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Abstract. For a nondegenerate r-graph F, large n, and t in the regime [0, cF n], where cF > 0 is
a constant depending only on F, we present a general approach for determining the maximum
number of edges in an n-vertex r-graph that does not contain t + 1 vertex-disjoint copies of F. In
fact, our method results in a rainbow version of the above result and includes a characterization of
the extremal constructions.

Our approach applies to many well-studied hypergraphs (including graphs) such as the edge-
critical graphs, the Fano plane, the generalized triangles, hypergraph expansions, the expanded
triangles, and hypergraph books. Our results extend old results of Erdős [13], Simonovits [76], and
Moon [58] on complete graphs, and can be viewed as a step toward a general density version of the
classical Corrádi–Hajnal [10] and Hajnal–Szemerédi [32] theorems.

Our method relies on a novel understanding of the general properties of nondegenerate Turán
problems, which we refer to as smoothness and boundedness. These properties are satisfied by a
broad class of nondegenerate hypergraphs and appear to be worthy of future exploration.

1 Introduction

1.1 Motivation

Fix an integer r ≥ 2, an r-graph H is a collection of r-subsets of some finite set V. We
identify a hypergraph H with its edge set and use V(H) to denote its vertex set. The
size of V(H) is denoted by v(H).

Given two r-graphs F and H we use ν(F ,H) to denote the maximum of k ∈ N such
that there exist k vertex-disjoint copies of F in H. We call ν(F ,H) the F-matching
number of H. If F = K r

r (i.e., an edge), then we use ν(H) to represent ν(F ,H) for
simplicity. The number ν(H) is also known as the matching number of H.
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2 J. Hou et al.

The study of the following problem encompasses several central topics in Extremal
Combinatorics. Given an r-graph F and integers n, t ∈ N:

What constraints on an n-vertex r-graph H force it to satisfy ν(F ,H) ≥ t + 1?

For r = 2 and F = K2, the celebrated Erdős–Gallai theorem [15] states that for all
integers n, � ∈ N with t + 1 ≤ n/2 and for every n-vertex graph G,

∣G∣ > max{(2t + 1
2

), (n
2
) − (n − t

2
)} ⇒ ν(G) ≥ t + 1.

Here, we use the symbol ⇒ to indicate that the constraint on the left side forces the
conclusion on the right side.

Extending the Erdős–Gallai theorem to r-graphs for r ≥ 3 is a major open problem,
and the following conjecture of Erdős is still open in general (see, e.g., [21–23, 38] for
some recent progress on this topic).

Conjecture 1.1 (Erdős [14]) Suppose that n, t, r ∈ N satisfy r ≥ 3 and t + 1 ≤ n/r. Then
for every n-vertex r-graph H,

∣H∣ > max{(r(t + 1) − 1
r

), (n
r
) − (n − t

r
)} ⇒ ν(H) ≥ t + 1.

For general r-graphs F, determining the minimum number of edges in an n-vertex
r-graphH that guarantees ν(F ,H) ≥ 1 is closely related to the Turán problem. For our
purpose in this work, let us introduce the following notions.

Fix an r-graph F, we say another r-graph H is F-free if ν(F ,H) = 0. In other words,
H does not contains F as a subgraph. The Turán number ex(n, F) of F is the maximum
number of edges in an F-free r-graph on n vertices. The Turán density of F is defined
as π(F) ∶= limn→∞ ex(n, F)/(n

r), the existence of the limit follows from a simple
averaging argument of Katona, Nemetz, and Simonovits [41] (see Proposition 3.2).

An r-graph F is called nondegenerate if π(F) > 0. We use EX(n, F) to denote the
collection of all n-vertex F-free r-graphs with exactly ex(n, F) edges, and call members
in EX(n, F) the extremal constructions of F. The study of ex(n, F) and EX(n, F) is a
central topic in Extremal Combinatorics.

Much is known when r = 2, and one of the earliest results in this regard is Mantel’s
theorem [57], which states that ex(n, K3) = ⌊n2/4⌋. For every integer � ≥ 2 let T(n, �)
denote the balanced complete �-partite graph on n vertices. Here, balanced means
that the sizes of any two parts differ by at most one. We call T(n, �) the Turán graph,
and use t(n, �) to denote the number of edges in T(n, �). The seminal Turán theorem
states that EX(n, K�+1) = {T(n, �)} for all integers n ≥ � ≥ 2. Later, Turán’s theorem
was extended to general graphs F in the celebrated Erdős–Stone–Simonovits theorem
[16, 18], which says that π(F) = (χ(F) − 2) / (χ(F) − 1). Here χ(F) is the chromatic
number of F.

For r ≥ 3, determining ex(n, F) or even π(F) for an r-graph F is known to be
notoriously hard in general. The problem of determining π(K r

�) raised by Turán [78],
where K r

� is the complete r-graph on � vertices, is still wide open for all � > r ≥ 3. Erdős
offered $500 for the determination of any π(K r

�)with � > r ≥ 3 and 1000 for all π(K r
�)
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A step towards a general density Corrádi–Hajnal Theorem 3

with � > r ≥ 3. We refer the reader to an excellent survey [42] by Keevash for related
results before 2011.

Another related central topic in Extremal Combinatorics is the Factor Problem. We
say an r-graph H has an F-factor if it contains a collection of vertex-disjoint copies
of F that covers all vertices in V(H). In other words, ν(F ,H) = v(H)

v(F) (in particular,
v(F) ∣ v(H)).

For an r-graph H and a vertex v ∈ V(H) the degree dH(v) of v in H is the number
of edges in H containing v. We use δ(H), Δ(H), and d(H) to denote the minimum
degree, the maximum degree, and the average degree of H, respectively. We will omit
the subscript H if it is clear from the context.

A classical theorem of Corrádi and Hajnal [10] implies the following result for K3.

Theorem 1.2 (Corrádi–Hajnal [10]) Suppose that n, t ∈ N are integers with t ≤ n/3.
Then for every n-vertex graph G,

δ(G) ≥ t + ⌊n − t
2

⌋ ⇒ ν(K3 , G) ≥ t.

In particular, if 3 ∣ n, then every n-vertex graph G with δ(G) ≥ 2n/3 contains a
K3-factor.

Later, Theorem 1.2 was extended to all complete graphs in the classical Hajnal–
Szemerédi theorem [32], which implies that for all integers n ≥ � ≥ 2, t ≤ ⌊n/(� + 1)⌋,
and for every n-vertex graph G,

δ(G) ≥ t + ⌊� − 1
�
(n − t)⌋ ⇒ ν(K�+1 , G) ≥ t.

For further related results, we refer the reader to a survey [48] by Kühn and Osthus.
In this work, we are interested in density constraints that force an r-graph to have

large F-matching number, where F is a nondegenerate r-graph. Since our results are
closely related to the Turán problem of F, we abuse the use of notation by letting
ex (n, (t + 1)F) denote the maximum number of edges in an n-vertex r-graph H with
ν(F ,H) < t + 1.

Given two r-graphsG andHwhose vertex sets are disjoint, we define the joinG � H
of G and H to be the r-graph obtained from G ⊔H (the vertex-disjoint union of G
and H) by adding all r-sets that have nonempty intersection with both V(G) and
V(H). For simplicity, we define the join of an r-graph H and a family F of r-graphs
as H � F ∶= {H � G∶G ∈ F}.

Erdős [13] considered the density problem for K3 and proved the following result.

Theorem 1.3 (Erdős [13]) Suppose that n, t ∈ N and t ≤
√

n/400. Then

EX (n, (t + 1)K3) = {Kt � T(n − t, 2)}.

Later, Moon [58] extended it to all complete graphs.

Theorem 1.4 (Moon [58]) Suppose that integers n, t, � ∈ N satisfy � ≥ 2, t ≤ 2n−3�2+2�
�3+2�2+�+1 ,

and � ∣ (n − t). Then

EX (n, (t + 1)K�+1) = {Kt � T(n − t, �)} .(1.1)
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4 J. Hou et al.

It is worth mentioning that, in fact, for � = 2, Moon proved that the constraint
� ∣ (n − t) can be removed, and moreover, (1.1) holds for all t ≤ 2n−8

9 . For � ≥ 3, Moon
remarked in [58] that there are some difficulties to remove the constraint � ∣ (n − t).
Nevertheless, the divisibility constraint is not required in our results. Meanwhile,
Simonovits [76] also considered this problem and proved that if t ≥ 1 and � ≥ 2 are
fixed integers, then (1.1) holds for all sufficiently large n.

It becomes much more complicated when extending Theorem 1.4 to larger t.
Indeed, a full density version of the Corrádi–Hajnal theorem was obtained only very
recently by Allen, Böttcher, Hladký, and Piguet [2] for large n. Their results show
that, interestingly, there are four different extremal constructions for four different
regimes of t, and the construction Kt � T(n − t, 2) is extremal only for t ≤ 2n−6

9 . For
the other three extremal constructions, we refer the reader to their paper for details.
For larger complete graphs, it seems that there are even no conjectures for the extremal
constructions in general (see remarks in the last section of [2]).

The objective of this work is to provide a general approach to determine
ex(n, (t + 1)F) for nondegenerate hypergraphs (including graphs) F when n is suf-
ficiently large and t is within the range of [0, cF n], where cF > 0 is a small constant
depending only on F. It is worth mentioning that general methods of this nature are
rare for hypergraph Turán-type problems, with only a few notable recent instances,
as exemplified by [9, 51, 65]. Our main results are stated in the next section after
the introduction of some necessary definitions. We hope our results could shed some
light on a full generalization of the density version of the Corrádi–Hajnal and Hajnal–
Szemerédi theorems.

1.2 Main results

Given an r-graph F and an integer n ∈ N define

δ(n, F) ∶= ex(n, F) − ex(n − 1, F) and d(n, F) ∶= r ⋅ ex(n, F)
n

.

Observe that d(n, F) is the average degree of hypergraphs in EX(n, F), and δ(n, F)
is a lower bound for the minimum degree of hypergraphs in EX(n, F) (see Fact 4.1).

The following two definitions are crucial for our main results. The first definition
concerns the maximum degree of a near-extremal F-free r-graph.

Definition 1.1 (Boundedness) Let f1 , f2∶N→ R be two nonnegative functions. An
r-graph F is ( f1 , f2)-bounded if every F-free r-graph H on n vertices with average
degree at least d(n, F) − f1(n) satisfies Δ(H) ≤ d(n, F) + f2(n), i.e.,

d(H) ≥ d(n, F) − f1(n) ⇒ Δ(H) ≤ d(n, F) + f2(n).

Remark For our purposes, it suffices to take f1(n) = εnr−1 and f2(n) = δnr−1 for
some small constants ε, δ > 0.

Later we will prove that families with certain stability properties also have good
boundedness (see Theorem 1.9).

The next definition concerns the smoothness of the Turán function ex(n, F).
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A step towards a general density Corrádi–Hajnal Theorem 5

Definition 1.2 (Smoothness) Let g∶N→ R be a nonnegative function. The Turán
function ex(n, F) of an r-graph F is g-smooth if

∣δ(n, F) − d(n − 1, F)∣ ≤ g(n) holds for all n ∈ N.

Remark Similarly, for our results, it suffices to take g(n) = γnr−1 for some small
constant γ > 0.

Assumptions on the smoothness of ex(n, F) were used by several researchers
before. See, for example, [3, 39] for degenerate graphs and see, for example, [43,
Theorem 1.4] for nondegenerate hypergraphs.

Now we are ready to state our main result.

Theorem 1.5 Fix integers m ≥ r ≥ 2 and a nondegenerate r-graph F on m vertices.
Suppose that there exists a constant c > 0 such that for all sufficiently large n ∈ N∶
(a) F is (c( n

r−1), 1−π(F)
4m ( n

r−1))-bounded, and
(b) ex(n, F) is 1−π(F)

8m ( n
r−1)-smooth.

Then there exists N0 such that for all integers n ≥ N0 and t ≤ min{ c
4erm n, 1−π(F)

64rm2 n},
we have

EX (n, (t + 1)F) = K r
t � EX(n − t, F),(1.2)

and, in particular,

ex (n, (t + 1)F) = (n
r
) − (n − t

r
) + ex(n − t, F).(1.3)

Remarks
• Assumption (a) cannot be removed, as demonstrated by the following example∶ let

F = 2K3 and let t ≥ 2, then

ex(n, (t + 1)F) = ex(n, (2t + 2)K3) ≥ (
n
2
) − (n − 2t − 1

2
) + ⌊(n − 2t − 1)2

4
⌋

> (n
2
) − (n − t

2
) + ⌊(n − 1)2

4
⌋ + n − 1

= (n
2
) − (n − t

2
) + ex(n − t, F).

A less obvious example is the triangle-blowup of cycles, which can be deduced
similarly from the results in recent work [54, Theorem 1.9].

• Assumption (b) can probably be omitted, as it was conjectured1 that every F is
o(nr−1)-smooth and this is true for r = 2 by a classic result of Simonovits (see [76,
p. 317]).

Fix an r-graph F on m vertices. We say a collection {H1 , . . . ,Ht+1} of r-graphs
on the same vertex set V has a rainbow F-matching if there exists a collection

1This conjecture arose in a previous project of Dhruv Mubayi, Christian Reiher, and the third author,
although it did not appear in the literature.
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6 J. Hou et al.

{S i ∶ i ∈ [t + 1]} of pairwise disjoint m-subsets of V such that F ⊂Hi[S i] for all
i ∈ [t + 1].

Recently, there has been considerable interest in extending some classical results to
a rainbow version. See, for example, [1, 31, 38, 47, 55, 56] for some recent progress on
the rainbow version of the Erdős Matching conjecture. Here, we include the following
rainbow version of Theorem 1.5.

Theorem 1.6 The following holds under the assumption of Theorem 1.5. If a collection
{H1 , . . . ,Ht+1} of n-vertex r-graphs on the same vertex set satisfies

∣Hi ∣ > (
n
r
) − (n − t

r
) + ex(n − t, F) for all i ∈ [t + 1],

then {H1 , . . . ,Ht+1} contains a rainbow F-matching.

Observe that (1.3) follows immediately by letting H1 = ⋅ ⋅ ⋅ =Ht+1 in Theorem 1.6.
In fact, we will prove Theorem 1.6 first (which yields (1.3)), and then we prove (1.2) by
adding some further argument.

1.3 Boundedness and smoothness

In this subsection, we present some simple sufficient conditions for an r-graph to have
good boundedness and smoothness. Before stating our results, let us introduce some
necessary definitions.

For most nondegenerate Turán problems where the exact value of the Turán
number is known, the extremal constructions have simple structures. We use the
following notions to encode the structural information of a hypergraph.

Let an r-multiset mean an unordered collection of r elements with repetitions
allowed. Let E be a collection of r-multisets on [k]. Let V1 , . . . , Vk be disjoint sets
and let V ∶= V1 ∪ ⋅ ⋅ ⋅ ∪ Vk . The profile of an r-set X ⊆ V (with respect to V1 , . . . , Vk)
is the r-multiset on [k] that contains i ∈ [k] with multiplicity ∣X ∩ Vi ∣. For an
r-multiset Y ⊆ [k], let Y((V1 , . . . , Vk)) consist of all r-subsets of V whose profile is Y.
The r-graph Y((V1 , . . . , Vk)) is called the blowup of Y (with respect to V1 , . . . , Vk) and
the r-graph

E((V1 , . . . , Vk)) ∶= ⋃
Y∈E

Y((V1 , . . . , Vk))

is called the blowup of E (with respect to V1 , . . . , Vk).
An (r-uniform) pattern is a pair P = (k, E) where k is a positive integer and E is a

collection of r-multisets on [k]. It is clear that pattern is a generalization of r-graphs,
since an r-graph is a pattern in which E consists of only simple r-sets. If it is clear from
the context, we will use E to represent the pattern P for simplicity (like what we did
for hypergraphs). Moreover, if E consists of a single element, we will use this element
to represent E.

We say an r-graph G is a P-construction on a set V if there exists a partition
V = V1 ∪ ⋅ ⋅ ⋅ ∪ Vk such that G = E((V1 , . . . , Vk)). An r-graph H is a P-subconstruction
if it is a subgraph of some P-construction. For example, the Turán graph T(n, �) is a
K�-construction on [n], and an �-partite graph is a K�-subconstruction.
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Let Λ(P, n) denote the maximum number of edges in a P-construction with n
vertices and define the Lagrangian of P as the limit

λ(P) ∶= lim
n→∞

Λ(P, n)
(n

r)
.

Using a simple averaging argument, one can show that Λ(P, n)/(n
r) is nonincreasing,

and hence, the limit exists (see [69, Lemma 10]). We say a pattern P = (k, E) is
minimum if λ(P − i) < λ(P) for all i ∈ [k], where P − i denotes the new pattern
obtained from P by removing i from [k] and removing all r-multisets containing i
from E. Note that the Lagrangian of a pattern is a generalization of the well-known
hypergraph Lagrangian (see, e.g., [5, 26]) that has been successfully applied to Turán-
type problems, with the basic idea going back to Motzkin and Straus [59].

Remark The notion of pattern was introduced by Pikhurko in [69] to study the
general properties of nondegenerate hypergraph Turán problems, and it was also used
very recently in [52, 53]. Note that the definition of pattern in [69] is more general by
allowing recursive parts. Our results about patterns in this work can be easily extended
to this more general setting.

Let F be an r-graph and P be a pattern. We say (F , P) is a Turán pair if every
P-construction is F-free and every maximum F-free construction is a P-construction.
For example, it follows from the Turán theorem that (K�+1 , K�) is a Turán pair for all
� ≥ 2. It is easy to observe that for a Turán pair (F , P), we have

π(F) = λ(P).(1.4)

For hypergraphs in Turán pairs, we have the following result concerning the
smoothness of their Turán functions.

Theorem 1.7 Suppose that F is an r-graph and P is a minimal pattern such that (F , P)
is a Turán pair. Then ex(n, F) is 4(n−1

r−2)-smooth.

The boundedness of F is closely related to the stability of F. So we introduce some
definitions related to stability. Suppose that (F , P) is a Turán pair.
• We say F is edge-stable with respect to P if for every δ > 0 there exist constants

N0 and ζ > 0 such that for every F-free r-graph H on n ≥ N0 vertices with at least
(π(F) − ζ) (n

r) edges, there exists a subgraph H′ ⊂H with at least (π(F) − δ) (n
r)

edges such that H′ is a P-subconstruction.
• We say F is vertex-extendable with respect to P if there exist constants N0 and

ζ > 0 such that for every F-free r-graph H on n ≥ N0 vertices satisfing δ(H) ≥
(π(F) − ζ) (n−1

r−1) the following holds: if H − v is a P-subconstruction for some
vertex v ∈ V(H), then H is also a P-subconstruction.

• We say F is weakly vertex-extendable with respect to P if for every δ > 0 there
exist constants N0 and ζ > 0 such that for every F-free r-graph H on n ≥ N0
vertices satisfying δ(H) ≥ (π(F) − ζ) (n−1

r−1) the following holds: if H − v is a
P-subconstruction for some vertex v ∈ V(H), then dH(v) ≤ (π(F) + δ) (n−1

r−1).
For simplicity, if P is clear from the context, we will simply say that F is edge-stable,
vertex-extendable, and weakly vertex-extendable, respectively.
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8 J. Hou et al.

The first stability theorem which states that K�+1 is edge-stable with respect to K�

was proved independently by Erdős and Simonovits [76], and it was used first by
Simonovits [76] to determine the exact Turán number ex(n, F) of an edge-critical
graph F for large n. Later, Simonovits’ method (also known as the Stability Method)
was used by many researchers to determine the Turán numbers of a large collection
of hypergraphs (see Section 2 for more details).

The definition of vertex-extendability was introduced by Mubayi, Reiher, and the
third author in [51] for a unified framework for proving the stability of a large class of
hypergraphs.

The definition of weak vertex-extendability seems to be new, and it is clear from
(1.4) and the following lemma that for a Turán pair (F , P) the vertex-extendability
implies the weak vertex-extendability. There are several examples showing that the
inverse is not true in general (see, e.g., Section 2.6). It seems interesting to explore the
relations between the weak vertex-extendability and other types of stability (see [51]
for more details).

Lemma 1.8 [52, Lemma 21] Suppose that P is a minimal pattern. Then for every δ > 0
there exist N0 and ε > 0 such that every P-subconstruction H on n ≥ N0 vertices with
δ(H) ≥ (λ(P) − ε) (n−1

r−1) satisfies Δ(H) ≤ (λ(P) + δ) (n−1
r−1).

Let us add another remark about the weak vertex-extendability that might be
useful for readers who are familiar with the stability method. In a standard stability
argument in determining the exact value of ex(n, F), one usually defines a set B of
bad edges and a set M of missing edges, and then tries to prove that ∣M∣ > ∣B∣. One
key step in this argument is to prove that the maximum degree of B is small (more
specifically, Δ(B) = o(nr−1)), which, informally speaking, usually implies the weak
vertex-extendability of F.

For a Turán pair (F , P) with the weak vertex-extendability, we have the following
result concerning the boundedness of F.

Theorem 1.9 Suppose that F is an r-graph and P is a minimal pattern such that F is
edge-stable and weakly vertex-extendable (or vertex-extendable) with respect to P. Then
there exists a constant c > 0 such that F is (c(n−1

r−1), 1−π(F)
8m (n−1

r−1))-bounded for large n.

Remark It seems possible to extend Theorems 1.7 and 1.9 to nonminimal patterns,
but we do not aware of any r-graph F whose extremal construction is a P-construction
for some nonminimal pattern P. However, there does exist a finite family F of
r-graphs whose extremal construction is a P-construction for some nonminimal
pattern P (see [37] for more details).

In many cases, (weak) vertex-extendability of F follows from a stronger type
of stability that was studied by many researchers before. Suppose that (F , P) is a
Turán pair. We say F is degree-stable with respect to P if there exists ζ > 0 such
that for large n every n-vertex F-free r-graph H with δ(H) ≥ (π(F) − ζ) (n−1

r−1) is a
P-subconstruction. It is easy to observe from the definition that if F is degree-stable
with respect to P, then F is edge-stable and vertex-extendable with respect to P.
Therefore, we have the following corollary of Theorems 1.7 and 1.9.

Downloaded from https://www.cambridge.org/core. 05 May 2025 at 05:15:29, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


A step towards a general density Corrádi–Hajnal Theorem 9

Corollary 1.10 Suppose that F is an r-graph and P is a minimal pattern such that F is
degree-stable with respect to P. Then there exists a constant c > 0 such that
(a) ex(n, F) is 4(n−1

r−2)-smooth, and
(b) F is (c(n−1

r−1), 1−π(F)
8m (n−1

r−1))-bounded.

In the next section, we show some applications of Theorems 1.5, 1.7, and 1.9, and
Corollary 1.10. We omit the applications of Theorem 1.6 since they are quite straight-
forward to obtain once we present the corresponding applications of Theorem 1.5. The
proofs for Theorems 1.5 and 1.6 are included in Section 3. The proofs for Theorems 1.7
and 1.9 are included in Section 4.

2 Applications

Combining some known stability results with Theorems 1.5, 1.7, and 1.9 (or
Corollary 1.10) we can immediately obtain results in this section. To demonstrate a
way to apply Theorems 1.5, 1.7, and 1.9 in general, we include the short proof for the
weak vertex-extendability of F3,2 as defined in Section 2.7 (even though it can be
deduced from results in [28]).

2.1 Edge-critical graphs

Recall that for a graph F its chromatic number is denoted by χ(F). We say a graph F is
edge-critical if there exists an edge e ∈ F such that χ(F − e) < χ(F). Using the stability
method, Simonovits proved in [76] that if a graph F is edge-critical and χ(F) ≥ 3, then
EX(n, F) = {T(n, χ(F) − 1)} for all sufficiently large n.

Extending the classical Andrásfai–Erdős–Sós theorem [4], Erdős and Simonovits
[17] proved that every edge-critical graph with chromatic number at least 3 is degree-
stable. Therefore, combined with Theorem 1.5 and Corollary 1.10, we obtain the
following result.

Theorem 2.1 Suppose that F is an edge-critical graph with χ(F) ≥ 3. Then there exist
constants N0 and cF > 0 such that for all integers n ≥ N0 and t ∈ [0, cF n] we have

EX(n, (t + 1)F) = {Kt � T(n − t, χ(F) − 1)} .

Remarks
• For Theorem 2.1 and all other theorems in this section, we did not try to optimize

the constant cF , but it seems possible to obtain a reasonable bound2 for cF by a
more careful analysis of the proof for Theorem 1.9 (and the proof for the (weak)
vertex-extendability of F in some cases).

• The case when F is an odd cycle was also considered in a recent paper [19,
Theorem 1.1].

• It might be true that Theorem 2.1 holds for a broader class of graphs, and it would
be interesting to characterize the class of graphs for which Theorem 2.1 holds.

2It seems possible to get a polynomial dependency between cF and 1
rm .
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10 J. Hou et al.

Figure 1: The Fano plane and the complete bipartite 3-graph B3(n).

2.2 The Fano plane

The Fano plane F is a 3-graph with vertex set {1, 2, 3, 4, 5, 6, 7} and edge set

{123, 345, 561, 174, 275, 376, 246}.

Let [n] = V1 ∪ V2 be a partition with ∣V1∣ = ⌊n/2⌋ and ∣V2∣ = ⌈n/2⌉. Let B3(n) denote
the 3-graph on [n] whose edge set consists of all triples that have a nonempty
intersection with both V1 and V2 (see Figure 1). Note that ∣B3(n)∣ ∼ 3

4(
n
3).

It was conjectured by Sós [77] and famously proved by De Caen and Füredi [11]
that π(F) = 3/4. Later, using a stability argument, Keevash and Sudakov [46], and
independently, Füredi and Simonovits [30] proved that EX(n,F) = {B3(n)} for all
sufficienly large n. Recently, Bellmann and Reiher [6] proved that ex(n,F) = ∣B3(n)∣ =
n−2

2 ⌊ n2

4 ⌋ for all n ≥ 7, and moreover, they proved that B3(n) is the unique extremal
construction for all n ≥ 8.

It follows from the result of Keevash and Sudakov [46], and independently, Füredi
and Simonovits [30] that F is degree-stable. Therefore, we obtain the following result.

Theorem 2.2 There exist constants N0 and cF > 0 such that for all integers n ≥ N0 and
t ∈ [0, cFn] we have

EX(n, (t + 1)F) = {K3
t � B3(n − t)} .

2.3 Generalized triangles

The (r-uniform) generalized triangleTr is the r-graph with vertex set [2r − 1] and edge
set

{{1, . . . , r − 1, r}, {1, . . . , r − 1, r + 1}, {r, r + 1, . . . , 2r − 1}} .

Note that T2 is simply a triangle.
Fix n ≥ r ≥ 2 and � ≥ r. Let [n] = V1 ∪ ⋅ ⋅ ⋅ ∪ V� be a partition such that ∣Vi ∣ ∈

{⌊ n
�
⌋, ⌈ n

�
⌉} for all i ∈ [�]. The generalized Turán r-graph Tr(n, �) is the r-graph on [n]
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Figure 2: The generealized triangle T3 and the Turán 3-graph T3(n, 3).

whose edge set consists of all r-sets that contain at most one vertex from each Vi . Note
that T2(n, �) is the Turán graph T(n, �). Let tr(n, �) denote the number of edges in
Tr(n, �).

Katona conjectured and Bollobás [8] proved that EX(n, {T3 , K3−
4 }) = {T3(n, 3)}

for all n ∈ N, where K3−
4 is the unique 3-graph with 4 vertices and 3 edges (see

Figure 2). Later, Frankl and Füredi [24] sharpened the result of Bollobás by showing
that EX(n,T3) = {T3(n, 3)} for all n ≥ 3000. In [44], Keevash and Mubayi proved the
edge-stability ofT3 and improved the lower bound of n from 3000 to 33. A short proof
for the edge-stability with a linear dependency between the error parameters can be
found in [49].

The vertex-extendability of T3 can be easily obtained from the proof of Lemma 4.4
in [51] (also see the Concluding Remarks in [51]). Therefore, we obtain the following
result.

Theorem 2.3 There exist constants N0 and cT3 such that for all integers n ≥ N0 and
t ∈ [0, cT3 n] we have

EX(n, (t + 1)T3) = {K3
t � T3(n − t, 3)} .

For r = 4, improving a result of Sidorenko in [74], Pikhurko proved in [67] that
EX(n,T4) = {T4(n, 4)} for all sufficiently large n.

Similarly, the vertex-extendability of T4 can be obtained from the proof of Lemma
4.4 in [51] (also see the Concluding Remarks in [51]). Therefore, we obtain the
following result.

Theorem 2.4 There exist constants N0 and cT4 such that for all integers n ≥ N0 and
t ∈ [0, cT4 n] we have

EX(n, (t + 1)T4) = {K4
t � T4(n − t, 4)} .

The situation becomes complicated when r ≥ 5. Let W5 denote the unique
5-graph with 11 vertices such that every 4-set of vertices is contained in exactly one
edge. Let W6 denote the unique 6-graph with 12 vertices such that every 5-set of
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vertices is contained in exactly one edge. LetW5(n) andW6(n) denote the maximum
W5-construction and W6-construction on n vertices, respectively. Some calculations
show that W5(n) ∼ 6

114 n5 and W6(n) ∼ 11
125 n6.

In [25], Frankl and Füredi proved that ex(n,Tr) ≤ ∣Wr(n)∣ + o(nr) for r = 5, 6.
Much later, using a sophisticated stability argument, Norin and Yepremyan [65]
proved that T5 and T6 are edge-stable with respect to W5 and W6 respectively, and
moreover, EX(n,Tr) = {Wr(n)} for r = 5, 6 and large n.

It was observed by Pikhurko [67] that both T5 and T6 fail to be degree-stable (or
vertex-extendable). However, from [65, 7.2, 7.4, and, Lemmas] one can easily observe
that T5 and T6 are weakly vertex-extendable. Therefore, we obtain the following
theorem.

Theorem 2.5 For r ∈ {5, 6} there exist constants N0 and cTr > 0 such that for all
integers n ≥ N0 and t ∈ [0, cTr n] we have

EX(n, (t + 1)Tr) = {K r
t � Wr(n − t)} .

It seems that there are even no conjectures for the extremal constructions of Tr
when r ≥ 7. We refer the reader to [25] for some lower and upper bounds for π(Tr)
in general.

2.4 The expansion of complete graphs

Fix integers � ≥ r ≥ 2. The expansion Hr
�+1 of the complete graph K�+1 is the r-graph

obtained from K�+1 by adding a set of r − 2 new vertices into each edge of K�+1, and
moreover, these new (r − 2)-sets are pairwise disjoint (see Figure 3). It is clear from
the definition that Hr

�+1 has � + 1 + (r − 2)(�+1
2 ) vertices and (�+1

2 ) edges.
The r-graph Hr

�+1 was introduced by Mubayi [60] as a way to generalize Turán’s the-
orem to hypergraphs. These hypergraphs provide the first explicitly defined examples
which yield an infinite family of numbers realizable as Turán densities for hypergraphs.
In [60], Mubayi determined the Turán density of Hr

�+1 for all integers � ≥ r ≥ 3, and
proved that Hr

�+1 is edge-stable. In [68], Pikhurko refined Mubayi’s result and proved
that EX(n, Hr

�+1) = {Tr(n, �)} for all integers � ≥ r ≥ 3 when n is sufficiently large.
The vertex-extendability of Hr

�+1 can be easily obtained by a small modification of
the proof of Lemma 4.8 in [51] (also see the Concluding Remarks in [51]). Therefore,
we obtain the following result.

Theorem 2.6 Fix integers � ≥ r ≥ 2. There exist constants N0 and c = c(�, r) > 0 such
that for all integers n ≥ N0 and t ∈ [0, cn] we have

EX(n, (t + 1)Hr
�+1) = {K r

t � Tr(n − t, �)} .

Remarks The definition of expansion can be extended to all graphs as follows. Fix a
graph F, let the r-graph Hr

F be obtained from F by adding a set of r − 2 new vertices
into each edge of F, and moreover, these new (r − 2)-sets are pairwise disjoint. Similar
to Theorem 2.1, one could obtain a corresponding result for the expansion of all edge-
critical graphs. We omit its statement and proof here.
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Figure 3: The expansion H3
4 of K4 and the Turán 3-graph T3(n, 3).

2.5 The expansion of hypergraphs

Given an r-graph F with � + 1 vertices, the expansion HF
�+1 of F is the r-graph obtained

from F by adding, for every pair {u, v} ⊂ V(F) that is not contained in any edge of F,
an (r − 2)-set of new vertices, and moreover, these (r − 2)-sets are pairwise disjoint.
It is easy to see that the expansion of the empty r-graph on � + 1 vertices (here empty
means that the edge set is empty) is the same as the expansion of the complete graph
K�+1 defined in the previous subsection. However, in general, these two definitions are
different.

Our first result in this subsection is about the expansion of the expanded trees.
Given a tree T on k vertices, define the (r − 2)-expansion Exp(T) of T as

Exp(T) ∶= {e ∪ A∶ e ∈ T} ,

where A is a set of r − 2 new vertices that is disjoint from V(T).
Given a tree T on k vertices, we say T is an Erdős–Sós tree if it satisfies the famous

Erdős–Sós conjecture on trees. In other words, T is contained in every graph with
average degree more than k − 2. In [75], Sidorenko proved that for large k, if T is an
Erdős–Sós tree on k vertices, then ex(n, HExp(T)

k+r−2 ) ≤ tr(n, k + r − 3) + o(nr). Much
later, Norin and Yepremyan [66], and independently, Brandt, Irwin, and Jiang [9],
improved Sidorenko’s result by showing that, under the same setting, HExp(T)

k+r−2 is edge-
stable with respect to K r

k+r−3 and EX(n, HExp(T)
k+r−2 ) = {Tr(n, k + r − 3)} for large n.

In fact, it follows easily from [66, 3.5, 4.1, and, Lemmas] that HExp(T)
k+r−2 is weakly vertex-

extendable with respect to K r
k+r−3. Hence, we obtain the following result.

Theorem 2.7 For every integer r ≥ 3 there exists Mr such that if T is an Erdős–Sós tree
on k ≥ Mr vertices, then there exist N0 and cT > 0 such that for all integers n ≥ N0 and
t ≤ cT n, we have

EX(n, (t + 1)HExp(T)
k+r−2 ) = K r

t � Tr(n − t, k + r − 3).
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Next, we consider the expansion of a different class of hypergraphs. Let B(r, � + 1)
be the r-graph with vertex set [� + 1] and edge set

{[r]} ∪ {e ⊂ [2, � + 1]∶ ∣e∣ = r and ∣e ∩ [2, r]∣ ≤ 1} .

Recall that the Lagrangian of an r-graph H (by viewing H as a pattern) is denoted
by λ(H). For integers � ≥ r ≥ 2 let the family Fr

�+1 be the collection of r-graphs F with
the following properties:
(a) sup{λ(H)∶HisF-free and not aK r

�-subconstruction} < � ⋅ ⋅ ⋅ (�−r+1)
�r , and

(b) either F has an isolated vertex or F ⊂ B(r, � + 1).
For every F ∈ Fr

�+1 the vertex-extendability3 of the expansion HF
�+1 can be easily

obtained by a small modification of the proof of Lemma 4.8 in [51] (also see the
Concluding Remarks in [51]). Hence, we obtain the following result.

Theorem 2.8 Suppose that � ≥ r ≥ 2 are integers and F ∈ Fr
�+1. Then there exist con-

stants N0 and cF > 0 such that for all integers n ≥ N0 and t ∈ [0, cF n], we have

EX (n, (t + 1)HF
�+1) = {K r

t � Tr(n − t, �)} .

Remarks
• In [63], Mubayi and Pikhurko considered the Turán problem for the r-graph Fanr

(the generalized Fan), which is the expansion of the r-graph on r + 1 vertices with
only one edge. It is easy to see that Fanr is a member in Fr

r+1.
• The Turán problem for the expansion of certain class of r-graphs (which is a proper

subfamily of Fr
�+1) were studied previously in [9] and [66].

• Let Mr
k denote the r-graph consisting of k vertex-disjoint edges (i.e., a matching of

size k) and let Lr
k denote the r-graph consisting of k edges having one vertex, say v,

in common, and every pair of edges interest only at v (i.e., a k-edge sunflower with
the center v). By results in [33, 40], if F is isomorphic to M3

k (see [33] for k = 2 and
[40] for k ≥ 3), L3

k (see [40]), or L4
k (see [40]), where k ≥ 2 is an integer, then F is

contained in Fr
�+1.

Now we focus on the expansion of r-uniform matching of size two with r ≥ 4.
We say an r-graph is semibipartite if its vertex set can be partitioned into two parts
V1 and V2 such that every edge contains exactly one vertex in V1. Let Sr(n) denote
the semibipartite r-graph on n vertices with the maximum number of edges. Simple
calculations show that ∣Sr(n)∣ ∼ ( r−1

r )
r−1 (n

r).
Confirming a conjecture of Hefetz and Keevash [33], Bene Watts, Norin, and

Yepremyan [7] showed that for r ≥ 4, EX(n, HMr
2

2r ) = {Sr(n)} for all sufficiently
large n.

The vertex-extendability4 of HMr
2

2r can be easily obtained by a small modification of
the proof of Lemma 4.12 in [51] (also see the Concluding Remarks in [51]). Hence we
have the following result.

3The weak vertex-extendability of F ∈ Fr
�+1 with an isolated vertex also follows from [66, 3.4,

Lemma].
4The weak vertex-extendability of HMr

2
2r also follows from [7, 3.2, Theorem].
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Figure 4: The 4-graph C4
3 (expanded triangle) and the 4-graph Bodd

4 (n).

Theorem 2.9 For every integer r ≥ 4, there exist constants N0 and c = c(r) > 0 such
that for all integers n ≥ N0 and t ∈ [0, cn], we have

EX (n, (t + 1)HMr
2

2r ) = {K r
t � Sr(n − t)} .

Remark It is quite possible that Theorem 1.5 applies to the expansion of other
hypergraphs, for example, the 3-graph defined in [79] which provides the first example
of a single hypergraph whose Turán density is an irrational number.

2.6 Expanded triangles

Let C2r
3 denote the 2r-graph with vertex set [3r] and edge set

{{1, . . . , r, r + 1, . . . , 2r}, {r + 1, . . . , 2r, 2r + 1, . . . , 3r}, {1, . . . , r, 2r + 1, . . . , 3r}} .

Let [n] = V1 ∪ V2 be a partition such that ∣V1∣ = ⌊n/2⌋ + m. Let Bodd
2r (n, m) denote the

2r-graph on [n]whose edge set consists of all 2r-sets that interest V1 in odd number of
vertices (see Figure 4). Some calculations show that maxm ∣Bodd

2r (n, m)∣ ∼ 1
2(

n
2r). Let

Bodd
2r = (2, E) denote the pattern such that E consists of all 2r-multisets that contain

exactly odd number of 1s. Note that Bodd
2r (n, m) is a Bodd

2r -construction.
The Turán problem for C2r

3 was first considered by Frankl [20], who proved
that π(C2r

3 ) = 1/2. Later, Keevash and Sudakov [45] proved that C2r
3 is edge-stable

with respect to Bodd
2r , and moreover, EX(n,C2r

3 ) ⊂ {Bodd
2r (n, m)∶m ∈ [0, n/2]}. Simple

constructions5 show that C2r
3 is not degree-stable (or vertex-extendable) with respect

to Bodd
2r . However, using [45, 3.5, Claim], one can easily show thatC2r

3 is weakly vertex-
extendable with respect to Bodd

2r . Hence, we have the following theorem.

5For example, choose a set S of 2r vertices from V1 in Bodd
2r (n, 0), then remove all edges in Bodd

2r (n, 0)
that contain at least two vertices in S and add S to the edge set.
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Figure 5: The 4-graph F7 (4-book with 3 pages) and the 4-graph Beven
4 (n).

Theorem 2.10 For every integer r ≥ 2 there exist constants N0 and c > 0 such that for
all integers n ≥ N0 and t ∈ [0, cn], we have

EX (n, (t + 1)C2r
3 ) ⊂ K2r

t � {Bodd
2r (n − t, m)∶m ∈ [0,

√
2r(n − t)]} .

Remarks
• Calculations in [45] show that if Bodd

2r (n, m) is an optimal Bodd
2r -construction,

then m <
√

2rn. So it suffices to consider m in the range [0,
√

2r(n − t)] for
Theorem 2.10.

• In general, one could consider the expanded K�+1 for � ≥ 3. It seems that the above
theorem can be extended to these hypergraphs in some cases. We refer the reader
to [73] and [45] for more details.

2.7 Hypergraph books

Let F7 (4-book with 3-pages) denote the 3-graph with vertex set {1, 2, 3, 4, 5, 6, 7} and
edge set

{1234, 1235, 1236, 1237, 4567} .

Let Beven
4 (n) denote the maximum Beven

4 ∶= (2, {1, 1, 2, 2})-construction on n vertices
(see Figure 5). Simply calculations show that ∣B4(n)∣ ∼ 3

8(
n
4).

Füredi, Pikhurko, and Simonovits [29] proved that EX(n, F7) = {B4(n)} for all
sufficiently large n. Moreover, they proved that F7 is degree-stable. Hence, we obtain
the following result.

Theorem 2.11 There exist constants N0 and c > 0 such that for all integers n ≥ N0 and
t ∈ [0, cn], we have

EX (n, (t + 1)F7) = {K4
t � Beven

4 (n − t)} .

Let F4,3 denote the 4-graph with vertex set {1, 2, 3, 4, 5, 6, 7} and edge set

{1234, 1235, 1236, 1237, 4567} .
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Figure 6: The 4-graph F4,3 and the 4-graph Bodd
4 (n).

Let Bodd
4 (n, m) denote the Bodd

4 ∶= (2, {{1, 2, 2, 2}, {1, 1, 1, 2}})-construction (see
Figure 6) on n vertices with one part of size ⌊n/2⌋ + m. Recall from the previous
subsection that maxm ∣Bodd

4 (n, m)∣ ∼ 1
2(

n
4).

Füredi, Mubayi, and Pikhurko [27] proved that EX(n,F4,3) ⊂ {Bodd
4 (n, m)∶m ∈

[0, n/2]} for large n, and moreover, F4,3 is edge-stable with respect to Bodd
4 . They also

showed that edge-stable cannot be replaced by degree-stable (or vertex-extendable).
However, from [27, 3.1, Lemma] one can easily obtain that F4,3 is weakly edge-stable
with respect to Bodd

4 . Hence, we obtain the following theorem.

Theorem 2.12 There exist constants N0 and c > 0 such that for all integers n ≥ N0 and
t ∈ [0, cn], we have

EX (n, (t + 1)F4,3) ⊂ K4
t � {Bodd

4 (n − t, m)∶m ∈ [0,
√

4(n − t)]} .

Let F3,2 denote the 3-graph with vertex set {1, 2, 3, 4, 5} and edge set

{123, 124, 125, 345}.

Recall that S3(n) is the semibipartite 3-graph on n vertices with the maximum
number of edges, i.e., the maximum S3 ∶= (2, {1, 2, 2})-construction on n vertices (see
Figure 7).

Füredi, Pikhurko, and Simonovits [28] proved that EX(n,F3,2) = {S3(n)} for all
sufficiently large n. A construction in their paper ([28, Construction 1.2]) shows that
F3,2 is not vertex-extendable with respect S3. But we will present a short proof in
Section 5 which shows thatF3,2 is weakly vertex-extendable with respect to S3. Hence,
we obtain the following result.

Theorem 2.13 There exist constants N0 and c > 0 such that for all integers n ≥ N0 and
t ∈ [0, cn], we have

EX (n, (t + 1)F3,2) = {K r
t � S3(n − t)} .
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Figure 7: The 3-graph F3,2 and the semibipartite 3-graph S3(n).

3 Proofs of Theorems 1.5 and 1.6

In this section, we prove Theorems 1.5 and 1.6. In fact, we will prove the following more
general (but also more technical) version.

Theorem 3.1 Let m ≥ r ≥ 2 be integers and F be a nondegenerate r-graph on m vertices.
Let f ∶N→ R be a nondecreasing function. Suppose that for all sufficiently large n ∈ N∶
(a) ex(n, F) is 1−π(F)

8m ( n
r−1)-smooth, and

(b) F is ( f (n), 1−π(F)
4m ( n

r−1))-bounded.

Then there exists N0 such that the following statements hold for all integers n, t ∈ N with

n ≥ N0 , t ≤ 1 − π(F)
64rm2 n, and 2emt(n − 2mt

r − 2
) ≤ f (n − 2mt).

(i) If a collection {H1 , . . . ,Ht+1} of n-vertex r-graphs on the same vertex set satisfies

∣Hi ∣ > (
n
r
) − (n − t

r
) + ex(n − t, F) for all i ∈ [t + 1],

then {H1 , . . . ,Ht+1} contains a rainbow F-matching.
(ii) We have EX(n, (t + 1)F) = K r

t � EX(n − t, F).

3.1 Preparations

First, recall the following result due to Katona, Nemetz, and Simonovits [41]

Proposition 3.2 (Katona–Nemetz–Simonovits [41]) Fix an r-graph F. The ratio
ex(n ,F)
(n

r)
is nonincreasing in n. In particular, ex(n, F) ≥ π(F)(n

r) for all n ∈ N, and

π(F) ≤ ex(v(F), F)
(v(F)

r )
≤
(v(F)

r ) − 1
(v(F)

r )
< 1.

Next, we prove two simple inequalities concerning binomials.
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Lemma 3.3 Suppose that m ≤ n/r − 1. Then

(n
r
) − (n − m

r
) =

r
∑
i=1
(m

i
)(n − m

r − i
) ≤ 2m(n − m

r − 1
).(3.1)

Proof For every i ∈ [2, r] we have

(m
i )(

n−m
r−i )

( m
i−1)(

n−m
r−i+1)

= m − i + 1
i

r − i + 1
n − m − r + i

≤ (r − 1)m
2(n − m − r) ≤

1
2

,

where the last inequality follows from the assumption that m ≤ n/r − 1. Therefore,

r
∑
i=1
(m

i
)(n − m

r − i
) ≤

r
∑
i=1
( 1

2
)

i−1
m(n − m

r − 1
) ≤ 2m(n − m

r − 1
),

proving Lemma 3.3. ∎

Lemma 3.4 Suppose that integers n, b, r ≥ 1 satisfy b ≤ n−r
r+1 . Then

(n
r
) ≤ e(n − b

r
).

Proof For every i ∈ [b] it follows from b ≤ n−r
r+1 that n−i

n−i−r = 1 + r
n−i−r ≤ 1 + r

n−b−r ≤
1 + 1

b . Therefore,

(n
r
) =

b−1
∏
i=0

n − i
n − i − r

(n − b
r

) ≤ (1 + 1
b
)

b
(n − b

r
) ≤ e(n − b

r
),

proving Lemma 3.4. ∎

The following lemma says that d(n, F) is well-behaved for every F.

Lemma 3.5 Let F be an r-graph. For every n and m ≤ n/r − 1 we have

∣d(n, F) − d(n − m, F)∣ ≤ 4m(n − m
r − 2

).

Proof It follows from Proposition 3.2 that ex(n, F)/(n
r) ≤ ex(n − m, F)/(n−m

r ).
Therefore,

ex(n, F) − ex(n −m, F) ≤
(n

r)

(n−m
r )

ex(n −m, F) − ex(n −m, F)

=
(n

r) − (
n−m

r )

(n−m
r )

ex(n −m, F)

Lemma 3.3
≤

2m(n−m
r−1 )

(n−m
r )

ex(n −m, F) = 2mr
n −m − r + 1

ex(n −m, F).
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Consequently,

∣d(n, F) − d(n − m, F)∣ = ∣ r ⋅ ex(n, F)
n

− r ⋅ ex(n − m, F)
n − m

∣

= ∣ r
n
(ex(n, F) − ex(n − m, F)) − rm

n(n − m)ex(n − m, F)∣

≤ max{ 2mr2

n(n − m − r + 1) , rm
n(n − m)} ⋅ ex(n − m, F)

≤ 2mr2

n(n − m − r + 1)(
n − m

r
) ≤ 4m(n − m

r − 2
).

This completes the proof of Lemma 3.5. ∎

The following lemma deals with a simple case of Theorem 3.1 in which the
maximum degree of every r-graph Hi is bounded away from (n−1

r−1).

Lemma 3.6 Let F be a nondegenerate r-graph with m vertices. Suppose that ex(n, F)
is g-smooth with g(n) ≤ 1−π(F)

8m ( n
r−1) for all sufficiently large n. Then there exists N1 such

that the following holds for all integers n, t ∈ N with n ≥ N1 and t ≤ 1−π(F)
64rm2 n.

Suppose that {H1 , . . . ,Ht+1} is a collection of n-vertex r-graphs on the same vertex
set V such that

∣Hi ∣ ≥ ex(n − t, F) + t(n − t
r − 1

) and Δ(Hi) ≤ d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

)

hold for all i ∈ [t + 1]. Then {H1 , . . . ,Ht+1} contains a rainbow F-matching.

Proof Given an integer k ≤ t + 1, we say a collection C = {S1 , . . . , Sk} of pairwise
disjoint m-subsets of V is F-rainbow if there exists an injection f ∶ [k] → [t + 1] such
that F ⊂H f (i)[S i] for all i ∈ [k].

Fix a maximal collection C = {S1 , . . . , Sk} of pairwise disjoint m-subsets of V that
is F-rainbow. If k = t + 1, then we are done. So we may assume that k ≤ t. Without loss
of generality, we may assume that F ⊂Hi[S i] for all i ∈ [k] (i.e., f is the identity map).
Let B = ⋃k

i=1 S i and let b = ∣B∣ = mk.
Let us count the number of edges in Hk+1. Observe that every copy of F in Hk+1

must contain a vertex from B, since otherwise, it would contradict the maximality
of C. Therefore, the induced subgraph of Hk+1 on V0 ∶= V/B is F-free. Hence, by the
maximum degree assumption, we obtain

∣Hk+1∣ ≤ ∣Hk+1[V0]∣ + b (d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

))

≤ ex(n − b, F) + b (d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

))

= ex(n − t, F) + t(n − t
r − 1

) − (Δ1 + Δ2) ,
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where

Δ1 ∶= ex(n − t, F) − ex(n − b, F) − (b − t)d(n − t, F),

Δ2 ∶= t ((n − t
r − 1

) − d(n − t, F)) − b 1 − π(F)
2m

(n − t
r − 1

).

Next, we will prove that Δ1 + Δ2 > 0, which implies that ∣Hk+1∣ < ex(n − t, F) + t(n−t
r−1)

contradicting our assumption.
Since n − t ≥ N1/2 is sufficiently large and limn→∞ ex(n − t, F)/(n−t

r ) = π(F), we
have ex(n − t, F) ≤ (π(F) + 1−π(F)

5 ) (n−t
r ), and hence,

d(n − t, F) = r ⋅ ex(n − t, F)
n − t

≤ (π(F) + 1 − π(F)
5

)(n − t
r − 1

).

Therefore,

Δ2 ≥ t (1 − (π(F) + 1 − π(F)
5

))(n − t
r − 1

) − mt 1 − π(F)
2m

(n − t
r − 1

)

≥ 1 − π(F)
4

(n − t
r − 1

)t.

On the other hand, by Lemma 3.5, we have

d(n − t, F) ≤ d(n − b, F) + 4(b − t)(n − b
r − 2

) ≤ d(n − b, F) + 4mt(n − t
r − 2

).

Therefore, it follows from the Smoothness assumption and g is nondecreasing that

Δ1 =
b−t
∑
i=1
(ex(n − b + i , F) − ex(n − b + i − 1, F)) − (b − t)d(n − t, F)

Smoothness
≥

b−t−1
∑
i=0

(d(n − b + i , F) − g(n − b + i + 1)) − (b − t)d(n − t, F)

Nondecreasing
≥

b−t−1
∑
i=0

(d(n − b + i , F) − d(n − t, F)) − (b − t)g(n − t)

Lemma 3.5
≥ −

b−t−1
∑
i=0

4(b − t − i)(n − b + i
r − 2

) − (b − t)g(n − t)

≥ −4m2 t2(n − t − 1
r − 2

) − mt ⋅ g(n − t) = −4(r − 1)m2 t2

n − t
(n − t

r − 1
) − mt ⋅ g(n − t).

Since t ≤ 1−π(F)
64rm2 n, we obtain 4(r−1)m2 t2

n−t < 1−π(F)
8 t. Together with g(n − t) ≤

1−π(F)
8m (n−t

r−1), we obtain

Δ1 > −(
1 − π(F)

8
t + mt 1 − π(F)

8m
)(n − t

t − 1
) = − 1 − π(F)

4
t(n − t

r − 1
).

Therefore, Δ1 + Δ2 > 0. This finishes the proof of Lemma 3.6. ∎
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3.2 Proof of Theorem 3.1

We prove Theorem 3.1 in this section. Let us prove Part (i) first.

Proof of Theorem 3.1 (i) Fix a sufficiently large constant N0 and suppose that
n ≥ N0. Let k ≤ t + 1. We say a collection L ∶= {v1 , . . . , vk} of vertices in V is heavy-
rainbow if there exists an injection f ∶ [k] → [t + 1] such that

dH f (i)(v i) ≥ d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

) for all i ∈ [k].

Fix a maximal collection L ∶= {v1 , . . . , vk} of vertices that is heavy-rainbow. Without
loss of generality, we may assume that f (defined above) is the identity map. ∎

Let V0 = V/L and H′j =H j[V0] for all j ∈ [k + 1, t + 1]. For every j ∈ [k + 1, t + 1]
observe that there are at most (n

r) − (
n−k

r ) edges inH j that have nonempty intersection
with L. Hence,

∣H′j ∣ ≥ ∣H j ∣ − ((
n
r
) − (n − k

r
))

≥ ex(n − t, F) + (n
r
) − (n − t

r
) − ((n

r
) − (n − k

r
))

= ex((n − k) − (t − k), F) + (n − k
r

) − ((n − k) − (t − k)
r

).

On the other hand, it follows from the maximality of L that

Δ(H′j) ≤ Δ(H j) ≤ d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

)

= d((n − k) − (t − k), F) + 1 − π(F)
2m

((n − k) − (t − k)
r − 1

)

holds for all j ∈ [k + 1, t + 1]. By assumption, t−k
n−k ≤

t
n ≤

1−π(F)
64rm2 and n − k ≥ n/2

is sufficiently large, so it follows from Lemma 3.6 that there exists a collection
C = {Sk+1 , . . . , St+1} of pairwise disjoint m-subsets of V0 such that F ⊂H′j[S j] for all
j ∈ [k + 1, t + 1].

Next we will find a collection of rainbow copies of F from {H1 , . . . ,Hk}.

Claim 3.7 For every i ∈ [k] and for every set B i ⊂ V/{v i} of size at most 2mt there
exists a copy of F in Hi[V/B i].

Proof Fix i ∈ [k] and fix a set B i ⊂ V/{v i} of size at most 2mt. We may assume
that ∣B i ∣ = 2mt. Let Vi = V/B i and n i = ∣Vi ∣ = n − 2mt. Let H′i =Hi[Vi]. Since the
number of edges in Hi containing v i that have nonempty intersection with B i is at
most 2mt(n−1

r−2), we have
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dH′
i
(v i) ≥ d(n − t, F) + 1 − π(F)

2m
(n − t

r − 1
) − 2mt(n − 1

r − 2
)

Lemma 3.5
≥ d(n − 2mt, F) − 2mt(n − 2mt

r − 2
) + 1 − π(F)

2m
(n − t

r − 1
) − 2mt(n − 1

r − 2
)

> d(n − 2mt, F) + 1 − π(F)
4m

(n − 2mt
r − 1

),(3.2)

where the last inequality holds because t ≤ 1−π(F)
64rm2 n and n is sufficiently large. ∎

Similarly, we have

∣H′i ∣ ≥ ∣Hi ∣ − 2mt(n − 1
r − 1

) > ex(n − t, F) + (n
r
) − (n − t

r
) − 2mt(n − 1

r − 1
)

Lemma 3.4
≥ ex(n − 2mt, F) − 2emt(n − 2mt

r − 1
)

which, by the assumption f (n − 2mt) ≥ 2emt(n−2mt
r−2 ), implies that

d(Hi′) =
r ⋅ ∣H′i ∣

n − 2mt
≥ d(n − 2mt, F) − 2emt(n − 2mt − 1

r − 2
)

> d(n − 2mt, F) − f (n − 2mt).(3.3)

It follows from (3.2), (3.3), and the Boundedness assumption that F ⊂H′i .
Let B = L ∪ Sk+1 ∪ ⋅ ⋅ ⋅ ∪ St+1. Now we can repeatedly apply Claim 3.7 to

find a collection of rainbow copies of F as follows. First, we let B1 = B/{v1}.
Since ∣B1∣ = k − 1 + m(t + 1 − k) ≤ 2mt, Claim 3.7 applied to v1, B1, and H1
yields an m-set S1 ⊂ V/B1 such that F ⊂H1[S1]. Suppose that we have define
S1 , . . . , S i for some i ∈ [k − 1] such that F ⊂H j[S j] holds for all j ≤ i. Then let
B i+1 = (B ∪ S1 ∪ ⋅ ⋅ ⋅ ∪ S i)/{v i+1}. Since ∣B i+1∣ = k − 1 + m(t + 1 − k) + im ≤ 2mt,
Claim 3.7 applied to v i+1, B i+1, and Hi+1 yields an m-set S i+1 ⊂ V/B i+1 such that
F ⊂Hi+1[S i+1]. At the end of this process, we obtain a collection {S1 , . . . , Sk} of
pairwise disjoint sets such that F ⊂Hi[S i] holds for all i ∈ [k]. Since S i ∩ S j = ∅ for
all i ∈ [k] and j ∈ [k + 1, t + 1], the set {S1 , . . . , St+1} yields a rainbow F-matching.

Before proving Part (ii) of Theorem 3.1, we need the simple corollary of Lemma 3.6.
Lemma 3.8 Let F be a nondegenerate r-graph with m vertices. Suppose that ex(n, F)
is g-smooth with g(n) ≤ 1−π(F)

8m ( n
r−1) for all sufficiently large n. Then there exists N1 such

that the following holds for all integers n, t ∈ N with n ≥ N1 and t ≤ 1−π(F)
64rm2 n.

Suppose that H is an n-vertex r-graph with

Δ(H) ≤ d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

) and ν(F ,H) < t + 1.

Then

∣H∣ < ex(n − t, F) + t(n − t
r − 1

).

Now we are ready to prove Part (ii).
Proof of Theorem 3.1 (ii) Let H be an n-vertex r-graph with ex(n, (t + 1)F) edges
and ν(F ,H) < t + 1. Note that Theorem 3.1 (i) already implies that ex(n, (t + 1)F) ≤
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(n
r) − (

n−t
r ) + ex(n − t, F). So, it suffices to show that H is isomorphic to K r

t � G for
some G ∈ EX(n − t, F).

Let V = V(H) and define

L ∶= {v ∈ V ∶ dH(v) ≥ d(n − t, F) + 1 − π(F)
2m

(n − t
r − 1

)} .

A similar argument as in the proof of Claim 3.7 yields the following claim.

Claim 3.9 For every v ∈ L and for every set B ⊂ V/{v} of size at most 2mt there exists
a copy of F in H[V/B]. ∎

Let � = ∣L∣. We have the following claim for �.

Claim 3.10 We have � ≤ t.

Proof Suppose to the contrary that � ≥ t + 1. By taking a subset of L if necessary, we
may assume that � = t + 1. Let us assume that L = {v1 , . . . , vt+1}. We will repeatedly
apply Claim 3.9 to find a collection {S1 , . . . , St+1} of pairwise disjoint m-sets such that
F ⊂H[S i] for all i ∈ [t + 1] as follows.

Let B1 = L/{v1}. Since ∣B1∣ ≤ 2mt, it follows from Claim 3.9 that there exists a set
S1 ⊂ V/B such that F ⊂H[S1]. Now suppose that we have found pairwise disjoint
m-sets S1 , . . . , S i for some i ≤ t. Let B i+1 = (L ∪ S1 ∪ ⋅ ⋅ ⋅ ∪ S i) /{v i}. It is clear that
∣B i+1∣ ≤ 2mt. So it follows from Claim 3.9 that there exists a set S i+1 ⊂ V/B such that
F ⊂H[S i+1]. Repeat this process for t + 1 times, we find the collection {S1 , . . . , St+1}
that satisfies the assertion. However, this contradicts the assumption that ν(F ,H) <
t + 1. ∎

Let V0 = V/L and H0 =H[V0]. The following claim follows from a similar argu-
ment as in the last paragraph of the proof of Theorem 3.1.

Claim 3.11 We have ν(F ,H0) < t − � + 1.

If � = t, then Claim 3.11 implies that H0 is F-free. Therefore, it follows from

∣H0∣ ≥ ∣H∣ − ((n
r
) − (n − t

r
)) = ex(n − t, F)

that H0 ∈ EX(n − t, F) and d(v) = (n−1
r−1) for all v ∈ L, which implies that H = K r

t � G
for some G ∈ EX(n − t, F).

If � ≤ t − 1, then it follows from Δ(H0) ≤ d(n − t, F) + 1−π(F)
2m (n−t

r−1), ν(F ,H0) < t −
� + 1, and Lemma 3.8 that

∣H0∣ < ex(n − t, F) + (t − �)(n − t
r − 1

).

Consequently,

∣H∣ ≤ ∣H0∣ + (
n
r
) − (n − �

r
) < ex(n − t, F) + (t − �)(n − t

r − 1
) + (n

r
) − (n − �

r
)

≤ ex(n − t, F) + (n
r
) − (n − t

r
),

a contradiction.
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4 Proofs of Theorems 1.7 and 1.9

In this section, we prove Theorems 1.7 and 1.9. Before that, let us introduce some
definitions and prove some preliminary results.

4.1 Preliminaries

The following fact concerning δ(n, F) for all hypergraphs F.

Fact 4.1 Let F be an r-graph and n ≥ 1 be an integer. Then every maximum n-vertex
F-free r-graph H satisfies δ(H) ≥ δ(n, F). In particular, d(n, F) ≥ δ(n, F).

Proof Let v ∈ V(H) be a vertex with minimum degree and let H′ be the induced
subgraph of H on V(H)/{v}. Since H′ is an (n − 1)-vertex F-free r-graph, we have
∣H′∣ ≤ ex(n − 1, F). On the other hand, sinceH is a maximum n-vertex F-free r-graph,
we have ex(n, F) = ∣H∣. Therefore,

δ(n, F) = ex(n, F) − ex(n − 1, F) ≤ ∣H∣ − ∣H′∣ = dH(v) = δ(H),

which proves Fact 4.1. ∎

For Turán pairs (F , P) we have the following fact which provides a lower bound
for δ(n, F).

Fact 4.2 Suppose that (F , P) is a Turán pair and H is a maximum F-free r-graph on
n − 1 vertices. Then δ(n, F) ≥ Δ(H). In particular, δ(n, F) ≥ d(n − 1, F).

Proof First, notice that ∣H∣ = ex(n − 1, F). On the other hand, it follows from the
definition of Turán pair that H is an (n − 1)-vertex P-construction. Let H̃ be an
n-vertex P-construction obtained from H by duplicating a vertex v ∈ V(H) with
maximum degree. In other words, H̃ is obtained from H by adding a new vertex
u and adding all edges in {{u} ∪ S∶ S ∈ LH(v)}. It is clear that H̃ is an n-vertex
P-construction, and hence, H̃ is F-free. So ∣H̃∣ ≤ ex(n, F). It follows that

δ(n, F) = ex(n, F) − ex(n − 1, F) ≥ ∣H̃∣ − ∣H∣ = dH(v) = Δ(H) ≥ d(H) ≥ d(n − 1, F),

which proves Fact 4.2. ∎

The following result can be derived with a minor modification to the proof of
[50, Lemma 4.2] (see Section 1 for details).

Fact 4.3 Let F be an r-graph and let H be an n-vertex F-free r-graph. If n is large, ε > 0
is small, and ∣H∣ ≥ (π(F) − ε) (n

r), then
(a) the set

Zε(H) ∶= {v ∈ V(H)∶ dH(v) ≤ (π(F) − rε1/2)(n − 1
r − 1

)}

has size at most ε1/2n, and
(b) the induced subgraph H′ of H on V(H)/Zε(H) satisfies δ(H′) ≥

(π(F) − 2rε1/2) (n−1
r−1).
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4.2 Proofs of Theorems 1.7 and 1.9

We prove Theorem 1.7 first.

Proof of Theorem 1.7 Fix an integer n ≥ 1. Then

∣δ(n, F) − d(n − 1, F)∣ Fact 4.2= δ(n, F) − d(n − 1, F)
Fact 4.1
≤ d(n, F) − d(n − 1, F)

Lemma 3.5
≤ 4(n − 1

r − 2
),

which proves Theorem 1.7. ∎

Next we prove Theorem 1.9.

Proof of Theorem 1.9 Fix constants 0 < ε ≪ ε1 ≪ 1 and let n ∈ N be sufficiently
large. Suppose to the contrary that there exists an n-vertex F-free r-graph H with
d(H) ≥ d(n, F) − ε(n−1

r−1) and Δ(H) ≥ d(n, F) + 1−π(F)
8m (n−1

r−1). Let V = V(H). Fix a
vertex v ∈ V with dH(v) = Δ(H). Let V0 = V/{v} and H0 =H[V0]. Since

∣H0∣ ≥ ∣H∣ − (n − 1
r − 1

) ≥ ex(n, F) − 2ε(n
r
),

it follows from the edge-stability of F that H0 contains a subgraph H1 with at least
ex(n, F) − ε1(n

r) ≥ (π(F) − ε1) (n
r) edges, and moreover, H1 is a P-subconstruction.

It follows from Fact 4.3 that the set

Z ∶= {v ∈ V ∶ dH1(v) ≤ (π(F) − rε1/2
1 )(n − 1

r − 1
)}

has size at most ε1/2
1 n, and moreover, the r-graph H2 ∶=H1[V0/Z] satisfies δ(H2) ≥

(π(F) − 2rε1/2
1 ) (n−1

r−1). Note that H2 ⊂H1 is also a P-subconstruction.

Define H3 ∶=H2 ∪ {e ∈H[V/Z]∶ v ∈ e}. Since ∣Z∣ ≤ ε1/2
1 n ≤ 1−π(F)

72m
n
r , we have

dH3(v) ≥ dH(v) − ∣Z∣(
n − 2
r − 2

) ≥ d(n, F) + 1 − π(F)
8m

(n − 1
r − 1

) − 1 − π(F)
72m

n
r
(n − 2

r − 2
)

≥ d(n, F) + 1 − π(F)
8m

(n − 1
r − 1

) − 1 − π(F)
72m

(n − 1
r − 1

)

≥ (π(F) + 1 − π(F)
9m

)(n − 1
r − 1

).

Let n′ = ∣V/Z∣. Note that H3 is an F-free r-graph on n′ vertices with δ(H3) ≥
δ(H2) ≥ (π(F) − 2rε1/2

1 ) (n−1
r−1), and v ∈ V(H3) is a vertex such that H3 − v =H2 is a

P-subconstruction. However, this contradicts the weak vertex-extendability of F since
ε1 is sufficiently small and dH3(v) ≥ (π(F) + 1−π(F)

9m ) (n−1
r−1). ∎

5 Proof of Theorem 2.13

The edge-stability of F3,2 was already proved in [28, Theorem 2.2], so by Theorems 1.5,
1.7, and 1.9, to prove Theorem 2.13 it suffices to prove the following result.
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Theorem 5.1 The 3-graph F3,2 is weakly vertex-extendable with respect to the pattern
S3 ∶= (2, {1, 2, 2}).

Proof Fix δ > 0. Let n be sufficiently large and ζ > 0 be sufficiently small. LetH be an
n-vertex F3,2-free 3-graph with δ(H) ≥ ( 4

9 − ζ) (n−1
2 ). Suppose that v ∈ V is a vertex

such that H0 ∶=H − v is an S3-subconstruction (i.e., semibipartite). It suffices to show
that dH(v) ≤ ( 4

9 + δ) (n−1
2 ).

Suppose to the contrary that dH(v) > ( 4
9 + δ) (n−1

2 ). Let V1 ∪ V2 be a bipartition
of V0 ∶= V/{v} such that every edge in H0 contains exactly one vertex from V1. Since
∣H0∣ ≥ 3

n δ(H) ≥ ( 4
9 − ζ) (n

3), it follows from some simple calculations (see, e.g., [28,
Theorem 2.2(ii)]) that

max{∣∣V1∣ −
n
3
∣ , ∣∣V2∣ −

2n
3
∣} ≤ ζ 1/2n.(5.1)

Recall that the link of a vertex u ∈ V(H) is defined as

LH(u) ∶= {A ∈ (V(H)
r − 1

)∶A∪ {u} ∈H} .

Let L = LH(v) for simplicity and let

L1 ∶= L ∩ (V1

2
), L2 ∶= L ∩ (V2

2
), and L1,2 ∶= L ∩ (V1 × V2).

Here, we abuse the use of notation by letting V1 × V2 denote the edge set of the
complete bipartite graph with parts V1 and V2.

Claim 5.2 We have ∣L2∣ ≥ δ
8 n2. ∎

Proof Suppose to the contrary that ∣L2∣ ≤ δn2/8. Then it follows from the inequality

∑
v′∈V1

dL(v′) = 2∣L1∣ + ∣L1,2∣ ≥ ∣L∣ − ∣L2∣ ≥ (
4
9
+ δ)(n − 1

2
) − δ

8
n2 ≥ (2

9
+ δ

4
) n2

that there exists a vertex w ∈ V1 with

dL(w) ≥
( 2

9 +
δ
4 ) n2

( 1
3 + ζ 1/2) n

≥ (2
3
+ δ

8
) n.

Therefore, by (5.1), we have

min{∣NL(w) ∩ V1∣, ∣NL(w) ∩ V2∣} ≥
δ
16

n.

Fix a vertex u ∈ NL(w) ∩ V1 and let V ′2 = NL(w) ∩ V2. Since

(∣V2∣
2
) − dH0(u) ≤ ((

2
3 + ζ 1/2) n

2
) − (4

9
− 2ζ)(n − 1

2
) < (δn/16

2
),(5.2)

there exists an edge ab ∈ LH(u) ∩ (V ′2
2 ). However, this implies that F3,2 ⊂

H[{v , u, w , a, b}] (see Figure 8), a contradiction. ∎
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Figure 8: Finding F3,2 in Claim 5.2 (left) and Claim 5.3 (right).

Claim 5.3 We have L1 = ∅.

Proof Suppose to the contrary that there exists an edge uw ∈ L1. Note that ∣L2∣ ≥
δn2/8 from Claim 5.2. Choosing uniformly at random a pair {a, b} from (V2

2 ), we
obtain

min{P [ab ∈ LH(u)] ,P [ab ∈ LH(w)]} ≥
δ(H0)
(∣V2 ∣

2 )
>
( 4

9 − 2ζ) (n−1
2 )

(( 2
3+ζ1/2)n

2 )
> 1 − 10ζ 1/2 ,

and

P [ab ∈ L2] =
∣L2∣
(∣V2 ∣

2 )
> δn2/8
(( 2

3+ζ1/2)n
2 )

> δ
8

.

So it follows from the Union Bound that

P [ab ∈ L2 ∩ LH(u) ∩ LH(w)] > 1 − (10ζ 1/2 + 10ζ 1/2 + 1 − δ
8
) > 0.

Hence, there exists an edge ab ∈ L2 ∩ LH(u) ∩ LH(w). However, this implies that
F3,2 ⊂H[{v , u, w , a, b}] (see Figure 8), a contradiction. ∎

Let us define

U1 ∶= {v′ ∈ V2∶ ∣NL(v′) ∩ V1∣ ≥
δ
16

n} and U2 ∶= {v′ ∈ V2∶ ∣NL(v′) ∩ V2∣ ≥
δ
16

n} .

It follows from

( 1
3
+ ζ 1/2) n∣U1∣ ≥ ∑

v′∈U1

∣NL(v′) ∩ V1∣ ≥ ∣L1,2∣ −
δ
16

n∣V2/U1∣ ≥ ∣L1,2∣ −
δ
16

n2

and

(2
3
+ ζ 1/2) n∣U2∣ ≥ ∑

v′∈U2

∣NL(v′) ∩ V2∣ ≥ 2∣L2∣ −
δ
16

n∣V2/U2∣ ≥ 2∣L2∣ −
δ
16

n2
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Figure 9: Finding F3,2 when L1 = ∅.

that

∣U1∣ + ∣U2∣ ≥
∣L1,2∣ − δ

16 n2

( 1
3 + ζ 1/2) n

+
2∣L2∣ − δ

16 n2

( 2
3 + ζ 1/2) n

≥
∣L1,2∣ − δ

16 n2 + ∣L2∣ − δ
16 n2

( 1
3 + ζ 1/2) n

=
∣L∣ − δ

8 n2

( 1
3 + ζ 1/2) n

≥
( 2

9 +
δ
4 ) n2 − δ

8 n2

( 1
3 + ζ 1/2) n

≥ (2
3
+ δ

8
) n.

So it follows from (5.1) that ∣U1 ∩U2∣ ≥ ∣U1∣ + ∣U2∣ − ∣V2∣ ≥ δ
16 n.

Fix a vertex w ∈ U1 ∩U2 and a vertex u ∈ NL(w) ∩ V1. Let V ′2 = NL(w) ∩ V2. Since
∣V ′2 ∣ ≥ δ

16 n, similar to (5.2), there exists an edge ab ∈ LH(u) ∩ (V ′2
2 ). However, this

implies that F3,2 ⊂H[{v , u, w , a, b}] (see Figure 9), a contradiction. This completes
the proof of Theorem 5.1.

6 Concluding remarks

By a small modification of the proof, one can easily extend Theorems 1.5 and 1.6 to
vertex-disjoint union of different hypergraphs as follows (here, we omit the statement
for the rainbow version).

Theorem 6.1 Let m ≥ r ≥ 2, k ≥ 1 be integers and let F1 , . . . , Fk be nondegenerate
r-graphs on at most m vertices. Suppose that there exists a constant c > 0 such that for
all i ∈ [k] and large n∶
(a) Fi is (c( n

r−1), 1−π(F)
4m ( n

r−1))-bounded, and
(b) ex(n, Fi) is 1−π(F)

8m ( n
r−1)-smooth.
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Then there exist constant N0 such that for all integers n ≥ N0 and t1 , . . . , tk ∈ N with
t + 1 ∶= ∑k

i=1 t i ∈ [0, εn], where ε = min{ c
4erm , 1−π(F1)

64rm2 , . . . , 1−π(Fk)
64rm2 }, we have

ex(n,
k
⊔
i=1

t i Fi) ≤ (
n
r
) − (n − t

r
) +max

i∈[k]
{ex(n − t, Fi)} .

Moreover, if maxi∈[k] ex(n − t, Fi) = ex(n, {F1 , . . . , Fk}), then the inequality above can
be replace by equality.

Recall from Theorem 1.7 that for every r-uniform Turán pair (F , P), the func-
tion ex(n, F) is smooth. This result can be extended in the following ways with a
slight modification to the proof (the proof of Theorem 6.2 below is included in the
Appendix).

Let (n i)∞i=1 be an ascending sequence of integers, F be an r-graph, and P be a
pattern. We say (F , P) is a (n i)∞i=1-Turán pair if there exists N0 such that

• every P-construction is F-free, and
• for every n i ≥ N0, there exists an n i -vertex F-free extremal construction that is a

P-construction.

Let k ≥ 1 be an integer. We say an ascending sequence of integers (n i)∞i=1 is 1
k -dense if

for every integer m ≥ N0, we have

{m + 1, . . . , m + k} ∩ {n i ∶ i ≥ 1} ≠ ∅.

Theorem 6.2 Let k ≥ 1 be an integer, F be an r-graph, and P be a pattern. Suppose that
(F , P) is an (n i)∞i=1-Turán pair for some 1

k -dense ascending sequence of integers (n i)∞i=1.
Then ex(n, F) is 16k2(n−1

r−2)-smooth.

Given an r-graph F, we say F is 2-covered if every pair of vertices in V(F) is
contained in some edge of F. In particular, complete r-graphs are 2-covered.

Suppose that F is a 2-covered r-graph. Then it is easy to see that duplicating a vertex
in an F-free r-graph does not change its F-freeness. Thus, a proof analogous to that of
Fact 4.2 can show that δ(n, F) ≥ Δ(H) for every maximum F-free r-graph H on n − 1
vertices. Consequently, we have δ(n, F) ≥ d(n − 1, F). By combining this result with
Fact 4.1 and Lemma 3.5, we can extend Theorem 6.3 as follows.

Theorem 6.3 Suppose that F is a 2-covered r-graph. Then ex(n, F) is 4(n−1
r−2)-smooth.

Recall that Allen, Böttcher, Hladký, and Piguet [2] determined, for large n, the
value of ex(n, (t + 1)K3) for all t ≤ n/3. Considering that the situation is already very
complicated for K3, the following question seems very hard in general.

Problem 6.4 Let r ≥ 2 be an integer and F be a nondegenerate r-graph with m vertices.
For large n determine ex(n, (t + 1)F) for all t ≤ n/m.

A first step toward a full understanding of Problem 6.4 would be determining the
regime of t in which members in K r

t � EX(n − t, F) are extremal. Here, we propose the
following question, which seems feasible for many hypergraphs (including graphs).
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Problem 6.5 Let r ≥ 2 be an integer and F be an r-graph with m vertices. For large n
determine the maximum value of s(n, F) such that

ex(n, (t + 1)F) = (n
r
) − (n − t

r
) + ex(n − t, F)

holds for all t ∈ [0, s(n, F)].
Understanding the asymptotic behavior of s(n, F) would be also very interesting.

Problem 6.6 Let r ≥ 2 be an integer and F be an r-graph with m vertices. Let s(n, F)
be the same as in Problem 6.5. Determine the value of lim inf n→∞

s(n ,F)
n .

Note that the result of Allen, Böttcher, Hladký, and Piguet [2] implies that
s(n, K3) = 2n−6

9 for large n. In particular, limn→∞
s(n ,K3)

n = 2
9 .

It would be also interesting to consider extensions of the density Corrádi–Hajnal
theorem to degenerate hypergraphs such as complete r-partite r-graphs and even
cycles6. The behavior for degenerate hypergraphs seems very different from nonde-
generate hypergraphs, and we refer the reader to, for example, [19, Theorem 1.3] for
related results on even cycles.

As pointed out to us by Mubayi, ex(n, (t + 1)F) is also related to the well-
known Erdős–Rademacher Problem [12]. More specifically, a lower bound for the
number of copies of F in an n-vertex r-graph H with e edges can provide a lower
bound for the number of vertex-disjoint copies of F in H, as revealed by results
in Hypergraph Matching Theory. However, this approach is unlikely to give a tight
bound for ex(n, (t + 1)F) since these two questions generally have different extremal
constructions. We refer the reader to, for example, [61, 62, 64, 70–72] and references
therein for more results related to the Erdős–Rademacher Problem.

A Proof of Fact 4.3

Proof of Fact 4.3 Fix a sufficiently small ε > 0 and let n be a sufficiently large integer
such that

ex(n − ε1/2n, F) ≤ π(F)((1 − ε1/2) n
r

) + ε(n
r
).

Suppose to the contrary that ∣Zε(H)∣ ≥ ε1/2n. Then fix a set Z ⊂ Zε(H) of size ε1/2n
and let U ∶= V(H)/Z. It follows from the definition of Zε(H) that

∣H[U]∣ ≥ ∣H∣ − ∣Z∣ ⋅ (π(F) − rε1/2)(n − 1
r − 1

)

≥ (π(F) − ε) (n
r
) − r

n
⋅ ∣Z∣ ⋅ (π(F) − rε1/2)(n

r
)

= (π(F) − ε) (n
r
) − rε1/2 ⋅ (π(F) − rε1/2)(n

r
)

= ((1 − rε1/2)π(F) + (r2 − 1)ε)(n
r
).

6This question was explored in recent work [34–36].
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On the other hand, we have

∣H[U]∣ ≤ ex(n − ε1/2n, F) ≤ π(F)((1 − ε1/2) n
r

) + ε(n
r
)

≤ (1 − ε1/2)r
π(F)(n

r
) + ε(n

r
)

≤ (1 − rε1/2 + (r
2
)ε) π(F)(n

r
) + ε(n

r
)

≤ ((1 − rε1/2) π(F) + ((r
2
) + 1) ε)(n

r
).

Here, we used the inequality that (1 − x)r ≤ 1 − rx + (r
2)x2 for x ∈ [0, 1] and r ≥ 2.

Since r2 − 1 > (r
2) + 1 for r ≥ 2, we arrived at a contradiction. Therefore, we have

∣Zε(H)∣ ≤ ε1/2n. It follows that the induced subgraph H′ of H on V(H) − Zε(H)
satisfies

δ(H′) ≥ (π(F) − rε1/2)(n − 1
r − 1

) − ∣Zε(H)∣(n − 2
r − 2

)

≥ (π(F) − rε1/2)(n − 1
r − 1

) − ε1/2n ⋅ r − 1
n − 1

(n − 1
r − 1

)

≥ (π(F) − 2rε1/2)(n − 1
r − 1

),

completing the proof of Fact 4.3. ∎

B Proof of Theorem 6.2

The following fact can be derived from a slight modification of the proof of Fact 4.2∶
instead of duplicating the vertex v just once, we duplicate it n − n i∗ times.

Fact B.1 Let k ≥ 1 be an integer and (n i)∞i=1 be a 1
k -dense ascending sequence of

integers. Suppose that (F , P) is an r-uniform (n i)∞i=1-Turán pair and H is a maximum
P-construction on n i∗ vertices, where i∗ is sufficiently large. Then for every n ≥ n i∗ , we
have

ex(n, F) − ex(n i∗ , F) ≥ (n − n i∗) ⋅ Δ(H) ≥ (n − n i) ⋅ d(n i , F).

Proof of Theorem 6.2 Let n be a sufficiently large integer and let i∗ be such that
n i∗ ≤ n ≤ n i∗ + k. The existence of such an i∗ is guaranteed by the assumption that
(n i)∞i=1 is a 1

k -dense ascending sequence.
Let Φ ∶= ∣ex(n, F) − ex(n i∗ , F) − (n − n i∗) ⋅ d(n i∗ , F)∣. Notice that

Φ Fact B.1= ex(n, F) − ex(n i∗ , F) − (n − n i∗) ⋅ d(n i∗ , F)

=
n−n i∗

∑
j=1

(ex(n i∗ + j, F) − ex(n i∗ + j − 1, F) − d(n i∗ , F))
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Fact 4.1
≤

n−n i∗

∑
j=1

(d(n i∗ + j, F) − d(n i∗ , F))

Lemma 3.5
≤

n−n i∗

∑
j=1

4 j( n i∗
r − 2

) ≤ 4 (n − n i∗)
2 ( n i∗

r − 2
).

Additionally,

d(n, F) − δ(n, F)
Fact 4.1
≤ (d(n, F) − δ(n, F)) +

n−n i∗−1

∑
j=1

(d(n − j, F) − δ(n − j, F))

=
n−n i∗−1

∑
j=0

d(n − j, F) −
n−n i∗−1

∑
j=0

δ(n − j, F)

=
n−n i∗−1

∑
j=0

(d(n − j, F) − d(n i∗ , F)) + (n − n i∗) ⋅ d(n i∗ , F) − (ex(n, F) − ex(n i∗ , F))

≤
n−n i∗−1

∑
j=0

∣d(n − j, F) − d(n i∗ , F)∣ +Φ

Lemma 3.5
≤ 4(n − n i∗)2( n i∗

r − 2
) + 4(n − n i∗)2( n i∗

r − 2
) = 8(n − n i∗)2( n i∗

r − 2
).

Therefore, we obtain that

∣δ(n, F) − d(n − 1, F)∣ = ∣δ(n, F) − d(n, F) + d(n, F) − d(n − 1, F)∣
Lemma 3.5

≤ ∣δ(n, F) − d(n, F)∣ + 4(n − 1
r − 2

)

≤ 8(n − n i∗)2( n i∗
r − 2

) + 4(n − 1
r − 2

) ≤ 12k2(n − 1
r − 2

),

proving Theorem 6.2. ∎
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[18] P. Erdős and A. H. Stone, On the structure of linear graphs. Bull. Amer. Math. Soc. 52(1946),

1087–1091.
[19] L. Fang, M. Zhai, and H. Lin, Spectral extremal problem on t copies of �-cycle. Electron. J.

Combin. 31(2024), no. 4, 30. Paper No. 4.17. MR4815832.
[20] P. Frankl, Asymptotic solution of a Turán-type problem. Graphs Comb. 6(1990), no. 3, 223–227.
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