X/Y corresponding to the trivializationOX(w)⊗OX(−w)∼=OX .

In order to establish a quasi-equivalence DBrΓ(Y, W )'Perf(X) using geometry, we first
establish a quasi-equivalence DBrΓ(Y, W )'DBrΓ(NX/Y , W̄ ). A standard construction, the
deformation to the normal cone, gives a deformation of Y into NX/Y over A1. Generalizing
the case of interest, we suppose that Y is the total space of a vector bundle V on a nonsingular
variety Z and that W is induced by a regular section of V∨. In this situation, the degeneration
of W to NX/Y is again a certain tautological function whose theory is easy to control. We
show that the deformation to the normal cone can be used to construct a quasi-equivalence
DBrΓ(NX/Y , W̄ )→DBrΓ(Y, W ).

One of the fundamental properties of matrix factorizations is Knörrer periodicity [Kno87],
which states that the category of matrix factorizations of a nondegenerate quadratic form Q on
an even-dimensional vector space is equivalent to the derived category of vector spaces. Moreover,
given an isotropic splitting of the vector space, there is a natural realization of this equivalence.
The geometry of (NX/Y , W̄ ) is that of a family of nondegenerate quadratic forms and NX/Y

has a built-in isotropic splitting. To obtain the final equivalence DBrΓ(NX/Y , W̄ )'Perf(X), we
simply globalize Knörrer’s functor and verify that it gives an equivalence.

This paper is organized as follows. Section 2 contains a detailed construction of the category of
graded D-branes and discusses the basic operations on these categories and the extra structures
they enjoy. In § 3 we consider a general situation of which (Y, W ) is an example, and we prove
the main equivalence; a simple special case of this theorem is a global version of Knörrer
periodicity. Then, in § 4, we discuss the invariance of the category of graded D-branes (up to
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summands) under deformation to the normal cone. Section 5 brings the results of the previous
sections together to obtain a proof of Orlov’s theorem; we also discuss implications for complete
intersections. Finally, in § 6, which is somewhat independent of the other sections, we show that
the category of D-branes depends only on a formal neighborhood of the critical locus of the
potential, when the ambient space is nonsingular and quasiprojective.

Remark 1.3. There is a strong parallel to this story in the work of Isik [Isi10]. He considers
the situation where Y is the total space of a vector bundle V on a nonsingular variety Z and
there is distinguished regular section s of V∨, defining a function W on Y . View Y0 =W−1(0)
as a C×-scheme via the action by scaling along the fibers of the projection Y → Z. Isik
works with the C×-equivariant singularity category which is the Verdier quotient DSggr(Y0) =
Db cohgr(Y0)/Perfgr(Y0). Using a version of Koszul duality, he shows that DSggr(W−1(0)) is
equivalent to Db coh(X) where X is the vanishing locus X = s−1(0)⊂ Z of the regular section s.
In [BP10], Baranovsky and Pecharich use Isik’s theorem to find identifications between graded
singularity categories and derived categories of pairs of toric stacks, generalizing a result of
Orlov [Orl09b, 2.14], and interpret their results as a version of the McKay correspondence.

Remark 1.4. The interest in categories of matrix factorizations is partly due to their role in
expansions of the homological mirror symmetry program. Specifically, when X is not Calabi–
Yau, the mirror object may not be a plain variety but rather a Landau–Ginzburg model consisting
of a variety X̂ together with a nonconstant regular function W on X. In this picture, the category
of (graded) matrix factorizations plays the role of the derived category of coherent sheaves on
the noncommutative mirror space, and should be equivalent to a Fukaya-type category.

2. Construction of the category of graded D-branes

To begin, we will describe the geometric data required to study graded matrix factorizations. We
first discuss group actions and equivariant sheaves. A variety is a separated, integral scheme of
finite type over C. Let Σ be a variety and let G be either a torus or a finite group acting on Σ. If Σ
is normal, then it admits a G-invariant affine open cover, by Sumihiro’s theorem [Sum74]. Recall
that a (C×)r-action on Spec(R) is the same as a Zr-grading on R. Moreover, a quasicoherent
sheaf on [Spec(R)/(C×)r] is simply a Zr-graded module over R. So when G is a torus, we can
understand Σ through a system of charts where each chart is the spectrum of a Zr-graded ring.

Suppose that χ is a character of G and Cχ is the corresponding one-dimensional
representation. There is a shifting operation corresponding to χ. If F is a G-equivariant
quasicoherent sheaf on Σ, then the χ-shift is defined to be F(χ) = F ⊗C Cχ. In the case where
G∼= (C×)r acts on Spec(R), a character χ is described by a vector v ∈ Zr. The χ-shift on a Zr-
graded module M is given by the v-shift so that M(χ)u =Mu+v. Let F1 and F2 be G-equivariant
quasicoherent sheaves on Σ. For any character χ of G, we refer to a morphism F1→F2(χ) as a
morphism F1→F2 of weight χ. In particular, morphisms OΣ→F(χ) are global sections of F
of weight χ. Alternatively, a global section s of F has weight χ if g∗s= χ(g)s for all g ∈G.

In this article we work with stacks S of the form [ΣS/G] where ΣS is a variety and G
is a torus or a finite abelian group. The case where G is trivial is an important case. Recall
that a quasicoherent sheaf F on S is a G-equivariant quasicoherent sheaf on ΣS . By a vector
bundle on S we mean a G-equivariant locally free sheaf of finite rank on ΣS . Global sections of a
sheaf on S are the G-equivariant sections of the corresponding G-equivariant sheaf on ΣS . If F is a
G-equivariant sheaf on ΣS , then the equivariant global sections are just the global sections of F
that are fixed by G.
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Fix a stack S = [ΣS/G] and put Γ := C×. The first piece of geometric data that we need is an
even Γ-action on S. This is an action of Γ on ΣS that commutes with the G-action and is such
that {−1, 1} ⊂ Γ acts trivially. Suppose that U ∼= Spec(R) is a Γ×G-invariant open affine set.
Then the Γ-action corresponds to a Z-grading on R and the second condition is equivalent to R
being concentrated in even degrees. We use the notation Γ to distinguish this action from the
G-action. In the main case of interest for this paper, G∼= C×. We refer to the grading induced
by Γ as the Γ-grading. (It is called ‘R-charge’ in Segal’s work and in the physics literature.)

By an invariant open affine subset of S we mean a Γ×G-invariant affine open subset of ΣS .
It should be understood that all sheaves and morphisms on such an open affine set are meant to
be G-equivariant, unless something to the contrary is explicitly stated.

The second piece of geometric data that we need is that of a regular function F on S of
Γ-weight 2. This is a G-invariant regular function on ΣS which has weight 2 for the Γ-action. So
the restriction of F to any Γ×G-invariant open set has Γ-degree 2.

Definition 2.1 (LG pair). A Landau–Ginsburg (LG) pair (S, F ) is a stack S (as above) with
an even action of Γ and a regular function F on S that has Γ-weight 2.

Example 2.2. In the context of this article, the most important example of an LG pair comes
from a variety Y with a vector bundle V over it and a section s of V. Let S be the total space of
V∨, the dual vector bundle, and let F be the function on V∨ that corresponds to s. This function
is linear when restricted to each fiber of S over Y . Since S is the total space of a vector bundle,
it carries a Γ-action. However, this action is not even, so we ‘double’ it by letting λ ∈ C act by
λ2. The local structure of this example is quite simple. If U ⊂ S is an open affine subset, then
p−1(U) is a Γ-invariant affine set. Moreover, if V is trivialized over U and p : S→ Y denotes the
projection, then p−1(U)∼= Spec(OY (U)[y1, . . . , yr]) where yi are the coordinates on V given by
the trivialization. The grading assigns deg(yi) = 2 and deg(OY (U)) = 0.

Definition 2.3 (Graded D-brane). Suppose (S, F ) is an LG pair. A graded D-brane on (S, F )
is a Γ-equivariant vector bundle E together with an endomorphism dE of degree 1 such that
d2
E = F · idE .

Recall that a Γ-equivariant vector bundle on S is a Γ×G-equivariant vector bundle on ΣS .
Let U ∼= Spec(R•) be a Γ-invariant affine open subset of S and E a graded D-brane on (S, F ).
Then E(U) is simply a graded, projective R•-module with an endomorphism that raises degrees
by 1 and squares to multiplication by F . (According to our convention, E(U) and dE must be
G-equivariant.) For any Γ-equivariant sheaf F on S, let σ be the endomorphism induced by the
action of −1 ∈ Γ. The action of σ on a homogeneous m ∈ F(U) is by σ(m) = (−1)deg(m)m. Let
E1 and E2 be two graded D-branes on (S, F ). We define an endomorphism of Hom(E1, E2) by
d(φ) = d2 ◦ φ− σ(φ)φ ◦ d1. Note that d2 = 0, so the graded R•-module Hom(E1, E2)(U) can be
viewed as a complex of DG R•-modules, where the differential on R• is zero. We may define the
Γ-equivariant coherent sheaf

H(Hom(E1, E2)) := ker(d)/im(d).

We have H(Hom(E1, E2))(U) = H•(Hom(E1, E2)(U)). As we will see, H(Hom(E1, E2)) is always
supported on the critical scheme of the zero fiber of F .

Let (S, F ) be an LG pair. The Jacobi ideal (sheaf) J(F ) of F is defined to be the image of
the map ΘS →OS given by contraction with dF , where ΘS is the tangent sheaf. The Tyurina
ideal (sheaf) is defined to be τ(F ) := J(F ) + F · OS . If S is nonsingular, the Tyurina ideal sheaf
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defines the scheme-theoretical singular locus of the zero locus of F . Let Z be the subscheme
associated to τ(F ). Observe that τ(F ) is Γ-equivariant and hence Z is invariant.

Suppose that E is a graded D-brane on (S, F ). We can trivialize E over a small open set so
that d= dE becomes a matrix. If v is a local vector field, we can differentiate the entries of d to
obtain an endomorphism v(d). Now we have

v(F ) · id = v(d2) = dv(d) + v(d)d.

Hence multiplication by v(F ) is nullhomotopic. It follows that for any graded D-branes E and
F , the cohomology sheaf H(Hom(E , F)) is annihilated by τ(F ) and thus H(Hom(E , F)) is
supported on Z.

2.1 Čech model
If {Uα} is a Γ-invariant open affine cover, we put

Č•(S, {Uα},Hom(E1, E2)) := Č•(ΣS , {Uα},Hom(E1, E2))G• .

Note that this is a bicomplex where the first grading is the grading on the Čech complex (upper
bullet) and the second grading is the Γ-grading on the summands (lower bullet). From now on
we restrict attention to finite Γ-invariant affine open covers.

If E1, E2 and E3 are graded D-branes, then the natural composition map Hom(E2, E3)⊗
Hom(E1, E2)→Hom(E1, E3) is compatible with the differentials. Hence this map induces a chain
map

Č•(S, {Uα},Hom(E2, E3))⊗C Č
•(S, {Uα},Hom(E1, E2))→ Č•(S, {Uα},Hom(E1, E3)). (1)

Definition 2.4 (Category of graded D-branes). Let (S, F ) be an LG pair and {Uα} a
Γ-invariant affine open cover of S. The DG category DBrΓ(S, F, {Uα}) of graded D-branes is
the DG category whose objects are graded D-branes and where

Hom•DBrΓ(S,F )(E1, E2) := Č•(S, {Uα},Hom(E1, E2))•

is the total complex of the bicomplex. Composition in this DG category is given by (1).

The quasi-equivalence class of DBrΓ(S, F, {Uα}) does not depend on the specific choice of
Γ-invariant affine open cover. First, the total complex of the bicomplex Č•(S, {Uα},Hom(E1, E2))•
has a finite filtration

F iČ•(S, {Uα},Hom(E1, E2)) :=
⊕
j>k

Čj(S, {Uα},Hom(E1, E2)),

which gives rise to a convergent spectral sequence

Ei,j2 = Hi(S,H(Hom(E1, E2)))j ⇒ Hi+j(Č•(S, {Uα},Hom(E1, E2))). (2)

The other filtration, while not finite, is locally finite since the Čech degree is bounded, and so
there is another convergent spectral sequence

Ei,j1 = Hi(S,Hom(E1, E2))j ⇒ Hi+j(Č•(S, {Uα},Hom(E1, E2))). (3)

Now if {Vβ} is another Γ-invariant open affine cover, then {Uα ∩ Vβ} is a common Γ-invariant
open affine refinement. Moreover, there are comparison maps

Č•(S, {Uα},Hom(E1, E2)) Č•(S, {Uα ∩ Vβ},Hom(E1, E2))oo // Č•(S, {Vβ},Hom(E1, E2))
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which are compatible with the filtrations by Čech degree, and thus (2) can be used to show that
they are quasi-isomorphisms. In fact, these comparison maps are compatible with (1) as well. So
the comparison maps define quasi-equivalences

DBrΓ(S, F, {Uα}) DBrΓ(S, F, {Uα ∩ Vβ})oo // DBrΓ(S, F, {Vβ}).

From now on we write DBrΓ(S, F ), suppressing the choice of cover, since the ambiguity in
defining the category is rectified by canonical quasi-equivalences. Denote by [DBrΓ(S, F )] the
homotopy category of DBrΓ(S, F ). (It has the same objects but the hom space between E1 and
E2 in [DBrΓ(S, F )] is H0 HomDBrΓ(S,F )(E1, E2).)

2.2 Triangulated structure and a second model

The next goal is to show that [DBrΓ(S, F )] is triangulated. Following [LP11, Orl11, Pos11],
we will define a triangulated category DQcohΓ(S, F ) which contains [DBrΓ(S, F )] as a full
triangulated subcategory. We will see that, in fact, it is dense in the subcategory of compact
objects. We use a slightly modified version of the notation in [LP11] and many ideas from [Pos09].

Definition 2.5. A curved graded quasicoherent sheaf is a pair (F , d) where F is a Γ-equivariant
quasicoherent sheaf on S and d is an endomorphism of F of weight one such that d2 = F · id. We
denote by QcohΓ(S, F ) the category whose objects are curved quasicoherent sheaves and where
the complex of morphisms between (F1, d1) and (F2, d2) is

grHom•(F1, F2),

the graded space of Γ-equivariant morphisms of all weights, equipped with the commutator
differential.

There is a natural shift functor on [QcohΓ(S, F )] and a collection of distinguished triangles
that give it the structure of a triangulated category. Let χn be the nth power character of Γ. We
define a shift functor on QcohΓ(S, F ) by (F , d)[1] := (F(χ1),−d). There is a natural collection
of distinguished triangles as well. Let φ : F1→F2 be a Γ-equivariant morphism that intertwines
the differentials. Then we define

cone(φ) =
(
F2 ⊕F1[1],

(
d1 0
φ −d2

))
.

A distinguished triangle in [QcohΓ(S, F )] is a triangle isomorphic to one of the forms

F1
φ−−→F2→ cone(φ)→F1[1]→ · · · .

The shift and triangles define a triangulated structure on [QcohΓ(S, F )] like their analogs in the
case of complexes.

Suppose that

→ · · · δ−2−−−→F−1
δ−1−−−→F0

δ0−−→ · · · δn−1−−−−→Fn
δn−−→ · · ·

is a complex of curved graded quasicoherent sheaves, meaning that each δ is Γ-equivariant and
intertwines the differentials. The totalization of this complex is the curved graded quasicoherent
sheaf whose underlying sheaf is ⊕

i∈Z
Fi(χ−i)
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and where the restriction of the differential to the direct factor Fi(χ−i) is (−1)idi ⊕ δi, which
has values in the direct factor Fi(χ−i)⊕Fi+1(χ−(i+1)).

The category QcohΓ(S, F ) contains a natural subcategory of acyclic objects. Let
[QcohΓ(S, F )]ac be the thick triangulated subcategory generated by the totalizations of bounded
acyclic complexes of curved graded quasicoherent sheaves and closed under arbitrary direct sums.

Definition 2.6. The derived category of curved graded quasicoherent sheaves is the Verdier
quotient

DQcohΓ(S, F ) = [QcohΓ(S, F )]/[QcohΓ(S, F )]ac.

We also write DcohΓ(S, F ) for the full subcatogory of DQcohΓ(S, F ) of objects isomorphic to
coherent curved graded sheaves.

Remark 2.7. This category is often called the ‘absolute derived category’. However, since it will
not face any competition from rival definitions in this article, we shall simply call it the ‘derived
category’.

Clearly, we can view a graded D-brane as an object in DQcohΓ(S, F ). Let MFΓ(S, F )⊂
[Qcoh(S, F )] and DMFΓ(S, F )⊂DQcohΓ(S, F ) be the full subcategories whose objects are
graded D-branes. Observe that DMFΓ(S, F ) is the Verdier quotient MFΓ(S, F )/MFΓ(S, F ) ∩
[QcohΓ(S, F )]ac. Clearly, DMFΓ(S, F ) is triangulated.

Remark 2.8. The triangulated category DMFΓ(S, F ) differs from the absolute derived category
of graded matrix factorizations appearing in [BW] in that MFΓ(S, F ) ∩ [QcohΓ(S, F )]ac is
potentially larger than the category generated by acyclic objects built from finitely many graded
D-branes.

Fix a Γ-invariant open cover {Uα}α∈A of S. The Čech complex of a sheaf F has a sheaf-
theoretic analog. Put

Či(F) =
⊕
A′⊂A
|A′|=i

(jA′)∗j∗A′F

where jA′ is the inclusion of the open set
⋂
α∈A′ Uα. The differentials are defined by the familiar

formula. Note that the usual Čech complex is obtained by taking global sections of this complex.
If F is Γ-equivariant, then Č•(F) is a Γ-equivariant complex of sheaves.

This complex of sheaves is functorial in F , so if F is a curved graded quasicoherent sheaf,
then for each i, Či(F) has a natural differential making it into a curved graded quasicoherent
sheaf. We write Č(F), without the bullet, for the totalization of Č•(F). There is a canonical
morphism

grHom•(F1, F2)→ grHom•(Č(F1), Č(F2))

which is compatible with compositions, so we can think of Č as a DG endofunctor of QcohΓ(S, F ).
Note that the functor induced by Č on [QcohΓ(S, F )] preserves the subcategory [QcohΓ(S, F )]ac.

Let F1 and F2 be curved graded quasicoherent sheaves. Let us use the shorthand

Č•(F1, F2) := Č•(S, {Uα},Hom(F1, F2))•.

Observe that the canonical morphism

Č•(F1, F2)→ grHom•(F1, Č(F2))
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is an isomorphism of complexes. Suppose that F1 is a graded D-brane and F2 is the totalization of
an acyclic complex of curved graded quasicoherent sheaves. ThenHom(F1, F2) is the totalization
of an acyclic complex of 0-curved graded quasicoherent sheaves. It has an extra grading in
addition to the Γ-equivariant structure. Thus Č•(F1, F2) is a bicomplex with the usual grading
and with the extra grading coming ultimately from the extra grading on F2. There is a convergent
spectral sequence computing the cohomology of Č•(F1, F2), whose zeroth page has only the
differential induced by the differential on Hom(F1, F2) with respect to which it is acyclic. Since
taking the Čech complex is exact, we see that the first page of this spectral sequence is zero and
thus

H0 grHom•(F1, Č(F2)) = 0.
Therefore, the functor H0 grHom•(F1, Č(−)) on [QcohΓ(S, F )] factors through DQcohΓ(S, F ).
The natural map F → Č(F) is an isomorphism in DQcohΓ(S, F ) since the Čech complex resolves
F , and thus the cone on F → Č(F) is the totalization of an acyclic complex of curved graded
quasicoherent sheaves. So there is an obvious natural transformation

H0 grHom•(F1, Č(−))→HomDQcohΓ(S,F )(F1,−). (4)

We shall briefly check that this is an isomorphism. Recall that HomDQcohΓ(S,F )(F1, F2) consists
of equivalence classes of pairs of morphisms

F1
g−−→ G f←−−F2

where the cone on f belongs to [QcohΓ(S, F )]ac. Note that the map induced by f ,

H0 grHom•(F1, Č(F2))→ H0 grHom•(F1, Č(G)),

is an isomorphism because H• grHom(F1, Č(cone(f))) = 0. Thus, the map g : F1→G factors
through f and we see that (4) is surjective. Next, suppose that a closed morphism φ : F1→ Č(F2)
maps to zero in HomDQcohΓ(S,F )(F1, F2). By definition of the equivalence relation defining homs
in DQcohΓ(S, F ), there must be a diagram

Č(F2)

��
F1

φ
<<yyyyyyyy

//

0 ##FFFFFFFF G F2

bbEEEEEEEE

f
oo

id||xxxxxxxx

F2

OO

where, once again, the cone on f is an acyclic curved quasicoherent sheaf. The morphisms on
the right-hand side of the diagram all induce isomorphisms after applying H0 grHom•(F1, Č(−)).
Of course, this means that φ and zero are identified and thus φ= 0. We conclude that the space
of morphisms between F1 and F2 in DQcohΓ(S, F ) is computed by Č•(F1, F2).

There is a canonical DG functor

Č : DBrΓ(S, F )→QcohΓ(S, F ),

since the embedding
Č•(E1, E2)→ grHom•(Č(E1), Č(E2))

is compatible with composition. It follows now that the induced functor

Č : [DBrΓ(S, F )]→DQcohΓ(S, F )

is fully faithful. Thus we have the following result.
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Proposition 2.9. [DBrΓ(S, F )] is equivalent to DMFΓ(S, F ) and thus it is triangulated.

We need a few ideas from the theory of triangulated categories. Let T be a triangulated
category. An object E ∈ T is compact if for any collection of objects Fi ∈ T the natural map

⊕
i

HomT (E, Fi)→HomT

(
E,
⊕
i

Fi

)
(5)

is an isomorphism (provided
⊕

i Fi exists). The full subcategory of compact objects T c of T is
a triangulated subcategory, closed under taking direct summands. If T ′ ⊂ T is a triangulated
subcategory, then T ′ is dense if every object of T is a summand of an object in T ′. We say that
T has direct sums if T admits all small direct sums and direct sums of triangles are triangles.
We say that a set {Ei} weakly generates if whenever HomT (Ei, E′) = 0 for all i we have E′ = 0.
We say that T is compactly generated if T has direct sums and there is a set of compact objects
that weakly generates T . According to [Nee92], if T has direct sums and a set {Ei} of compact
objects weakly generates, then T c = 〈Ei〉. Here, 〈Ei〉 is the smallest full triangulated subcategory
containing {Ei} and closed under taking shifts, cones, isomorphic objects, and direct summands.

A triangulated category is Karoubi complete if whenever Ψ ∈ End(E) is an idempotent,
there is an object E′ and morphisms ψ1 : E→ E′ and ψ2 : E′→ E such that Ψ = ψ2 ◦ ψ1 and
ψ1 ◦ ψ2 = id. If T is an arbitrary triangulated category, we write T for the Karoubi completion.
This is the triangulated category obtained by formally adding objects to T to make it Karoubi
complete.

Lemma 2.10. Graded D-branes are compact objects in DQcohΓ(S, F ).

Proof. Let E be a graded D-brane. Now, Γ-equivariant vector bundles satisfy the compactness
property in the category of all Γ-equivariant quasicoherent sheaves. Thus for any collection {Fi}
of curved graded quasicoherent sheaves, the natural map⊕

i

Č•(E , Fi)→ Č•
(
E ,
⊕
i

Fi
)

is an isomorphism of complexes. Since Č•(E , F) computes HomDQcohΓ(S,F )(E , F) and the
isomorphism (4) is compatible with the comparison map (5), the result follows. 2

Definition 2.11. We say that S is Γ-quasiprojective if it admits a Γ-equivariant ample line
bundle.

Lemma 2.12. Suppose that S is Γ-quasiprojective and ΣS is nonsingular. Let F ∈
DQcohΓ(S, F ). If

HomDQcohΓ(S,F )(E , F) = 0

for all graded D-branes E , then F = 0.

Proof. First, we will show that every coherent curved graded sheaf F is a quotient of a graded
D-brane. Suppose that L is the Γ-equivariant ample line bundle and write F(m) := F ⊗ L⊗m. If
m is sufficiently large, F(m) is globally generated. Let R be the ring of global functions on S and
M the R-module of global sections of F(m). To express F as a quotient of a graded D-brane, it
suffices to express M as a quotient of a graded D-brane over (R, F ). There is a trivial way to do
this. We think of M as a graded R′ :=R[t]/(t2 − F ) module, where t has degree 1. Then since
M is finitely generated as an R-module, it is finitely generated as an R′-module. Thus there is a
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surjection (R′)⊕N �M of graded R′-modules. Thinking of the action of t on R′ as an R-module
endomorphism, we can identify R′ with the trivial graded D-brane as follows.

R
id ))

R
F

ii

Since R is the ring of global functions, there is a Γ-equivariant morphism S→ Spec(R). Pulling
back to S, we obtain a graded D-brane E and a surjection E � F(m) which we easily transform
into the desired form E(−m)� F .

Let F be a coherent curved graded sheaf. For each n, there is a partial resolution

En→En−1→ · · · E0� F

where Ei is a graded D-brane. If n > dimΣS , then ker(En→En−1) is automatically a vector bundle
since ΣS is smooth. (While the Ei are trivial, we don’t know anything about this final kernel
beyond the fact that it is a graded D-brane.) Thus, we obtain a resolution for F whose terms
are graded D-branes. The totalization of this complex (without F) is a graded D-brane which is
isomorphic to F in DQcohΓ(S, F ). Hence, DMFΓ(S, F ) = Dbcoh(S, F ).

Let F be arbitrary such that Hom(E , F) = 0 for every graded D-brane E . Then Hom(E , F) = 0
whenever E is a coherent curved graded sheaf, since every coherent curved graded sheaf is
isomorphic in DQcohΓ(S, F ) to a graded D-brane. The rest of the argument can be adapted
mutatis mutandis from the work of Positselski. He proves the analogous statement as Theorem 2
in of [Pos09, § 3.11]. The arguments given for [Pos09, § 3.11, Theorem 2] (including the supporting
Theorem 3.6 and the theorem of § 3.7) use only properties of and constructions in categories
of graded modules. These arguments go through in our case because the category of Γ×G-
equivariant sheaves on S has enough injectives and satisfies Positselski’s condition (*) since ΣS

is Noetherian. 2

Clearly, DQcohΓ(S, F ) has arbitrary direct sums and the direct sum of triangles in
DQcohΓ(S, F ) is a triangle. Now, Lemmas 2.10 and 2.12 show that DQcohΓ(S, F ) is compactly
generated. It follows from [BN93] that the subcategory DQcohΓ(S, F )c of compact objects is
Karoubi complete (all idempotents split). So we have the following proposition.

Proposition 2.13. If S is Γ-quasiprojective and ΣS is nonsingular, then

[DBrΓ(S, F )]∼= DQcohΓ(S, F )c.

Remark 2.14. Observe that in the case where the Γ-action on S is trivial, fixing all of S, we have
DBrΓ(S, 0) = Perf(S). So if S is nonsingular, then [DBrΓ(S, 0)]∼= Dbcoh(S).

Remark 2.15. It follows from Lemma 2.12, using the results of [Nee92], that DQcohΓ(S, F )
is equivalent to the smallest triangulated subcategory of DQcohΓ(S, F ) containing all graded
D-branes and closed under taking direct sums. Hence, every object of DQcohΓ(S, F ) is
isomorphic to an object whose underlying Γ-equivariant sheaf is flat.

2.3 Pullback and external tensor product
There is often a natural pullback functor associated to a morphism of LG pairs. Suppose that
(S1, F1) and (S2, F2) are two LG pairs and that φ : S1→ S2 is a Γ-equivariant morphism such
that F1 = φ∗F2. Let {Uα} be a Γ-invariant affine open cover of S2 and {Vβ} a Γ-invariant affine
open cover refining {φ−1(Uα)}. Note that if E is a graded D-brane on (S2, F2), then φ∗E is a
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graded D-brane on (S1, F1). In addition, there are chain maps

Č•(S2, {Uα},Hom(E1, E2))→ Č•(S1, {Vβ},Hom(φ∗E1, φ
∗E2))

which are compatible with compositions. So there is a DG functor

φ∗ : DBrΓ(S2, F2)→DBrΓ(S1, F1)

that is compatible with the cone construction and thus induces an exact functor

[DBrΓ(S2, F2)]→ [DBrΓ(S1, F1)].

We can extend the notion of pullback to DQcohΓ(S2, F2) in the case where S2 satisfies the
hypotheses of Lemma 2.12. We simply define φ∗ to be the naive pullback on the subcategory of
DQcohΓ(S2, F2) consisting of objects whose underlying sheaves are flat. By Remark 2.15, this
subcategory is equivalent to DQcohΓ(S2, F2).

There is one last type of functorial construction that we can consider, namely the tensor
product. Let S be an even-graded scheme or stack and let F1 and F2 be two semi-invariant
regular functions of degree 2. Then there is a natural DG functor DBrΓ(S, F1)⊗C DBrΓ(S, F2)→
DBrΓ(S, F1 + F2). If E1 and E2 are graded D-branes on (S, F1) and (S, F2), respectively, and we
define an endomorphism of E1 ⊗ E2 by

d= d1 ⊗ id +σ ⊗ d2,

then (E1 ⊗ E2, d) is a graded D-brane on (S, F1 + F2). (Recall that σ(m) = (−1)deg(m)m when
m is homogeneous.) Now, if E1, F1 and E2, F2 are graded D-branes on (S, F1) and (S, F2),
respectively, then there is a canonical isomorphism

Hom(E1 ⊗ E2, F1 ⊗F2)∼=Hom(E1, F1)⊗Hom(E2, F2)

and therefore a chain map

Č•(S, {Uα},Hom(E1, F1))⊗C Č
•(S, {Uα},Hom(E2, F2))

→ Č•(S, {Uα},Hom(E1 ⊗ E2, F1 ⊗F2)).

This is compatible with the composition chain maps and therefore we obtain a DG functor

DBrΓ(S, F1)⊗C DBrΓ(S, F2)→DBrΓ(S, F1 + F2).

3. Graded D-branes for a vector bundle and section

In this section we study in detail the LG pair introduced in Example 2.2. Let Y be a nonsingular
quasiprojective variety and V a vector bundle over Y . Suppose that s is a regular section of V,
meaning that the rank of V is the same as the codimension of the zero locus of s. Denote by Z
the zero locus of s. Write S for the total space of the vector bundle V∨ and let p : S→ Y be the
projection. We can view s as a regular function F on S that is linear on the fibers of p. Since S is
the total space of a vector bundle, it has a natural C×-action. However, we consider the LG pair
(S, F ) where the Γ-action is obtained by ‘doubling’ the C×-action via the squaring map λ 7→ λ2.

There is a distinguished object in DBrΓ(S, F ), which we denote byK. To construct it, we begin
by observing that p∗V∨ has both a canonical section and a canonical cosection. The cosection, of
course, is the pullback of s. The section sY , on the other hand, is the canonical section of p∗V∨
which vanishes precisely on the zero section Y ⊂ S. The composition

OS
sY−−−→ p∗V∨ s−−→OS
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is simply F . Now, since p : S→ Y is Γ-invariant, p∗V∨ has a canonical Γ-equivariant structure.
With respect to this equivariant structure, s∨ is equivariant while sY has weight two. Hence
s and sY have weight one as morphisms OS → p∗V∨(χ−1) and p∗V∨(χ−1)→OS , respectively.
(Recall from § 2 that F(χ) has equivariant structure twisted by the character χ, in this case
shifting sections from weight zero into weight one.) We can now define K.

Definition 3.1 (Distinguished graded D-brane). Let K ∈DBrΓ(S, F ) be the graded D-brane
whose underlying Γ-equivariant vector bundle is

•∧
p∗V∨(χ−1)

and whose differential is given by the formula

d(−) = sY ∧ (−) + s ∨ (−).

This graded D-brane has a very important property. View ∧•p∗V∨(χ−1) as a Γ-equivariant
sheaf of algebras. Then left multiplication gives a map

∧•p∗V∨(χ−1)→End(K).

On the other hand, contraction gives a map

∧•p∗V(χ1)→End(K).

Together, these two maps give an isomorphism
•∧

(p∗V(χ1)⊕ p∗V∨(χ−1))∼= ∧•p∗V(χ1)⊗ ∧•p∗V∨(χ−1)→End(K).

It is straightforward to check that the isomorphism intertwines the differential on End(K) with
the Koszul differential

d= (sY ⊕ s) ∨ −.
Hence there is a quasi-isomorphism

End(K)→OZ
since Z is the vanishing locus of sY ⊕ s, viewed as a section of p∗V∨ ⊕ V, and sY ⊕ s is a regular
section.

Next, we define S = p−1Z ⊂ S and let i : S→ S be the inclusion. Since F vanishes on S and
S is Γ-invariant, we may view i∗OS as an object in QcohΓ(S, F ). Note that

(∧•p∗V∨, s ∨ −)

is a resolution of i∗OS . The natural map

K→ i∗OS
actually sends the differential on K to zero and therefore gives a morphism in QcohΓ(S, F ).

Lemma 3.2. The morphism K→ i∗OS is an isomorphism in DQcohΓ(S, F ).

Proof. It suffices to check that the cone on this morphism is zero. We will prove a more
general statement that is more convenient to work with. Suppose that C• is a bounded Z-graded
Γ-equivariant sheaf with endomorphisms α and β that have Γ-weight one and which raise and
lower the bullet grading, respectively. Assume that α2 = β2 = 0 and α ◦ β + β ◦ α= F · id so
that (C•, α+ β) is a curved, graded quasicoherent sheaf. If the complex (C•, α) is acyclic, then
(C•, α+ β) is zero in DQcohΓ(S, F ).
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We proceed by induction on the number of bullet-degrees in which C• is nonzero. In order for
(C•, α) to be acyclic, C• is either zero or has two or more nonzero homogeneous components. If
there are two homogeneous components, then α is an isomorphism and therefore β is F · α−1. In
this case, the identity morphism of (C•, α+ β) is nullhomotopic, so it is isomorphic to the zero
object.

In general, suppose that n is the smallest integer for which Cn 6= 0. Observe that α :
Cn→Cn+1 must be injective. So α gives an isomorphism between Cn and α(Cn)⊂ Cn+1. Now
Cn ⊕ α(Cn)⊂ C• is clearly closed under both α and β separately. Hence α and β descend to
C• := C•/(Cn ⊕ α(Cn)) and satisfy the same relations. Moreover, by construction, (C•, α) is still
acyclic. By induction, it is trivial. Clearly, (Cn ⊕ α(Cn), α+ β) is trivial; and since (C•, α+ β)
fits into a triangle with two trivial objects, it is trivial as well.

Finally, we observe that the cone on K→ i∗OS has the form considered in the preceding
paragraphs, with α corresponding to s∨ ∨ − and β corresponding to sY ∧, and with ∧ip∗V∨(χ−1)
in bullet-degree −i. 2

Remark 3.3. The lemma above is a special case of the stabilization discussed by Eisenbud
in [Eis80, § 7].

Suppose that Y has an ample line bundle OY (1). Then S is Γ-quasiprojective with ample
bundle OS(1) = p∗OY (1). We put K(i) =K ⊗OS(i), where the tensor product is as Γ-equivariant
vector bundles.

We will now prove that DMFΓ(S, F ) is equivalent to Dbcoh(Z). First, we note that i : S→ S
is affine and p : S→ Z is flat. Therefore, i∗ and p∗ are exact. Now i and p are Γ-equivariant
(where Z has the trivial Γ-equivariant structure) and F vanishes on S. Hence, there are natural
triangulated DG functors

p∗ : QcohΓ(Z, 0)→QcohΓ(S, 0), i∗ : QcohΓ(S, 0)→QcohΓ(S, F ),

and since i∗ and p∗ are exact on the abelian categories of quasicoherent sheaves and preserve
direct sums, they descend to triangulated functors

p∗ : DQcohΓ(Z, 0)→DQcohΓ(S, 0), i∗ : DQcohΓ(S, 0)→DQcohΓ(S, F ).

Clearly, p∗ sends DcohΓ(Z, 0) = Dbcoh(Z) to DcohΓ(S, 0); and since S is nonsingular and
Γ-quasiprojective, i∗ sends DcohΓ(S, 0) to DMFΓ(S, F ), as in Lemma 2.12.

Theorem 3.4. The functor i∗ ◦ p∗ : Dbcoh(Z)→DMFΓ(S, F ) is an equivalence.

Proof. We will first prove that the functor is fully faithful. Fix an open affine cover {UY,α}. This
gives rise to open affine covers {Uα ∩ Z}, {p−1Uα} and {p−1Uα ∩ S} of Z, S and S, respectively.
In what follows, we use this system of compatible covers to form all Čech complexes and sheaves,
in particular those used implicitly to define categories of graded D-branes.

We need to calculate what the functor does to spaces of morphisms. First, recall that we
can lift i∗p∗ to QcohΓ(S, F ) by sending P ∈DBrΓ(Z, 0) to Č(i∗p∗P). Then there is a natural
morphism of complexes

Č(Hom(P,Q))→Hom(Č(i∗p∗P), Č(i∗p∗Q)).

Next, we know that the morphism K(j)→ i∗p
∗OZ(j) is an isomorphism in DQcohΓ(S, F ). So

we consider the arrow

Č(Hom(OZ(j),OZ(j′)))→Hom(Č(i∗p∗OZ(j)), Č(i∗p∗OZ(j′)))→Hom(Č(K(j)), Č(i∗p∗OZ(j′)))
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and note that the right-hand complex computes Hom(i∗p∗OZ(j), i∗p∗OZ(j′)) in DQcohΓ(S, F ).
To see that this arrow is a quasi-isomorphism, note that it fits into the commutative triangle

Č(Hom(OZ(j),OZ(j′))) // Hom(Č(K(j)), Č(i∗p∗OZ(j′)))

Č(Hom(K(j), i∗p∗OZ(j′)))

33gggggggggggggggggggg

OO

and observe that Hom(K(j), i∗p∗OZ(j′))∼=K∨|S(j′ − j) is none other than (the direct image
in S of) the Koszul resolution of OZ(j − j′) on S. Since [Perf(Z)] = 〈OZ(i)〉i∈Z (see [BB03]),
this means that i∗p∗ is fully faithful on [Perf(Z)]. (Recall that 〈OZ(i)〉i∈Z is the smallest full
triangulated subcategory of D(Qcoh(Z)) containing {OZ(i)} and closed under cones, shifts,
isomorphic objects, and direct summands.) We denote by 〈OZ(i)〉⊕i∈Z the closure of 〈OZ(i)〉i∈Z
under taking small direct sums and note that, by results in [Nee92], Dbcoh(Z)⊂ 〈OZ(i)〉⊕i∈Z.
Since i∗p∗ preserves direct sums, it follows that i∗p∗ is fully faithful on Dbcoh(Z) as well.

Now Dbcoh(Z) is idempotent complete. Therefore, if the image of i∗p∗ weakly generates
DQcohΓ(S, F ), then i∗p

∗ will give an equivalence Dbcoh(Z)→DQcohΓ(S, F )c that factors
though the inclusion DMFΓ(S, F ). Since DMFΓ(S, F )⊂DQcohΓ(S, F )c is dense, this would
mean that i∗p∗ gives an equivalence between Dbcoh(Z) and DMFΓ(S, F ).

It remains to show that the image of i∗p∗ weakly generates DQcohΓ(S, F ). Suppose that
F ∈DQcohΓ(S, F ) is an object such that Hom(i∗p∗G, F) = 0 for all G ∈Dbcoh(Z). Let us say
that such an object is in the right-orthogonal to i∗p∗ and write i∗p∗ ⊥F . We claim that ifW is a
Γ-equivariant vector bundle on S, then i∗p

∗ ⊥F ⊗W. First, note that W|S ∼= p∗W|Z . Next, for
G ∈Dbcoh(Z), suppose that E → i∗p

∗G is an isomorphism where E is a graded D-brane. Then

E ⊗W∨→ i∗p
∗G ⊗W∨ = i∗p

∗(G ⊗W|Z)

is also an isomorphism. Now

Hom(i∗p∗G, F ⊗W)∼= Hom(E , F ⊗W)∼= Hom(E ⊗W∨, F)∼= Hom(i∗p∗(G ⊗W∨|Z), F) = 0.

Since DMFΓ(S, F ) weakly generates DQcohΓ(S, F ), we can assume that the sheaf underlying F
is a direct sum of equivariant vector bundles and hence flat. Let K(s) be the Koszul resolution of
S ⊂ S. It is Γ-equivariant and K(s)⊗F →F|S is an isomorphism. Since K(s)⊗F is an iterated
cone on objects of the form F ⊗W where W = ∧mV∨ for values of m, we see that i∗p∗ ⊥F|S .
Clearly, this implies that F|S = 0.

Thus, for any graded D-brane E , Hom(E , K(s)⊗F) = 0. We can compute Hom(E , K(s)⊗F)
by first pushing K(s)⊗Hom(E , F) down to Y and then taking hypercohomology. Now
p∗K(s)⊗Hom(E , F) =KY (s)⊗ p∗Hom(E , F), and since p∗End(E) is supported on Z, so is
p∗Hom(E , F). (We write KY (s) for the Koszul complex of s on Y .) Observe that this means that
H•(KY (s)⊗ p∗Hom(E , F)) is locally isomorphic to ∧•V∨ ⊗H•(p∗Hom(E , F)). We conclude that
p∗Hom(E , F) is acyclic if and only if KY (s)⊗ p∗Hom(E , F) is acyclic. If the hypercohomology of
KY (s)⊗ p∗Hom(E , F)(i) vanishes for all i, thenKY (s)⊗ p∗Hom(E , F), and hence p∗Hom(E , F),
has to be acyclic. However, if p∗Hom(E , F) is acyclic, then Hom(E , F) = 0. Because E was
arbitrary, this implies, at last, that F = 0. 2

Remark 3.5. Orlov uses a similar geometric picture to prove [Orl06, Theorem 2.1], which relates
the category of singularities of the zero locus of a regular section of a vector bundle to the
category of singularities of a divisor on the associated projective space bundle. It is likely that
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one could adapt his technique to this situation. However, the method has already appeared
several times in the literature and therefore we chose to take a different approach.

Remark 3.6. Suppose that Z ⊂ Y is actually a retract, meaning that there is a map q : Y → Z

such that q ◦ iZ = id. Then the equivalence between Perf(Z) and DMFΓ(S, F ) can be presented
in a different way. Indeed, since there is a projection q : Y → Z, there is a projection q̃ : S→ Z

obtained by composing p and q. Clearly, q̃ is Γ-invariant. Consider the DG functor

Φ : DBrΓ(Z, 0)→DBrΓ(S, F )

defined by

Φ(P) = q̃∗P ⊗K.
There is a natural isomorphism of functors Φ∼= i∗p

∗, since

q̃∗P ⊗K→ q̃∗P ⊗ i∗p∗OZ → i∗p
∗P

is an isomorphism in DQcohΓ(S, F ). Therefore Φ is an equivalence.

This situation occurs in one degenerate case. Let Z be a variety and let V be a vector bundle
on Z. Let Y be the total space of V and let q : Y → Z be the vector bundle projection. Now,
put V = q∗V. As we know, V has a tautological section s that vanishes to first order along
Z ⊂ Y . The structure of the LG pair (S, F ) corresponding to this (V, s) is very special. First,
S can be understood as the total space of V ⊕ V∨. Working over a small enough open affine
set U ∼= Spec(R)⊂ Z, we can choose dual trivializations of V ⊕ V∨ so that over U , S looks like
Spec(R[x1, . . . , xr, y1, . . . , yr]), where r is the rank of V, and F =

∑
i xiyi. If xi and yi correspond

to V and V∨, respectively, then the xi and yi have Γ-weight 0 and 2, respectively, while R has
Γ-weight 0.

This type of function F was considered by Knörrer in [Kno87], and we can view Theorem 3.4
as a generalization of [Kno87, Theorem 3.1].

Remark 3.7. It follows from Lemma 3.2 that i∗p
∗ gives an equivalence between Perf(Z) =

〈OZ(i)〉i∈Z and 〈K(i)〉i∈Z. Thus, if Z is nonsingular, DMFΓ(S, F ) = 〈K(i)〉i∈Z .

4. Deformation to the normal bundle

In this section we discuss a framework for handling a certain type of deformation of LG pairs.
As a special case, we show that the general LG pair from the previous section can be deformed
to the degenerate LG pair of Remark 3.6.

Suppose that (S, F ) is an LG pair. Let Z be the reduced subscheme defined by τ(F ). We
assume that S is nonsingular and quasiprojective. Suppose that Z is Γ-invariant and that IZ
(=
√
τ(F ) ) is the ideal sheaf defining Z. Let NZ/S be the normal cone, the spectrum of the

sheaf of algebras
⊕

n InZ/I
n+1
Z . Since IZ is C×-equivariant, there is a natural Γ-action on NZ/S

inherited from S. Let d be the largest natural number such that F ∈ IdZ , so F defines a nonzero
section of IdZ/I

d+1
Z ⊂ONZ/S

. With an abuse of notation, we denote this regular function on NZ/S

by F . Under the inherited Γ-action, F has degree 2. Hence we obtain a new LG pair (NZ/S , F ).

Consider the sheaf of algebras on S given by

OS [t, t−1IZ ] = · · · ⊕ t−2I2
Z ⊕ t−1IZ ⊕OS ⊕ tOS ⊕ · · ·
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and let S̃ be the spectrum of this sheaf of algebras. Note that S̃ admits a map π : S̃→ A1. Write
S̃λ = π−1(λ) for any point λ ∈ A1. This map has the property that S̃λ ∼= S for any λ 6= 0 while
S̃0 =NZ/S . For this reason S̃ is called the deformation to the normal cone.

Since IZ is Γ-equivariant, the sheaf of algebrasOS [t, t−1IZ ] is Γ-equivariant. Hence S̃ carries a
Γ-action. Observe that t is fixed by Γ. Each fiber S̃λ is Γ-invariant and the induced Γ-actions on S̃1

and S̃0 agree with the actions we have already considered. Observe that t−dF is a regular function
on S̃ having degree 2 for the Γ-action on S̃. So we obtain an LG pair (S̃, t−dF ). The function
t−dF has the property that its restrictions to S̃1 and to S̃0 are the functions we are calling F ,
with an abuse of notation. Hence the inclusions (S, F )→ (S̃, t−dF ) and (NZ/S , F )→ (S̃, t−dF )
are morphisms of LG pairs.

Assume now that d= 2. We write T := C× and consider an action of T on the LG pair
(S̃, F̃ ) where F̃ := t−2F . We use this notation to avoid confusion between the two C×-actions
that exist in this setting. First, note that there is a C×-action on S̃ lifting the C×-action on A1.
This corresponds to the graded structure on the sheaf of algebras OS [t, t−1IZ ], where deg(t) = 1.
To obtain the T -action, we combine this action with the extant action. We have constructed a
Γ× C×-action on S̃ and we let T act via the diagonal homomorphism T → Γ× C× = C× × C×,
λ→ (λ, λ). Under this action, t has weight one and F̃ is T -invariant.

The variety S̃ has commuting actions of T and Γ. Recall that a graded D-brane E on
([S̃/T ], F̃ ) is a graded D-brane on (S̃, F̃ ) with a T -equivariant structure such that dE is
T -equivariant. We now consider the category

DBrΓ([S̃/T ], F̃ )

whose objects are T -equivariant graded D-branes and where the complex of morphisms between
two T -equivariant graded D-branes E and F is

HomDBrΓ(E , F)T ,

the subcomplex of T -invariants. Associated to the morphisms of LG pairs

(S, F ), (NZ/S , F ) ↪→ (S̃, F̃ )→ ([S̃/T ], F̃ )

we have pullback functors

DBrΓ([S̃/T ], F̃ )→DBrΓ(S, F ),DBrΓ(NZ/S , F ).

Suppose that (S, F ) is obtained as in the previous section. This means that there is a smooth
quasiprojective variety Y and a vector bundle V over Y with a regular section s. Then S is the
total space of V∨ and F is the function corresponding to the section s. The C×-action on S is
derived from the natural action of C× on V∨ by having λ in the new action act by λ2 in the old
action. Let Z ⊂ Y be the zero locus of s, and view Z as being embedded in S along the zero
section.

Consider the LG pair (NZ/S , F ). In this situation,

NZ/S =NZ/Y ⊕ V∨|Z ∼= V|Z ⊕ V∨|Z ,

and the induced grading comes from doubling the natural action of C× by scaling the V∨
summand and fixing the V summand. Moreover, the function F on S comes from contracting
a point of V∨ with the section s. Since s vanishes along Z, the induced function on the normal
bundle comes from contracting the V|Z summand with the V∨|Z summand. Hence the LG pair
(NZ/S , F ) has the form considered in Remark 3.6.

Recall that there are canonical graded D-branes KN and KS on (NZ/S , F ) and (S, F ),
respectively. In fact, we can interpolate between these with a graded D-brane on ([S̃/T ], F̃ ).
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Indeed, we form

K
S̃

= (∧•Ṽ, t−1s ∧+t−1α∨)

where Ṽ here denotes the pullback of V to S̃ under the natural map S̃→ S→ Y . This is
equivariant, since s and α both have degree 1 for the LG C×-action. We have K

S̃
|
S̃1

=KS
and K

S̃
|
S̃0

=KN . Therefore K
S̃

deforms KS into K.
Let O(1) denote an arbitrary very ample line bundle on Y , and let O

S̃
(1) be its pullback under

the map S̃→ Y . Since S̃→ Y is both T - and Γ-equivariant, O
S̃

(1) is both T - and Γ-equivariant.
Therefore, if E is a T -equivariant graded D-brane on (S̃, F̃ ), then so is E(n) := E ⊗ O

S̃
(1)⊗n for

any n ∈ Z. Moreover, the restrictions O
S̃

(1)|
S̃0

and O
S̃

(1)|
S̃1

are ample on S̃0 and S̃1, respectively.

Observe that since S is the total space of V∨, there is a closed immersion ĩ : V∨|Z × A1 =
S × A1 ↪→ S̃. Note that S × A1 is T - and Γ-invariant. Let p̃ : S × A1→ Z be the obvious
projection, which is flat and affine. The pullback of a complex of quasicoherent sheaves under p̃∗

gives a curved graded quasicoherent sheaf on ([S × A1/T ], 0). We can push such a sheaf forward
to obtain an object of DQcohΓ([S̃/T ], F̃ ). Let CZ be the full subcategory of DBrΓ([S̃/T ], F̃ )
consisting of objects isomorphic in DQcohΓ([S̃/T ], F̃ ) to those of the form ĩ∗p̃

∗G where G is a
coherent complex on Z.

Theorem 4.1. The restrictions

CZ →DBrΓ(S, F )

and

CZ →DBrΓ(NZ/S , F )

are quasi-equivalences.

Proof. Given a coherent complex G on Z, there is a finite complex E• of graded D-branes
that resolves ĩ∗p̃

∗G, as in Lemma 2.12. Consider the restriction of E•→ ĩ∗p̃
∗G to S = S̃1.

Note that restriction of T -equivariant sheaves on S̃ to S is the same as restriction to S̃\S̃0
∼=

S × C× followed by taking T -invariants. Hence it is exact, and we see that E•|S resolves
ĩ∗p̃
∗G|S = (i1)∗(p1)∗G. Furthermore, a sheaf of the form ĩ∗p̃

∗G has no t-torsion. So the restriction
of E•→ ĩ∗p̃

∗G to S̃0 =NZ/S remains exact as well. Clearly, ĩ∗p̃∗G|NZ/S
= (i0)∗(p0)∗G. Hence

the compositions of ĩ∗p̃∗ with the restrictions to S and NZ/S are just the two versions of the
equivalence i∗p∗. On the other hand, ĩ∗p̃∗ is fully faithful by essentially the same argument as
for Theorem 3.4, using the fact that K

S̃
(i)→ ĩ∗p̃

∗OZ(i) is an isomorphism in DQcohΓ([S̃/T ], F̃ )
and that H•(Z × A1,OZ×A1(i))T = H•(Z,OZ(i)). 2

Remark 4.2. We can also prove directly that the restrictions are fully faithful on a certain
category. Indeed, I claim that the restriction functors

〈K
S̃

(i)〉⊕i∈Z→DQcohΓ(NZ/S , F )

and

〈K
S̃

(i)〉⊕i∈Z→DQcohΓ(S, F )

are fully faithful. Since the restriction functors preserve direct sums, to show that these
functors are fully faithful it suffices to show that

Hom(K
S̃

(i),K
S̃

(j))→Hom(KN (i),KN (j)),
Hom(K

S̃
(i),K

S̃
(j))→Hom(KS(i),KS(j)).
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are isomorphisms. Now observe that there is a T -equivariant quasi-isomorphism End(K
S̃

)→
OZ×A1 , since End(K

S̃
) is a Koszul complex. Moreover, the restriction of this quasi-isomorphism

gives the quasi-isomorphisms

End(KS)→OZ ,
End(KN )→OZ .

Using the main spectral sequence (2) we see that the induced maps on the second page are

H•(S̃,OZ×A1(j − i))T
•

ttiiiiiiiiiiiiiiiii

**VVVVVVVVVVVVVVVVVV

H•(Z,OZ(j − i))∼= H•(S,OZ(j − i))• H•(NZ/S ,OZ(j − i))• ∼= H•(Z,OZ(j − i))

where, of course, H•(S̃,OZ×A1(j − i))• = H•(Z,OZ(j − i))•[t]. The T -invariants are just
H•(Z,OZ(j − i)), and we see that these maps are isomorphisms at the second page of the relevant
spectral sequences. Hence the maps above are isomorphisms.

In particular, the restrictions are fully faithful on 〈K
S̃

(i)〉⊕i∈Z ∩DMFΓ([S̃/T ], F̃ ). However,
without comparing everything to Dbcoh(Z), it is not clear that the category 〈K

S̃
(i)〉⊕i∈Z ∩

DMFΓ([S̃/T ], F̃ ) is large enough to guarantee that every graded D-brane on (S, F ) or (NZ/S , F )
is in the essential image of restriction. Nonetheless, it follows from Theorem 4.1 that we have

CZ = 〈K
S̃

(i)〉⊕i∈Z ∩DMFΓ([S̃/T ], F̃ ).

5. Application to Orlov’s theorem

Now, we will see how we may combine the results of the previous sections with Segal’s theorem
to derive Orlov’s theorem. Suppose that X ⊂ P = PN−1 is a smooth Calabi–Yau complete
intersection. Let W1, . . . , Wr ∈ C[x1, . . . , xN ] be homogeneous equations for X with di =
deg(Wi). The Calabi–Yau condition is

∑r
i=1 di =N . There are several relevant LG pairs. First, we

can combine the Wi into a section sW of the bundle
⊕r

i=1 O(di) on P. This section gives rise to a
function W on the total space Y of the bundle

⊕r
i=1 O(−di). This function is linear on each fiber

of the projection p : Y → P. Since Y is the total space of a vector bundle, it has an action of Γ.
However, as in § 3, we consider the new ‘doubled’ action induced by the squaring endomorphism
of Γ. Let OY (a) = π∗O(a) and note that

⊕r
i=1 OY (−di) has a tautological section s. The

function W can be factored as

OY
sW //

⊕r
i=1 OY (di)

∨s // OY

where ∨s denotes contraction with s.
We now describe Segal’s theorem. To begin with, we consider V := Spec(C[x1, . . . , xN , p1,

. . . , pr]) with a G := C× action and a Γ-action. (As in previous sections we attempt to
reduce confusion by introducing the notation G and Γ to differentiate between C×-actions.)
Under the first action, deg(xi) = 1 and deg(pi) =−di. Under the Γ-action, we have deg(xi) = 0
and deg(pi) = 2. The function F =

∑r
i=1 piWi is fixed by G and has Γ-weight 2. There are

two possible open sets of semistable points in the GIT sense in V , associated to the identity
and inversion characters of G. Write V+ and V− for the points semistable with respect to the
identity and inversion characters, respectively. In general, V+ and V− are the complements
of the hyperplanes defined by the vanishing of the positive and negative weight variables,
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respectively. So, in our case, V+ is the complement of the plane xi = 0 and V− is the complement
of the plane pj = 0. We see that [V+/G]∼= Y . We will describe [V−/G] in more detail below.
Both semistable sets are Γ-invariant and hence we obtain three LG pairs ([V/G], F ), (Y, W ) and
([V−/G], W ), fitting into a diagram as follows.

DBrΓ([V−/G], W ) DBrΓ([V/G], F )
j∗oo j∗ // DBrΓ(Y, W )

Let Gt be the full DG subcategory of DBrΓ([V/G], F ) whose objects are graded D-branes E such
that the underlying G-equivariant vector bundle is a direct sum of character line bundles in the
set {OV (t), . . . ,OV (t+N − 1)}. We can now formulate Segal’s theorem.

Theorem 3.3 [Seg09]. The functors

DBrΓ([V−/G], W ) Gt
j∗oo j∗ // DBrΓ(Y, W )

are quasi-equivalences.

Remark 5.1. This is a special case of the theorem that Segal proves. He considers a linear
action of C× on a vector space V . He assumes the action is Calabi–Yau, which means that the
action map C×→GL(V ) factors through a SL(V )⊂GL(V ). Then, for a general Γ-action and
potential W on V , he constructs a family of equivalences as above between DBrΓ([V+/G], F )
and DBrΓ([V−/G], F ).

In conclusion, we can summarize the geometric picture in the following diagram, where the
solid arrows are DG functors which are quasi-equivalences when labeled by '. The dashed lines
indicate the phenomena responsible for the various equivalences and comparisons, and the dotted
arrow on the left represents the fully faithful functor between the homotopy categories of Perf(X)
and DBrΓ([V−/G], W ) that one obtains by going around the diagram counterclockwise.

Gt
j∗−

'
vvmmmmmmmmmmmmmmm

j∗+

'
))SSSSSSSSSSSSSSSS

DBrΓ([V−/G], W )
‘Segal inversion’ _____________ DBrΓ(Y, W )

Deformation

q
u

y
~

�

�

Perf(X) Knörrer

periodicity

'
((PPPPPPPPPPPPP

Orlov-type theorem

OO

CZ ⊂DBrΓ(Ỹ , t−2W )T

j∗ '

OO

j∗
'

vvlllllllllllll

DBrΓ(NX/Y , W )

The quasi-equivalences induce triangulated equivalences in the homotopy categories. There is
another picture at the level of homotopy categories.

Dbcoh(X) //

i∗p∗

��

[DBrΓ([V−/G], W )]

[DBrΓ(Y, W )] [Gt]

j∗

OO

j∗
oo

If r = 1, [V−/G] has a simple description and [DBrΓ([V−/G], W )] is naturally equivalent
to the category of graded matrix factorizations. In this case, V = Spec(C[x1, . . . , xN , p])
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and V− = Spec(C[x1, . . . , xN , p, p
−1]). The ring C[x1, . . . , xn, p] has two gradings and the

degrees are deg(xi) = (1, 0) and deg(p) = (−N, 2). Let R= C[x1, . . . , xN ]. The finitely generated
bigraded projective modules over R[p−1] are direct sums of the modules R[p−1](a, b), where
R[p−1](a, b) stands for the free R[p−1]-module generated by an element of degree (a, b). Note
that R[p−1] is also generated by p as a module and therefore R[p−1]∼=R[p−1](−N, 2) as bigraded
modules. The only units of R[p−1] not in degree zero are the powers of p, and hence there
are no isomorphisms between the modules in the collection R[p−1](a, b) that do not come
from R[p−1]∼=R[p−1](−N, 2) by shifts and compositions. We see that the bigraded modules
R[p−1](a, 0), R[p−1](a, 1) are all distinct and that every bigraded projective module is isomorphic
to a direct sum of these.

An object of DBrΓ([V−/G], W ) is a bigraded projective R[p−1]-module E =
⊕

j R[p−1](aj , bj)
and an endomorphism d of degree (0, 1) satisfying d2 = pf , where f is the defining equation of
our hypersurface. Clearly,

HomR[p−1](R[p−1](a, 0), R[p−1](a′, 0))(0,1) = HomR[p−1](R[p−1](a, 1), R[p−1](a′, 1))(0,1) = 0,

HomR[p−1](R[p−1](a, 1), R[p−1](a′, 0))(0,1) = (R[p−1])(a′−a,0) =Ra′−a,

HomR[p−1](R[p−1](a, 0), R[p−1](a′, 1))(0,1) = p(R[p−1])(a′−a,0) = pRa′−a.

This means that the data for specifying a graded D-brane on ([V−/G], W ) is the same as the
data required to specify a graded matrix factorization of f over R= C[x1, . . . , xN ]. Given two
graded D-branes E and F on ([V−/G], W ), we write E and F , respectively, for the corresponding
R[p−1]-modules. Since

HomDBrΓ(E , F) = HomR[p−1](E, F )(0,∗),

we see that [HomDBrΓ(E , F)] is given by the space of graded chain maps E→ F modulo
nullhomotopic chain maps. Hence [DBrΓ([V−/G], W )] is equivalent to the category of graded
matrix factorizations, and clearly the equivalence is compatible with the triangulated structure.

So we obtain the following as a corollary.

Corollary 5.2. There is a family of equivalences Dbcoh(X)'MFΓ(W ) when X is a
nonsingular Calabi–Yau hypersurface of a projective space, with defining equation W .

6. Localization

In this section we will formulate and prove a precise version of the statement that for an LG
pair (S, F ), when S is quasiprojective, the category DBrΓ(S, F ) only depends on a formal
neighborhood of the singular locus of the zero locus of F . To make this precise, we need a
notion of graded D-brane that makes sense on a formal neighborhood of the zero locus of F .

Let (S, F ) be an LG pair with S nonsingular and quasiprojective and having an equivariant
ample line bundle L. Recall that the Jacobi ideal (sheaf) J(F ) of F is defined to be the image
of the map TS →OS given by contraction with dF , where TS is the tangent sheaf. The Tyurina
ideal (sheaf) is defined to be τ(F ) := J(F ) + F · OS . The Tyurina ideal sheaf defines the scheme-
theoretical singular locus of the zero locus of F . Let Z be the reduced subscheme associated to
τ(F ). Observe that τ(F ) is C×-equivariant and hence Z is invariant.

We consider the subschemes Z(n) defined by τ(F )n. All of these schemes have an action of C×
so that the closed immersions Z(n)→ S are equivariant. Let Ẑ be the formal completion of S
along Z, where we choose τ(F ) for the ideal of definition.
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Definition 6.1. An equivariant structure on a coherent sheaf E on Ẑ is, for each n, an
equivariant structure on E|Z(n) such that the equivariant structure on E|Z(n) is obtained by
restriction from the equivariant structure on E|Z(n+1) .

View F as a function on Ẑ. Now we can formulate the correct notion of a graded D-brane
on (Ẑ, F ).

Definition 6.2. A graded D-brane on Ẑ controlled by L is an equivariant vector bundle E on Ẑ
with an endomorphism dE of degree 1 such that d2

E = F · idE and such that for some m� 0 the
natural map O

Ẑ
⊗ Γ(Ẑ, E ⊗ L⊗m)→E ⊗ L⊗m is surjective.

It remains to construct a DG category. Let U ′ ⊂ S be an invariant open affine set, and let
U = U ′ ∩ Z. Then we define the graded ring

Ogr

Ẑ
(U) =

⊕
k∈Z

lim←−n(OS(U ′)/τ(F )n)k.

If E is an equivariant sheaf on Ẑ, we can define the Ogr

Ẑ
(U) module

Egr(U) =
⊕
k∈Z

lim←−n(E(U ′)/τ(F )nE(U ′))k.

Suppose that E and F are two equivariant vector bundles on Ẑ. There is a natural graded
Ogr

Ẑ
(U)-module structure on the space of continuous homomorphisms

Homgr(E , F)(U) := Homcont(Egr(U), Fgr(U)).

There is an alternative description,

Homgr(E , F)(U) =
⊕
k∈Z

lim←−n(Hom(E , F)(U ′)/τ(F )nHom(E , F)(U ′))k.

The endomorphisms of E and F induce a differential on Homgr(E , F)(U), making it into
a complex of C vector spaces and a DG Ogr

Ẑ
(U)-module. Observe that the formation of

Homgr(E , F)(U) is compatible with composition in the sense that there is canonical morphism

Homgr(E2, E3)(U)⊗Ogr

Ẑ
(U) Homgr(E1, E2)(U)→Homgr(E1, E3)(U) (6)

of DG Ogr

Ẑ
(U)-modules.

Fix a C×-invariant affine open cover {Uα} of S.

Definition 6.3. The category DBrΓ(Ẑ, F, L) of graded D-branes on (Ẑ, F ) controlled by L is
the DG category whose objects are graded D-branes on (Ẑ, F ) controlled by L. The complex of
morphisms between E and F is the total complex of the bicomplex

Č•(Ẑ, {Uα ∩ Z},Homgr(E , F))•.

Composition is induced by (6).

Write j : Ẑ→ S for the natural morphism of locally ringed spaces. If E is a graded D-brane
on (S, F ), then j∗E is a graded D-brane controlled by L. Moreover, if E and F are two graded
D-branes on (S, F ) and U is an invariant open affine set, there is a map

j∗Hom(E , F)(U)→Homgr(j∗E , j∗F)(U ∩ Z)
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of graded OS(U)-modules that intertwines the natural differentials. This is compatible with
compositions and defines a functor j∗ : DBrΓ(S, F )→DBrΓ(Ẑ, F, L).

Theorem 6.4. The completion functor j∗ : DBrΓ(S, F )→DBrΓ(Ẑ, F, L) is a quasi-equivalence.

Proof. We must verify that j∗ is quasi-fully faithful and quasi-essentially surjective. To prove
that j∗ is quasi-fully faithful, we will check that

j∗ :Hom(E , F)(Uα)→Homgr(j∗E , j∗F)(Uα ∩ Z)

is a quasi-isomorphism. Since j∗ is compatible with the filtrations by Čech degrees, it induces a
map of spectral sequences. When the above map is a quasi-isomorphism for each α, the map of
spectral sequences becomes an isomorphism at the first page and hence j∗ is a quasi-isomorphism.
An exact sequence of graded modules is exact in each homogeneous degree. Moreover, the inverse
systems appearing in the definition of the graded completion satisfy the Mittag–Leffler condition.
Hence, graded completion is exact. It follows that⊕

k∈Z

lim←−nH(Hom(E , F)(U ′))/τn(F )H(Hom(E , F))(U ′)k ∼= H∗ Homgr(j∗E , j∗F)(U).

However, τn(F )H(Hom(E , F))(U ′) = 0 for all n> 1, and therefore

H(Hom(E , F))(U ′)→ H∗ Homgr(j∗E , j∗F)(U)

is an isomorphism.
Now we must show that j∗ is quasi-essentially surjective. We will deduce this from [Orl09b,

Theorem 3.10], which we view as a local statement. The theorem says that if B is a graded ring
of finite homological dimension and W is a homogeneous element, then

coker : H0 DBrΓ(B, W )→Dgr
Sg(B/WB)

is a triangulated equivalence. We can decompose a graded D-brane E into its odd and even
parts E0 and E1, and we denote the restriction of dE to E0 by d+

E : E0→E1. The functor in the
theorem is given by the assignment E 7→ coker(d+

E ), which, as Orlov proves, descends to a functor
H0 DBrΓ(B, W )→Dgr

Sg(B/WB).

Consider a graded D-brane E on (Ẑ, F ) controlled by L. Write V (F ) for the subscheme defined
by F and (m) for tensoring with L⊗m. Let α̂= coker(d+

E ) and let α be a coherent equivariant
sheaf on V (F ) such that j∗α= α̂. Suppose that

0→Qk→Qk−1→ · · · →Q0→ α→ 0

is an exact sequence of coherent sheaves on V (F ) such that Qi is locally free and equivariant
for i < k. Take m� 0 such that Qi(m) and E(m) are globally generated. Choose an equivariant
map

O
Ẑ

(−m)⊗C Γ(S, Q1(m))→E+

such that each square of

OẐ(−m)⊗C Γ(S, Qk(m)) //

����

OẐ(−m)⊗C Γ(S, Qk(m)) //

����

· · · // OẐ(−m)⊗C Γ(S, Qk(m)) //

����

E+

����
j∗Qk

// j∗Qk−1
// · · · // j∗Q1

// α

commutes and

O
Ẑ

(−m)⊗C Γ(S, Q2(m))→O
Ẑ

(−m)⊗C Γ(S, Q1(m))→E+
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is zero. Define Pi = ker(OS(−m)⊗C Γ(S, Qi(m))→Qi). If i < k, then Pi is an equivariant vector
bundle. Moreover, if k > dim(S)− 1, then Pk is also locally free. Note that Pk fits into an exact
sequence

0→ Pk→OS(−m)⊗C Γ(S, Qk(m))→Qk−1→ · · · →Q0→ α→ 0.

Now, the two term resolutions

0→ Pi→OS(−m)⊗C Γ(S, Qi(m))→Qi→ 0

imply that for any quasicoherent sheaf β on S, Extm(Qi, β) = 0 if m> 1. Therefore

Ext1(Pk, β)∼= Extk+2(α, β) = 0

and Pk is locally free.
Suppose that φ : P →Q(1) is an injective equivariant map of equivariant vector bundles

on S with the property that FQ⊂ φ(P ). Over an invariant affine open set, P and Q are
graded projective modules. We can define a map in the opposite direction, ψ :Q→ P (1), by
ψ(q) = φ−1(Wq). This new map is equivariant, and by construction we have φ ◦ ψ =W · idQ and
ψ ◦ φ=W · idP . It is the unique such map and hence all of the local maps patch together to give a
map ψ :Q→ P (1). So, for each i, there is a unique equivariant arrow OS(−m)⊗C Γ(S, Qi(m))→
Pi that gives OS(−m)⊗C Γ(S, Qi(m))⊕ Pi[1] the structure of a graded D-brane, which we
denote by Mi. Observe that for 16 i < k, Mi is locally contractible since the cokernel of
Pi→OS(−m)⊗C Γ(S, Qi(m)) is locally free on V (F ).

Let Ck−1 = cone(Mk→Mk−1). Since Mi+2→Mi+1→Mi is the zero map, we can inductively
define Ci = cone(Ci+1→Mi). Since Mi is contractible if i < k, the natural map Ci→ Ci+1[1] is
an isomorphism in the homotopy category. Now there is a map j∗C1→E . Consider the cone
C = cone(j∗C1→E).

Let U ′ ⊂ S be an invariant affine open set, and let U = U ′ ∩ Z. Then since the functor

coker : H0 DBrΓ(Ogr

Ẑ
(U), F )→Dgr

Sg(Ogr

Ẑ
(U)/(F ))

is triangulated, it follows from the construction of C as an iterated cone that coker(C) is
isomorphic to the acyclic complex

0→Qk→Q1→ · · · →Q1→ α→ 0,

which is itself isomorphic to zero. Since coker is fully faithful, this implies that C(U) is
itself contractible. Now, since C is locally contractible, it is zero in the homotopy category
H0 DBrΓ(Ẑ, F ). This means that j∗C1 is isomorphic to E in the homotopy category. Hence j∗ is
quasi-essentially surjective. 2

Remark 6.5. Orlov obtained a similar theorem in the case of categories of singularities;
see [Orl09a].
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