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MARKOV ADDITIVE PROCESSES
AND REPEATS IN SEQUENCES
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Abstract

Computer analysis of biological sequences often detects deviations from a random model.
In the usual model, sequence letters are chosen independently, according to some fixed
distribution over the relevant alphabet. Real biological sequences often contain simple
repeats, however, which can be broadly characterized as multiple contiguous copies
(usually inexact) of a specific word. This paper quantifies inexact simple repeats as
local sums in a Markov additive process (MAP). The maximum of the local sums has
an asymptotic distribution with two parameters (λ and k), which are given by general
MAP formulas. The general MAP formulas are usually computationally intractable, but
an essential simplification in the case of repeats permits λ and k to be computed from
matrices whose dimension equals the size of the relevant alphabet. The simplification
applies to some MAPs where the summand distributions do not depend on consecutive
pairs of Markov states as usual, but on pairs with a fixed time-lag larger than one.
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1. Introduction and statement of results

Computer analysis of sequences is a major preoccupation in modern molecular biology.
Typically and often implicitly, analysis programs detect deviations from a Markov model of
sequence letters, usually a model of order zero, where letters are mutually independent and
chosen from a fixed distribution. Real biological sequences often contain repeats, however,
which can be broadly characterized as multiple copies (usually inexact) of a particular word.
Many repeats flagrantly violate a Markov model of order zero; so analysis programs often flag
them for fruitless human scrutiny.

Because repeats can confound sequence analysis programs, ancillary programs have been
developed for detecting and masking repeats before performing sequence analysis, e.g. the
masking programs SEG [21]–[23], XNU [18], [20], sputnik, DUST, and RepeatMasker, to
name a few. Although common sequence repeats in DNA fall into about five classes [19], this
paper focuses on simple repeats, which consist of contiguous inexact copies of a specific word.
Though a narrow class, simple repeats still pose significant problems in sequence analysis. Thus,
some specialized masking programs (e.g. sputnik and DUST) target simple repeats exclusively,
while general masking programs usually offer a similar specialized option.

Although simple repeats often impede sequence analysis, it should be noted that sometimes
they are of intrinsic biological interest and can constitute an object of study in their own right.

Rigorous statistical results are available for exact repeats (e.g. … sgt/sgt/sgt/sgt…) [2], [12]
or exact words [4], [5], [10], [11], [15]. Unfortunately, inexact repeats (e.g. … sgt/sgp/sgt/sgt…)
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are more important biologically [6]. Because few statistical results pertain to inexact repeats,
programs usually mask inexact repeats heuristically, without the benefit of rigorous statistical
criteria. Accordingly, the next paragraph reformulates the definition of an inexact simple repeat
with a view to rigorous results. (Because the rest of the paper is pertinent only to simple repeats,
we drop the qualifier ‘simple’.)

Let L := (L1, L2, . . . ) ∈ L∞ denote a semi-infinite string (where ‘:=’denotes a definition),
i.e. a sequence on a finite alphabet L of size #L. Fix w for the rest of the paper, and let
L(i, i + w] := (Li+1, . . . , Li+w) be a ‘w-word’ within L. In addition, let s : L × L �→ R

be a ‘similarity score matrix’ on the alphabet L. Intuitively, s(a, b) is large if the letters a

and b symbolize similar objects. (In many applications, s(a, b) = s(b, a) for all a, b ∈ L,
but asymmetric score matrices are permitted here.) Define the ‘w-repeat score’ by Yk :=
s(Lk, Lk+w) with Y0 := 0, the global sums by Sk := ∑k

i=1 Yi , and the local maxima by

M̂k := max0≤i≤j≤k

∑j
m=i Ym.

Intuitively, the local maximum M̂k is large if L(0, k] contains a substring that decomposes
into contiguous w-words, with each word and its successor being ‘similar’ according to the
matrix s. As an example, consider exact repeats, which correspond to a similarity score of
s∞(a, b) = 1 if a = b and −∞ otherwise. Then, M̂k +w is the length of the longest substring
in L(0, k] that decomposes into contiguous exact copies of a w-word, possibly terminating with
an incomplete copy (e.g. … sgt/sgt/sgt/sg…).

The condition s(a, b) ∈ R given implicitly above prohibits s(a, b) = −∞, effectively
excluding exact repeats from the mathematical discourse. The exclusion is irrelevant in practice,
however, because the theory applies to similarity matrices s(a, b) arbitrarily close to s∞(a, b).
The mathematical axioms could in fact include exact repeats by taking s : L×L �→ R∪{−∞},
but only with some complications (notably, non-uniqueness of the right eigenvector v, defined
below). For simplicity, therefore, our axioms exclude exact repeats, but with no practical
impact.

Some practical consequences of our main results, Theorem 1.1 and Theorem 1.2 below,
follow their statement. Theorem 1.1 and Theorem 1.2 make the following probabilistic
assumptions, required by the theory of the local maximum M̂k in a Markov additive process
(MAP). (Throughout the paper, the reader may refer to [3] as a general reference for MAPs,
Markov chains (MCs), or renewal theory; and to [7], [9] as specific references for the local
maximum process in a general MAP.) Let the letters of L be chosen independently from the
distribution {ql : l ∈ L}. To avoid trivialities, assume ql > 0 for all l ∈ L. Assume also that

µ :=
∑

a,b∈L

qaqbs(a, b) < 0,

and that there is a cycle of letters a0, a1, . . . , am = a0 such that mink=1,...,m

∑k
i=1 s(ai−1, ai)

> 0.
Several definitions are now required. Unless specified otherwise, all vectors are column

vectors of dimension #L and all matrices are of dimension (#L)× (#L). Let a and b symbolize
the row and column indices of matrices and vectors. For later purposes, think of the letters of
L as being produced by a degenerate MC of order one, whose transition matrix P := ‖qb‖ has
every row equal to its stationary distribution q	 := [qb]. Consider Pθ = ‖qb exp{θs(a, b)}‖,
the moment-generating matrix corresponding to the (trivial) random variate Za,b = s(a, b).
Because the degenerate MC is irreducible and aperiodic, the Perron–Frobenius theorem shows
that Pθ has a strictly dominant eigenvalue ρ(θ) > 0 (i.e. ρ(θ) is the unique eigenvalue of
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greatest absolute value). The dominant eigenvalue corresponds to strictly positive left and right
eigenvectors, uθ and vθ , normalized for convenience so that u	

θ vθ = 1. On its own (remarks
elsewhere notwithstanding [13]), the convexity of the elements of Pθ as functions of θ shows
that ρ(θ) = sup{u	Pθv : u	v = 1; u, v ≥ 0} is a convex function, and because P = P0 is
stochastic, ρ(0) = 1.

For δ �= 0, we have

uθ (Pθ+δ − Pθ )vθ ≤ ρ(θ + δ) − ρ(θ) ≤ uθ+δ(Pθ+δ − Pθ )vθ+δ, (1.1)

so in the limit δ → 0, the continuity of eigenvectors [14, p. 396] yields ρ′(θ) = uθ (dPθ /dθ)vθ .
The convexity of ρ(θ) and the fact that ρ′(0) = q	‖qbs(a, b)‖1 = µ < 0 show the existence
of

(1) a unique θ = λ > 0 such that ρ(λ) = 1, and

(2) a minimum 0 < ρ := min0<θ<λ ρ(θ) < 1.

As part of the Perron–Frobenius theorem, the eigenvalue ρ(λ) = 1 corresponds to a strictly
positive right eigenvector v = [va] := vλ. (The eigenvector v is unique within a multiplicative
factor, and any nonzero multiple of v serves present purposes. The uniqueness can be lost,
however, if the possibility s(a, b) = −∞ were permitted.) Let V := diag(v) := ‖vaδa;b‖,
where the Kronecker delta δa;b = 1 for a = b and 0 otherwise. The ‘associated transition
matrix’

P ∗ := ‖p∗
a,b‖ := ‖v−1

a vbqb exp{λs(a, b)}‖ = V −1PλV (1.2)

is stochastic, i.e. p∗
a;b ≥ 0 and P ∗1 = V −1PλV 1 = V −1Pλv = V −1v = 1. Thus, P ∗ defines

transitions for some ‘associated MC’ on L. The associated MC has stationary distribution
(π∗)	 = (uλ)

	V , and its mean score per step is µ∗ := ∑
(a,b) π∗

a p∗
a;bs(a, b). The convexity

of ρ(θ) shows that µ∗ = ρ′(λ) > 0 at ρ(λ) = 1.
Consider a sequence of independent, identically distributed random variates {X̃k : k =

1, 2, . . . } and their global sums S̃k := ∑k
i=1 X̃i , under three possible marginal distributions:

P̂{X̃ = s(a, b)} = qaqb (with expectation Ê); P̃α{X̃ = s(a, b)} = qaqbvb/r (with expectation
Ẽα); and P̃β{X̃ = s(a, b)} = π∗

a p∗
a;bv

−1
b /r∗ (with expectation Ẽβ). The distribution P̂ appears

in Theorem 1.1 and P̃α and P̃β (which are normalized to probability distributions by the constants
r and r∗) appear in Theorem 1.2.

The argument following (1.1) demonstrates the existence of a unique λ̂ > 0 satisfying
Ê exp(λ̂X̃) = ∑

(a,b) qaqb exp{λ̂s(a, b)} = 1, called ‘the λ for gapless alignment’ in bioinfor-
matics [8].

Theorem 1.1. If y, m → ∞ so that e−λym tends to a finite, nonzero constant, then

lim
y→∞ P{M̂m ≥ y} = (kwe−λy)m,

where the pre-factor kw is defined in Section 3 along with an efficient simulation for estimating
it. (Note: λ does not depend on w.) In addition, 0 < λ ≤ λ̂, with equality if and only if∑

(b) qb exp{λs(a, b)} = 1 for all a ∈ L or
∑

(a) qa exp{λs(a, b)} = 1 for all b ∈ L.

A plot illustrating the equation limy→∞ P{M̂m ≥ y} = (kwe−λy)m in Theorem 1.1 is given
in Figure 1.
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Figure 1: A comparison between the density (open symbols) and the asymptotic Poisson intensity kwe−λy

(black symbols) for repeat word-lengths w = 1 (squares); w = 8 (triangles); and w = 64 (circles).

For comparison, the asymptotic Poisson intensity, k̂e−λ̂y , for ungapped alignment of two independent
sequences is also plotted (crosses).

Figure 1 illustrates simulation results for the binary alphabet L = {0, 1}, a uniform distribu-
tion q0 = q1 = 0.5, and a similarity score matrix with elements s(0, 0) = 5, s(1, 1) = 2, and
s(0, 1) = s(1, 0) = −8. The simulation generated a single sequence of length m = 107, for
which the Ruzzo–Tompa algorithm defined maximal segments of w-repeats [17]. The number
of maximal segments (i, j ] with S(i,j ] := ∑j

k=i+1 Yk ≥ y was divided by m = 107 to yield
the density of maximal segments with S(i,j ] ≥ y. For w = 1 (squares), the density agrees
with repeat asymptotics above the score y = 10. For w = 8 (triangles), the density agrees
with alignment asymptotics above the score y = 10 before crossing over to repeat asymptotics
above the score y = 50. For w = 64 (circles), the density agrees with alignment asymptotics
throughout the plot area. The crossover behavior shown for w = 8 can be explained as follows.
Until the score y exceeds the sum of w = 8 similarity scores s(a, b), each letter is matched
with only one other letter (as in the alignment of two independent sequences), not with two
other letters (as in the middle of long repeats).

Remark 1.1. In matrix notation, the final alternatives are Pλ1 = 1 and q	Pλ = q	.
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Define ηZ := {· · · − η, 0, η, . . . } for η > 0 and 0Z := R. Then, the set of scores S :=
{s(a, b); a, b ∈ L} has lattice span δ := sup{η ≥ 0 : S ⊆ ηZ}. Define θ−δ := δ−1(1 − e−δλ)

if δ > 0 and θ0 := λ if δ = 0, along with r := ∑
(b) qbvb and r∗ := ∑

(a,b) π∗
a p∗

a;bv
−1
b =∑

(b) π∗
b v−1

b . The product rr∗, which is independent of the normalization of v, satisfies

rr∗ = (q	v)(π∗)	V −11 = (q	V 1)(π∗)	V −11 = q	V [1(π∗)	]V −11 ≤ q	V V −11 = 1,

(1.3)
because the Perron–Frobenius theorem shows that the stochastic matrix 1(π∗)	 has dominant
eigenvalue 1. The equality rr∗ = 1 holds if and only if either V −11 is proportional to the
right eigenvector 1 of 1(π∗)	 or q	V is proportional to the left eigenvector (π∗)	 = u	

λ V of
1(π∗)	. Thus, Pλ1 = 1 (i.e. v = v1 for some v �= 0) or q	Pλ = q	, so Theorem 1.1 also
shows that rr∗ = 1 if and only if λ = λ̂.

Let ρ̃α(θ) := Ẽα exp(θX̃) = r−1q	Pθv. Then, ρ̃α(λ) = r−1q	v = 1 = ρ̃α(0), so
the argument following (1.1) demonstrates that 0 < ρ̃α(	θα) := min0<θ<λ ρ̃α(θ) < 1, the
uniqueness of the minimum defining 	θα . (Because ρ̃α(θ) ≤ r−1q	vρ(θ) = ρ(θ), the use of
ρ̃α instead of ρ strengthens some of the inequalities given below.)

Given the sums {S̃k}, define their first (weak) descending ladder epoch (DLE) by
α̃ := min{m > 0 : S̃m ≤ 0} and their first strict ascending ladder epoch (SALE) by β̃ :=
min{m > 0 : S̃m > 0}. Let the sequence {s̃α,w : w = 0, 1, . . .} satisfy the recursion

s̃α,w := Ẽα[1 − exp(λS̃α̃); α̃ = w] +
w−1∑
m=0

s̃α,mP̃α{α̃ = w − m}, (1.4)

with s̃α,0 := 0. The renewal theorem yields limw→∞ s̃α,w = s̃α := Ẽα[1 − exp(λS̃α̃)]/Ẽαα̃.
Similarly, ρ̃β(θ) := Ẽβ exp(−θX̃) = r−1∗ (π∗)	V −1Pλ−θ 1 satisfies ρ̃β(λ) = 1 = ρ̃β(0),

so 0 < ρ̃β(	θβ) := min0<θ<λ ρ̃β(θ) < 1. (Note that ρ̃β(θ) = r−1∗ (π∗)	V −1Pλ−θ 1 ≤
ρ(λ − θ), again strengthening some of the inequalities given below.) Let the sequence
{s̃β,w : w = 0, 1, . . .} satisfy the recursion

s̃β,w := Ẽβ [1 − exp(−λS̃β̃ ); β̃ = w] +
w−1∑
m=0

s̃β,mP̃β{β̃ = w − m}, (1.5)

with s
˜β,0 := 0, so as above, limw→∞ s̃β,w = s̃β := Ẽβ [1 − exp(−λS̃β̃ )]/Ẽββ̃.

Define k̃w := s̃α,ws̃β,w/(θ−δµ∗), and note that k̃ := s̃α s̃β/(θ−δµ∗) = limw→∞ k̃w.
Theorem 1.2 below uses the error bounds εα,w := 2{ρα(	θα)}wρ(	θα)/{1 −ρ(	θα)} and εβ,w :=
2{ρβ(	θβ)}wρ(λ − 	θβ)/{1 − ρ(λ − 	θβ)}, which vanish geometrically with w.

Theorem 1.2. Under the conditions of Theorem 1.1, if 0 < εα,w < s̃α,w and 0 < εβ,w < s̃β,w,

1 ≤ (rr∗)wk̃w

kw

≤ (1 − εα,ws̃−1
α,w)−1(1 − εβ,ws̃−1

β,w)−1, (1.6)

so the relative error in replacing kw by its upper bound (rr∗)wk̃w vanishes geometrically with
a computable bound. The foregoing also proves limw→∞(rr∗)−wkw = limw→∞ k̃w = k̃.

Remark 1.2. As a consequence of Theorem 1.1, Theorem 1.2, and the argument follow-
ing (1.3), λ = λ̂ if and only if rr∗ = 1 if and only if limw→∞ kw = k̃ if and only if Pλ1 = 1 or
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Figure 2: A plot illustrating the approximation kw ≈ (rr∗)wk̃w in Theorem 1.2. Simulation results were
obtained under the same conditions as in Figure 1: a binary alphabet L = {0, 1}, a uniform distribution
q0 = q1 = 0.5, and a similarity score matrix with elements s(0, 0) = 5, s(1, 1) = 2, and s(0, 1) =
s(1, 0) = −8. The simulation described in Section 3 generated estimates for kw (w = 1, . . . , 103) (open
circles) from a single random sequence of length m = 107. The upper points (+) are the approximating
upper bound (rr∗)wk̃w; the lower points (×) are the approximations (rr∗)wk̃, where k̃ = limw→∞ k̃w .

q	Pλ = q	. In addition, let q	 be uniform (i.e. q = (#L)−11) and the score matrix symmetric,
Pλ1 = 1. Then, q	Pλ = (Pλq)	 = q	, so that both Pλ1 = 1 and q	Pλ = q	 hold, yielding
π∗ = q. Thus, P̃α = P̂ and P̃β{X̃ = s(a, b)} = qaqb exp{λ̂s(a, b)}, so that k̃ = k̂, where k̂ is
the so-called ‘k for gapless alignment’ in bioinformatics [8].

The simplifications in Remark 1.2 have the following import. Most matrices used for the
nucleotide alphabet L = {A, C, G, T } are ‘match-mismatch scores’, i.e. for some {s−, s+} and
any a, b ∈ L, s(a, a) = s+ > 0 and s(a, b) = s− < 0 for a �= b. For any match-mismatch
score, if the letters of L are uniformly distributed (qb = (#L)−1 for all b ∈ L), Remark 1.2
pertains. Now, some masking programs find repeats by aligning a sequence to itself and
assuming heuristically that the resulting self-alignment scores are distributed as though the two
identical aligned sequences were in fact independent, e.g. in the case of gapless alignment some
masking programs assume λ = λ̂. If the letters do not follow a uniform distribution (as in some
clinically important organisms with GC- or AT- rich genomes, e.g. mycobacterium tuberculosis
or malaria), Theorem 1.1 and Theorem 1.2 suggest that the naïve substitution of λ̂ for λ yields
inaccurate approximations for random repeat frequencies (see Figure 1).
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A computer program calculating the tail probabilities (p-values) from Theorem 1.1 is
presently being used in a study of nonglobular protein domains and will be made available
upon publication of that study. Readers interested in practical applications of Theorem 1.1
and Theorem 1.2 can examine a related bioinformatics article [1], which appeared while this
article was under review. Using the present notation, Achaz et al. [1] suggested the use of
Sbest−repeat := maxw M̂m as a repeat statistic. They assumed that the asymptotic distribution

lim
y→∞ P

{
max

w
M̂m ≥ y

} = (ke−λy)m

and estimated λ with crude Monte Carlo sampling of maxw M̂m. However, their analysis did not
examine contributions to k from different word-lengths w. Interestingly, in random sequences,
all word-lengths w have the same exponential rate λ, but the small word-lengths w can dominate
the statistic maxw M̂m (see Figure 1 and Figure 2).

The layout of this paper is as follows. In Section 2 we describe the MAP pertinent to
repeats and includes an essential simplification that permits the practical application of general
MAP theory to repeats. In Section 3 we present a formula for the pre-factor kw. Because
of the formula’s complexity, kw must be determined by simulation, if the approximation in
Theorem 1.2 is not accurate enough. In Section 3 we suggest a change of measure to increase
the statistical efficiency when simulating kw. Finally, in Section 4 we present a proof of
Theorem 1.2.

2. The w-repeat Markov additive process

Define Ak := L(k, k + w], so that {Ak ∈ W : k = 0, 1, . . .} is an MC on the state-space
W := Lw. The transitions Ak−1 → Ak are L(k − 1, k + w − 1] → L(k, k + w], with each
letter Lk+w chosen independently from the distribution {ql : l ∈ L}. The MC permits transitions
from one word to another, only if the suffix of length w−1 of the first word equals a prefix of the
second word. Index the rows and columns of vectors and matrices over W by a = (a1, . . . , aw)

and b = (b1, . . . , bw), the indexes a and b ranging over W := Lw in the same order. Unless
specified otherwise, all vectors are column vectors of dimension #W := (#L)w and all matrices
are of dimension (#W)×(#W). Define the generalized Kronecker delta δa2,...,aw;b1,...,bw−1 := 1
if (a2, . . . , aw) = (b1, . . . , bw−1) and 0 otherwise. The MC {Ak} has stationary distribution
π̄	 := [π̄b] := [qb1 . . . qbw ] and transition matrix

P̄ := ‖p̄a;b‖ := ‖p̄a1,...,aw;b1,...,bw
‖ = ‖δa2,...,aw;b1,...,bw−1qbw‖,

of dimension (#W) × (#W). Let Pγ̄ and Eγ̄ respectively denote the MC probability measure
and expectation corresponding to the initial 1 × (#W) distribution γ̄ 	.

For the w-repeat score

Yk := s(Lk, Lk+w), Y0 := 0,

we can verify that {(Ak, Yk) : k = 0, 1, . . .} satisfies the properties of a MAP, as follows. First,
as noted above, (Ak) is an MC. Second, conditioned on the complete MC (Ak), the distributions
of Yk are independent. (In fact, each Yk := s(Lk, Lk+w) is conditionally deterministic.) Third,
the marginal distribution of Yk is determined by the transition Ak−1 → Ak , Ak−1 determines
Lk and Ak determines Lk+w. With Sk := ∑k

i=1 Yi , we call {(Ak, Sk)} the ‘(inexact simple)
w-repeat MAP’.
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To apply MAP theory for the local maximum, note the following. First,

µ̄ := Eπ̄ Y1 =
∑

a,b∈L

qa1 . . . qawδa2,...,aw;b1,...,bw−1qbws(a1, bw)

=
∑

a1,bw∈L

qa1qbws(a1, bw)

= µ < 0.

Second, there exists a cycle of states A0, A1, . . . , Am = A0 such that mink=1,...,m Sk > 0.
MAP theory immediately yields the limit

lim
y→∞ P

{
M̂m ≥ y

} = (kwe−λ̄y)m

given in Theorem 1.1, where the formula for the pre-factor kw is delayed to Section 3, and the
exponential rate λ̄ is defined immediately below. The main task in the rest of this section is to
identify λ̄ as λ in Theorem 1.1.

General MAP theory gives the exponential rate λ̄, as follows. The moment-generating matrix
for the (trivial) random variate s(a1, bw) is given by

P̄θ = ‖δa2,...,aw;b1,...,bw−1qbw exp{θs(a1, bw)}‖. (2.1)

As discussed in the introduction, because the MC (Ak) is irreducible and aperiodic, the
Perron–Frobenius theorem states that P̄θ has a strictly dominant eigenvalue ρ̄(θ) > 0 (i.e. ρ̄(θ)

is the single eigenvalue with greatest absolute value), with ρ̄(θ) corresponding to a strictly
positive right eigenvector, which is unique within a multiplicative factor. Because

ρ̄(θ) = max{ū	P̄θ v̄ : ū	v̄ = 1; ū, v̄ ≥ 0}

is the maximum of functions that are convex in θ , it also is a convex function. Because P̄ = P̄0
is stochastic, ρ̄(0) = 1. Because µ̄ < 0, there exists a unique θ = λ̄ > 0 such that ρ̄(λ̄) = 1
(see the introduction).

Although (2.1) leads to a definition of λ̄, direct application of the definition is usually
impractical because the relevant matrices have (#W)2 = (#L)2w elements and grow exponen-
tially with w. In fact, general MAP formulas usually defy practical implementation because
of their sheer complexity. Here, however, the w-repeat MAP yields an essential simplification
for a Markov sequence of order zero, permitting a practical computation of λ̄ from matrices of
dimension (#L) × (#L).

As motivation for the simplification, aw-repeat hasw ‘phases’with each phase corresponding
to a letter position within the repeating w-word [23]. The w-repeat MAP {(Ak, Sk)} therefore
decomposes into w ‘phased MAPs’ corresponding to {(Ai+kw,

∑k
j=0 Yi+jw) : k = 0, 1, . . .}

(i = 0, . . . , w−1). Intuitively, because the w-repeat MAP {(Ak, Sk)} can be reconstructed from
the phased MAPs, the phased MAPs determine λ̄. The two paragraphs preceding Theorem 1.1
(which the reader should now review) contain several definitions pertinent to the phased MAP.

In the following, context and subscripts distinguish the row and column indices a =
(a1, . . . , aw) and b = (b1, . . . , bw) from the coordinates they contain. We now proceed to
identify λ̄ in the w-repeat MAP as λ in the phased MAPs.
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Consider the w-repeat MAP and the column vector v̄ = [va1 . . . vaw ] of dimension #W.
Note that v̄ is a right eigenvector of P̄λ (λ, not λ̄) with eigenvalue 1:

P̄λv̄ = ‖δa2,...,aw;b1,...,bw−1qbw exp{λs(a1, bw)}‖[va1 . . . vaw ]
=

[ ∑
(c1,c2,...,cw)

δa2,...,aw;c1,...,cw−1qcw exp{λs(a1, cw)}vc1 . . . vcw

]

=
[
va2 . . . vaw

∑
(cw)

qcw exp{λs(a1, cw)}vcw

]

= [va1 . . . vaw ]
= v̄.

Let V̄ := diag(v̄) := ‖v̄aδa;b‖. In analogy with the phased MAPs, the associated transition
matrix for the w-repeat MAP is given by

P̄ ∗ := V̄ −1P̄λV̄ = ‖v−1
a1

vbwδa2,...,aw;b1,...,bw−1qbw exp{λs(a1, bw)}‖
= ‖δa2,...,aw;b1,...,bw−1p

∗
a1;bw

‖. (2.2)

Because P̄ ∗ = ‖p̄∗
a,b‖ is similar to P̄λ, it has the same eigenvalues. Because P̄ ∗ is stochastic,

ρ̄(λ) = 1. Because only one λ̄ > 0 can satisfy the equation ρ̄(λ̄) = 1, the equality λ̄ = λ

follows.
The stochastic matrix P̄ ∗ has stationary distribution (π̄∗)	 = [π̄∗

b ] := [π∗
b1

. . . π∗
bw

]:
(π̄∗)	P̄ ∗ = [π∗

b1
. . . π∗

bw
]‖δa2,...,aw;b1,...,bw−1p

∗
a1;bw

‖
=

[∑
(c)

π∗
c1

. . . π∗
cw

δc2,...,cw;b1,...,bw−1p
∗
c1;bw

]

=
[
π∗

b1
. . . π∗

bw−1

∑
(c1)

π∗
c1

p∗
c1;bw

]

= (π̄∗)	.

(2.3)

Let P∗̄
γ and E∗̄

γ respectively denote the probability measure and expectation corresponding to the
initial distribution γ̄ 	 and transition matrix P̄ ∗. In conjunction with the (deterministic) variates
Yk := s(Lk, Lk+w), the matrix P̄ ∗ defines an ‘associated MC’ and an ‘associated MAP’ for the
w-repeat MAP.

For future reference, P̄θ /ρ(θ) (because of its dominant right eigenvector v̄θ > 0) is similar
to a stochastic matrix, by analogy to P̄λ/ρ(λ) and (2.2). Consequently, P̄θ /ρ(θ) has dominant
eigenvalue 1, so ρ̄(θ) = ρ(θ) for all 0 ≤ θ ≤ λ.

We finish our discourse on Theorem 1.1 with a proof of its final statement. Returning to
the notation used in the introduction for the phased MAP (no over-bars), consider the strictly
convex function f̂ (θ) := q	Pθ 1 − 1, which satisfies f̂ (0) = f̂ (λ̂) = 0. From q	1 = 1, it
follows that f̂ (λ) = q	Pλ1 − 1 ≤ ρ(λ) − 1 = 0, so 0 < λ ≤ λ̂. Equality f̂ (λ) = 0 holds if
and only if Pλ1 = 1 or q	Pλ = q	.

3. The simulation of the pre-factor kw

After some preliminary definitions, (3.2) in this section gives the pre-factor kw used in
Theorem 1.1. Equation (3.2) is elegant in its generality, but it is rarely computationally tractable.
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However, if (as in Section 2) the right eigenvector v̄ and the distribution of the associated
MAP have been determined, a general simulation technique (given after (3.2)) can be used to
determine kw.

Consider the global sums (Sk : k = 0, 1, . . .), and define inductively their descending ladder
epochs (DLEs) α0 := 0 and αi+1 := min{m > αi : Sm ≤ Sαi

}, with α := α1 (where min ∅ :=
∞). The states of successive DLEs in the original MAP constitute an MC with the transition
matrix P̄ (α) := ‖Pa{Aα = b}‖ and some stationary distribution (π̄ (α))	 = (π̄ (α))	P̄ (α).

Define (α) := {αk : k = 0, 1, . . .} (the set of DLEs); �
αj := max{k ∈ (α) : k < j} (the

DLE preceding j ); and �αSj = ∑j
k=�

αj +1 Yk (the segmental sum between j and the DLE
preceding j ). The DLEs generate a Markov renewal process {(Aαk

, αk) : k = 0, 1, . . .}. Reward
the interval (αk−1, αk] with v̄a{1 − exp(λ�αSαk

)} if Aαk
= a. By the Markov version of the

renewal-reward theorem [16, p. 132], the limiting reward per unit time is

lim
j→∞ Ea

[
v̄Aj

{1 − exp(λ�αSj )}; j ∈ α)

]
= Eπ̄ (α) [v̄Aα {1 − exp(λSα)}]

Eπ̄ (α) α
, (3.1)

for every starting state Aα0 = A0 = a.
Likewise, the global sums have strict ascending ladder epochs (SALEs) β0 := 0 and βi+1 :=

min{m > βi : Sm > Sβi
}, with β := β1. The states of successive SALEs in the associated MAP

constitute an MC with the transition matrix P̄ (β) := ‖v−1
a vb Ea[exp(λSβ); Aβ = b, β < ∞]‖

(proved stochastic by the optional stopping theorem from the theory of the Wald martingale [9])
and some stationary distribution (π̄ (β))	 = (π̄ (β))	P̄ (β).

A ‘negative associated MAP’ can be constructed from the associated transition matrix P ∗
and the variates Yk = −s(Lk, Lk+w). The (strict) DLEs of the negative associated MAP lead
to the analogs (β),

�
βj , and �βSj of the quantities (α), �

αj , and �αSj above, along with an
analog of (3.1).

Dembo and Karlin [9] give several formulas relating to the pre-factor kw, all summarized
compactly by the following:

kw = µ

θ−δ

Eπ̄ (β) [v̄A−1
0

{exp(λSβ) − 1}; β < ∞]
Eπ̄ (β){Sβv̄Aβ v̄−1

A0
exp(λSβ); β < ∞}

Eπ̄ (α) [v̄Aα {1 − exp(λSα)}]
Eπ̄ (α) Sα

= 1

θ−δµ∗

E∗
π̄ (β) [v̄−1

Aβ
{1 − exp(−λSβ)}]
E∗

π̄ (β)β

Eπ̄ (α) [v̄Aα {1 − exp(λSα)}]
Eπ̄ (α) α

,

(3.2)

where E∗ is defined after (2.3). The second equality in (3.2) is justified by theorems pertaining
to a change of measure and by Markov versions of Wald’s identity, i.e. Eπ̄ (α) Sα = µ Eπ̄ (α) α

and E∗
π̄ (β) Sβ = µ∗ E∗

π̄ (β) β. Although written in the notation of the w-repeat MAP, (3.2) holds
for any MAP and has no specialized simplifications.

In (3.2), expectations over the initial distributions π̄ (α) and π̄ (β) sum at least #W = (#L)w

terms, typically too many for exhaustive enumeration, even if the distributions π̄ (α) and π̄ (β)

could be determined. However, simulations can efficiently evaluate kw to an arbitrary accuracy.
To estimate the factors involving π̄ (α) in (3.2), simulate the original MAP distribution,

i.e. independent letters with distribution {ql : l ∈ L}. The initial state A0 can be chosen
according to the stationary distribution π̄ = [qa1 . . . qaw ] of the original MAP, which provides
a ready surrogate for π̄ (α). The MC underlying the w-repeat MAP is assumed to be ergodic,
thus, the ergodic theorem proves that, wp1-P̄ (i.e. with probability 1 under P̄ ), the average
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of v̄Aj
{1 − exp(λ�αSj )} over successive DLEs j ∈ (α) in the simulation approaches the right

side of (3.1). Thus, a single realization estimates the ratio common to (3.1) and (3.2).
To estimate the factors involving π̄ (β) in (3.2), simulate w independent letter sequences

(A∗
i , A

∗
i+w, A∗

i+2w, . . .) (i = 0, . . . , w − 1) from the associated MC, whose transition prob-
abilities {p∗

a;b} are given in (1.2). The initial states A∗
i (i = 0, . . . , w − 1) can be chosen

according to the stationary distribution π∗ of the associated MC. Now, interlace the sequences
into a single letter sequence (A∗

0, A
∗
1, A

∗
2, . . .), which has the same transition probabilities as the

associated MC for w-repeats. (The letter sequence has initial distribution π̄∗, which provides
a ready surrogate for the stationary distribution π̄ (β).) As above, wp1-P̄ ∗, the average of
v̄−1
Aβ

{1 − exp(−λSβ)} over successive (strict) DLEs j ∈ (β) in the simulation of the negative
associated MAP approaches the ratio involving E∗

π̄ (β) in the final expression of (3.2).

4. The approximation of the pre-factor kw

Recall the probability space with measures P̃α and P̃β described immediately before
Theorem 1.1. Let [j − w, j ] := {j − w, . . . , j}, and define ‘w-quantities’ analogous to (α),
�
αj , and �αSj above, but relevant to [j − w, j ], namely, the set of w-DLEs

(α[j−w,j ]) := {i ∈ [j − w, j ] : Si ≤ min{Sj−w, . . . , Si−1}}, (4.1)

(where min ∅ := ∞, so j − w ∈ (α[j−w,j ])); �
α[j−w,j ] := max{k ∈ (α[j−w,j ]) : k < j} (the

w-DLE preceding j); and �αS[j−w,j ] = ∑j
k=�

α[j−w,j ]+1 Yk (the segmental sum between j and
the w-DLE preceding j). In the probability space corresponding to measure P̃α , define analogs
for the above quantities: substitute X̃k for Yk := s(Lk, Lk+w) throughout the definitions, and
embellish the analogs with over-tildes to indicate their provenance, e.g. (α̃), �αS̃[j−w,j ], etc.

Motivated by a desire to approximate the value in (3.1), consider the corresponding
w-quantity

lim
j→∞ Ea[v̄Aj

{1 − exp(λ�αS[j−w,j ])}; j ∈ (α[j−w,j ])]

= lim
j→∞ Ea

[( j+w∏
i=j+1

vLi

)
{1 − exp(λ�αS[j−w,j ])}; j ∈ (α[j−w,j ])

]

= Eπ̄

[( 2w∏
i=w+1

vLi

)
{1 − exp(λ�αS[0,w])}; w ∈ (α[0,w])

]

= rwẼα[1 − exp(λ�αS̃w); w ∈ (α̃)],

(4.2)

where the equalities are justified as follows. The first equality reflects the definition of v̄Aj
. The

second holds because the second expression is the limit of a bounded function of the variates
{Ak : k = j − w, . . . , j}, and the function’s distribution is determined by the distribution of
Aj−w, which is stationary in the limit. The Markov property justifies the final equality,
because π̄	 = [qb1 . . . qbw ]. (The quantities r and Ẽ are defined after Theorem 1.1 in the
introduction.) The quantity Ẽα[1 − exp(λ�αS̃w); w ∈ (α̃)] satisfies (1.4), and is referred to
as s̃α,w in Theorem 1.2. Note that the w-quantities are determined by the Markov states
{Ak : k = j − w, . . . , j}, which permitted removal of Markov dependency in the final expres-
sion of (4.2).
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Let an indicator random variate 1{•} = 1 if the event [•] occurs and 0 otherwise. Define the
difference

Dw,j := {1 − exp(λ�αS[j−w,j ])} 1{j ∈ (α[j−w,j ])} − {1 − exp(λ�αSj )} 1{j ∈ (α)}
= {1 − exp(λ�αS[j−w,j ])} 1{j ∈ (α[j−w,j ]) \ (α)}

+ {exp(λ�αSj ) − exp(λ�αS[j−w,j ])} 1{j ∈ (α)},
(4.3)

(noting that α, �αSj , etc., depend implicitly on w). Now, �αS[j−w,j ] ≤ 0 on [j ∈ (α[j−w,j ])],
so the first term is nonnegative and no more than 1{j ∈ (α[j−w,j ]) \ (α)}. Moreover, because
(α) ⊆ (α[j−w,j ]), the event j ∈ (α) implies �αSj = �αS[j−w,j ] unless the DLE prior to j

satisfies �
αj < j − w, in which case �αS[j−w,j ] < �αSj ≤ 0. The second term is therefore

nonnegative and no more than 1{j ∈ (α)} 1{�
αj < j − w}. Thus, 0 ≤ Dw,j and

Dw,j ≤ 1{j ∈ (α[j−w,j ]) \ (α)} + 1{j ∈ (α)} 1{�
αj < j − w}

≤ 2 1{Sj ≤ Sj−w and min{S0, S1, . . . , Sj−w−1} < Sj−w}. (4.4)

Let the event in the final indicator be F . Because the MC equilibrates, for any initial state a,
bounded convergence yields

0 ≤ lim
j→∞ Ea[v̄Aj

Dw,j ] = Eπ̄ [v̄Aj
Dw,j ] ≤ 2 Eπ̄ [v̄Aj

; F ]. (4.5)

Let δ̄c := [δc,a] be the column vector of 0s with a single 1 at the cth coordinate. The eigenvalue
ρ̄(θ) = ρ(θ) satisfies the inequality ū	P̄θ w̄ ≤ ρ(θ)ū	w̄ for all ū, w̄ ≥ 0 (see the paragraph
following (2.3)). Set w̄ = δ̄a and ū = π̄ to derive π̄	P̄θ δ̄a ≤ ρ(θ)π̄a , so π̄	P̄θ ≤ ρ(θ)π̄	.
Iteration then yields π̄	P̄ k

θ ≤ ρk(θ)π̄	. For k = 0, . . . , j − w − 1 and θ ≥ 0, therefore,

Pπ̄ {Sj−w − Sk > 0; Aj−w = a} ≤ Eπ̄ [exp{θ(Sj−w − Sk)}; Aj−w = a]
= π̄	P

j−w−k
θ δ̄a

≤ ρj−w−k(θ)π̄a,

(4.6)

where the first inequality is of the Chernoff type; the second equality rewrites the expectation
in matrix notation; and the third inequality follows from π̄	P̄ k

θ ≤ ρk(θ)π̄	.
For any 0 < θ < λ, return to (4.5) to find that

Eπ̄ [v̄Aj
; F ] ≤ 2

j−w−1∑
k=0

Eπ̄ [v̄Aj
; Sj ≤ Sj−w and Sk < Sj−w]

= 2
j−w−1∑

k=0

∑
a∈W

Eπ̄ [v̄Aj
; Sj−w − Sj ≥ 0 | Aj−w = a]

× Pπ̄ [Sj−w − Sk > 0; Aj−w = a]

≤ 2
j−w−1∑

k=0

ρj−w−k(θ)
∑
a∈W

π̄a Ea[v̄Aw exp(θSw); Sw ≤ 0]

≤ 2 Eπ̄ [v̄Aw exp(θSw)] ρ(θ)

1 − ρ(θ)

= rw{ρ̃α(θ)}w ρ(θ)

1 − ρ(θ)
,

(4.7)
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with the following justification. The first inequality follows because of Boole’s union-sum
inequality applied to [min{S0, S1, . . . , Sj−w−1} < Sj ] = ⋃j−w−1

k=0 [Sk < Sj ]. The second
equality follows from conditioning on the event [Aj−w = a], and the fact that the future
(Sj−w − Sj and Aj ) is conditionally independent of the past (Sj−w − Sk and states prior
to Aj−w). The third inequality follows from an application of (4.6) and using stationarity to
translate the origin of time from epoch 0 to epoch j − w, thereby replacing Sj−w − Sj with
−Sw. The fourth inequality follows by summing the geometric series (0 < ρ(θ) < 1) and by
dropping any restriction to the event [Sw ≤ 0]. The relation Eπ̄ [v̄Aw exp(θSw)] = {rρ̃α(θ)}w
yields the fifth equality.

The convenient but effective choice of θ = 	θα in the final expression of (4.7) yields
limj→∞ Ea[v̄Aj

Dw,j ] ≤ rwεα,w, so by bounded convergence as j → ∞, (3.1)–(4.7) give

0 ≤ rws̃α,w − Eπ̄ (α) [v̄Aα {1 − exp(λSα)}]
Eπ̄ (α) α

≤ rwεα,w. (4.8)

Denote the second term in (4.8) by sα,w to yield 1 ≤ rws̃α,w/sa,w ≤ (1 − εα,ws̃−1
α,w)−1 for

0 < εα,w < s̃α,w.
In (3.2), the factors corresponding to the associated MAP can be treated similarly. For the

associated MAP, (4.8) corresponds to

0 ≤ rw∗ s̃β,w −
E∗

π̄ (β) [v̄−1
Aβ

{1 − exp(−λSβ)}]
E∗

π̄ (β) β
≤ rw∗ εβ,w. (4.9)

Equation (4.9) is easily proved by considering the negative associated MAP again, where in an
obvious notation, P ∗

θ = V −1Pλ−θV . Replace ρj−w−k(θ)π̄a in (4.6) by ρj−w−k(λ − θ)π̄∗
a .

The arguments above, applied to the negative associated MAP, then produce a factor of

E∗̄
π∗ [v̄−1

Aw
exp(−θSw)] = {r∗ρ̃β(θ)}w

in (4.7), replacing rw{ρ̃α(θ)}w in (4.7) eventually leads to (4.9).
Denote the second term in (4.9) by sβ,w to yield 1 ≤ rw∗ s̃β,w/sβ,w ≤ (1 − εβ,ws̃−1

β,w)−1 for
0 < εβ,w < s̃β,w. Together, the error bounds in (4.8) and (4.9) for the original and negative
associated MAP yield (1.6), which concludes the proof of Theorem 1.2.
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