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Operator Amenability of the Fourier
Algebra in the cb-Multiplier Norm

Brian E. Forrest, Volker Runde, and Nico Spronk

Abstract. Let G be a locally compact group, and let Acb(G) denote the closure of A(G), the Fourier al-

gebra of G, in the space of completely bounded multipliers of A(G). If G is a weakly amenable, discrete

group such that C∗(G) is residually finite-dimensional, we show that Acb(G) is operator amenable.

In particular, Acb(F2) is operator amenable even though F2, the free group in two generators, is not

an amenable group. Moreover, we show that if G is a discrete group such that Acb(G) is operator

amenable, a closed ideal of A(G) is weakly completely complemented in A(G) if and only if it has an

approximate identity bounded in the cb-multiplier norm.

Introduction

The Fourier algebra A(G) of a locally compact group G was introduced by P. Eymard
[E]; for abelian G, the Fourier transform yields an isometric isomorphism of A(G)

and L1(Ĝ), where Ĝ is the dual group of G. Quite soon afterward, H. Leptin [Le]

showed that the amenable locally compact groups can be characterized in terms of
the Banach algebra A(G): the group G is amenable if and only if A(G) has a bounded
approximate identity.

B. E. Johnson [J1] introduced the notion of an amenable Banach algebra and

showed that a locally compact group G is amenable if and only if L1(G) is amenable
(this result motivates the choice of terminology). Since every amenable Banach al-
gebra has a bounded approximate identity, Leptin’s theorem immediately yields that
for any locally compact group G, the amenability of A(G) necessitates that of G. The

question for precisely which locally compact groups G the Fourier algebra A(G) is
amenable remained open for a surprisingly long period of time. Johnson [J3] showed
that A(G) may fail to be amenable for certain compact groups G. Eventually, Forrest
and Runde [FR] proved that A(G) is amenable if and only if G has an abelian sub-

group of finite index.
The study of the Fourier algebra gained new momentum in 1995 [R]. As the

predual of the group von Neumann algebra, A(G) is an operator space in a canonical
manner for every locally compact group G. Z.-J. Ruan used this to add operator

space overtones to Johnson’s notion of an amenable Banach algebra and introduced
the concept of operator amenability. He showed that a locally compact group G

is amenable if and only if A(G) is operator amenable [R]. Since then it has become
apparent that the theory of operator spaces [ER] provides powerful tools for the study

Received by the editors January 1, 2005.
Research of the first author was supported by NSERC grant no. 90749-04. Research of the second

author was supported by NSERC grant no. 227043-04.
AMS subject classification: Primary: 43A22; secondary: 43A30, 46H25, 46J10, 46J40, 46L07, 47L25 .
Keywords: cb-multiplier norm; Fourier algebra; operator amenability; weak amenability.
c©Canadian Mathematical Society 2007.

966

https://doi.org/10.4153/CJM-2007-041-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-041-9


Operator Amenability of the Fourier Algebra in the cb-Multiplier Norm 967

of the Fourier algebra of a locally compact group and of related algebras ([A,ARS,FW,
IS,LNR,Ru6,RS,S1,W1,W2]; for a detailed overview, see [Ru5]). Even if one is mainly

interested in the Fourier algebra as a mere Banach algebra, operator space methods
provide new insights: the main results of both [FKLS] and [FR] do not make any
reference to operator spaces, but their respective proofs depend on operator space
techniques.

In this paper, we investigate another Banach algebra associated with a locally com-
pact group G, mostly from an operator space point of view. The Fourier algebra A(G)
embeds canonically into the algebra of completely bounded multipliers on A(G). For
amenable G, the norm on A(G) inherited from this algebra (the cb-multiplier norm)

is the given norm; for non-amenable groups, however, the two norms are inequiva-
lent. We denote the completion of A(G) with respect to the cb-multiplier norm by
Acb(G). Unlike the Fourier algebra, Acb(G) may well have a bounded approximate
identity for non-amenable G (such groups are called weakly amenable). The main

result of this paper is that for certain discrete, non-amenable groups — among them
F2, the free groups in two generators — Acb(G) not only has a bounded approximate
identity, but is operator amenable. We then move on to study complementation
properties of closed ideals of both Acb(G) and A(G), where G is discrete with Acb(G)

operator amenable. In particular, we show that for such G, a closed ideal of A(G) is
(weakly) completely complemented in A(G) if and only if it has a bounded approxi-
mate identity.

1 Preliminaries

Our reference for the theory of operator spaces is the monograph [ER], whose nota-
tion and choice of terminology we adopt unless explicitly stated otherwise.

We begin by introducing basic definitions.

Definition 1.1 A quantized Banach algebra is an algebra A which is also an operator
space such that the multiplication of A is completely bounded.

Remark We do not require the multiplication of a quantized Banach to be com-
pletely contractive: this extra bit of generality can be convenient sometimes [LNR].

Examples

1. If A is any Banach algebra, then max A (the maximal operator space over A;

see [ER]) is a quantized Banach algebra.

2. If H is a Hilbert space, then every closed subalgebra of B(H) with its concrete
operator space structure is a quantized Banach algebra.

3. Let E be an operator space. Then CB(E) is a quantized Banach algebra.

4. Let G be a locally compact group, let VN(G) denote its group von Neumann
algebra, and let C∗(G) and C∗

r (G) denote its full and reduced group C∗-algebra, re-
spectively. The dualities

A(G) = VN(G)∗, B(G) = C∗(G)∗, and Br(G) = C∗
r (G)∗
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equip A(G) as well as B(G) and Br(G), the Fourier–Stieltjes algebra and the reduced

Fourier–Stieltjes algebra [E], respectively, with an operator space structure. With these

operator space structures, A(G), B(G), and Br(G) are quantized Banach algebras.

5. Let G be a locally compact group. A multiplier of A(G) is a (necessarily bounded
and continuous) function f : G → C such that f A(G) ⊂ A(G). For each such f ,
multiplication with f is a linear operator on A(G) — bounded by the closed graph
theorem — which we denote by M f ; it is straightforward that M f : A(G) → A(G)

is an A(G)-module homomorphism. Alternatively, the term multiplier is also used
to refer to an A(G)-module homomorphism on A(G). Both usages are equivalent:
whenever T : A(G) → A(G) is an A(G)-module homomorphism, there is (a neces-
sarily unique) f : G → C with f A(G) ⊂ A(G) such that T = M f [Da, p. 422]. The

multiplier algebra of A(G) is the closed subalgebra

M(A(G)) := {M f : f is a multiplier of A(G)}

of B(A(G)). For notational convenience, we shall simply identify a multiplier f of
A(G) and the corresponding M f . Finally, the cb-multiplier algebra of A(G) is defined
as Mcb(A(G)) := CB(A(G)) ∩ M(A(G)); it is a closed subalgebra of CB(A(G)) and

thus a quantized Banach algebra.

Definition 1.2 Let A be a quantized Banach algebra. A quantized Banach A-bimo-

dule is an A-bimodule E which is also an operator space such that the module actions

A × E → E, (a, x) 7→ a · x and E × A → E, (x, a) 7→ x · a

are completely bounded.

Remark Our quantized Banach bimodules are not to be confused with the operator
bimodules studied, for instance, in [BL]: every operator bimodule over an opera-
tor algebra is a quantized Banach bimodule in the sense of Definition 1.2, but the
converse is false.

If A is a quantized Banach algebra and E is a quantized Banach A-bimodule, then

E∗ becomes a quantized Banach A-bimodule in a canonical way through

〈x, a · φ〉 := 〈x · a, φ〉 and 〈x, φ · a〉 := 〈x, a · φ〉 (a ∈ A, φ ∈ E∗, x ∈ E).

Definition 1.3 A quantized Banach algebra A is said to be operator amenable if,
for every quantized Banach A-bimodule E, every completely bounded derivation

D : A → E∗ is inner.

Examples

1. Let G be a locally compact group. Then A(G) is operator amenable if and only
if G is amenable [R, Theorem 3.6].
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2. Let A be a Banach algebra. Then the quantized Banach algebra max A is amen-
able if and only if A is amenable [R].

3. A C∗-algebra is amenable if and only if it is operator amenable [R, Theo-
rem 5.1].

We also require a modification of Definition 1.3. Runde [Ru2] considered a class
of Banach algebras — suggestively named dual Banach algebras — which are dual

Banach spaces (with a fixed, but not necessarily unique predual) such that multipli-
cation is separately w∗-continuous. Runde and Spronk [RS] extended this notion to
a quantized setting.

Definition 1.4 A quantized Banach algebra A is called dual if A = (A∗)∗ for some
operator space A∗ such that the multiplication of A is separately σ(A, A∗)-contin-
uous.

Examples

1. If A is a dual Banach algebra in the sense of [Ru2], then max A is a dual, quan-
tized Banach algebra.

2. Every von Neumann algebra is a dual, quantized Banach algebra.

3. Let G be a locally compact group. Then B(G) and Br(G) are dual, quantized
Banach algebras [RS].

4. Let G be a locally compact group. In both [dCH] and [S2], a predual space of
Mcb(A(G)) is constructed. A priori, it is not clear that these two predual spaces are
identical. However, from [dCH, Lemma 1.9] and [S2, Corollary 6.6], it follows that
on norm bounded subsets of Mcb(A(G)), the w∗-topology on Mcb(A(G)) induced by

either predual space is the relative topology of σ(L∞(G), L1(G)). The Krein–Šmulian
theorem then yields that the predual spaces from both [dCH] and [S2] are identi-
cal. Since multiplication in L∞(G) is separately σ(L∞(G), L1(G))-continuous, we
obtain that multiplication in Mcb(A(G)) is separately w∗-continuous, first on norm-

bounded sets, and then, by virtue of the Krein–Šmulian theorem again, on all of
Mcb(A(G)). Hence, Mcb(A(G)) is a dual, quantized Banach algebra.

In [Ru2], a weaker variant of amenability, called Connes-amenability, was intro-
duced for dual Banach algebras. Generally, Connes-amenability seems to be better
suited for dual Banach algebras than the original definition from [J1] (cf. [DGH,

Ru3], for example). Runde and Spronk [RS] extended the notion of Connes-amen-
ability to the quantized setting.

Let A be a quantized Banach algebra, and let E be a dual, quantized Banach

A-bimodule, i.e., a quantized Banach A-bimodule which is the canonical dual mod-
ule of some other quantized Banach A-bimodule. Suppose that A is dual. Then we
say that E is normal if the module actions

A × E → E, (a, x) 7→ a · x and E × A → E, (x, a) 7→ x · a

are separately w∗-continuous.
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Definition 1.5 A dual, quantized Banach algebra A is said to be operator Connes-

amenable if, for every normal, dual, quantized Banach A-bimodule E, every w∗-con-

tinuous, completely bounded derivation D : A → E is inner.

Examples

1. A dual Banach algebra A is Connes-amenable in the sense of [Ru2] if and only
if max A is operator Connes-amenable.

2. A locally compact group G is amenable if and only if Br(G) is operator Connes-
amenable [RS, Theorem 4.4].

3. The free group in two generators, which we denote by F2, is not amenable, but
B(F2) is operator Connes-amenable [RS].

2 Operator Amenability of Acb(G) for Non-Amenable G

Let G be a locally compact group. Then we have the following completely contractive
inclusions:

A(G) ⊂ Br(G) ⊂ B(G) ⊂ Mcb(G).

The first and the second inclusion are always complete isometries, whereas the em-

bedding of A(G) into Mcb(A(G)) is bounded below only if G is amenable. In this
case, we have completely isometric identifications Br(G) = B(G) = Mcb(A(G)), so
that A(G) embeds into Mcb(G) completely isometrically. For a discussion and further
references, see [S2].

As Mcb(A(G)) is a dual quantized Banach algebra, it makes sense to ask for which
locally compact groups G it is operator Connes-amenable. Of course, if G is amen-
able, then Mcb(A(G)) = B(G) = Br(G) is operator Connes-amenable [RS, Theo-

rem 4.4]. The following proposition gives another sufficient condition.

Recall that a C∗-algebra is said to be residually finite-dimensional if its finite-di-
mensional, irreducible ∗-representations separate its points. Furthermore, follow-

ing [HK], we say that a locally compact group G has the approximation property if
there is a net in A(G) converging to the constant function 1 in the w∗-topology of
Mcb(A(G)).

Proposition 2.1 Let G be a locally compact group with the approximation property

such that C∗(G) is residually finite-dimensional. Then Mcb(A(G)) is operator Con-

nes-amenable.

Proof Since G has the approximation property and since Mcb(A(G)) is a dual Ba-
nach algebra, it is clear that A(G) is w∗-dense in Mcb(A(G)). Consequently, B(G) ⊃
A(G) is also w∗-dense in Mcb(A(G)). Since C∗(G) is residually finite-dimensional,

B(G) is operator Connes-amenable by [RS, Theorem 4.6]. As remarked earlier, the
w∗-topologies on both B(G) and Mcb(A(G)) coincide on bounded sets with the rela-
tive topology induced by σ(L∞(G), L1(G)), so that the inclusion B(G) ⊂ Mcb(A(G))
is w∗-continuous by the Krein–Šmulian theorem. From (the quantized analog of)
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[Ru2, Proposition 4.2], it then follows that Mcb(A(G)) is also operator Connes-amen-
able.

Example By [Dav, Proposition VII.6.1], C∗(F2) is residually finite-dimensional, so
that B(F2) and Mcb(A(F2)) are both operator Connes-amenable, even though F2 fails

to be amenable.

If G is an amenable, locally compact group, then A(G) embeds completely isomet-
rically into Mcb(A(G)) = B(G). If G is not amenable, however, A(G) is not closed in

Mcb(A(G)). We denote the closure of A(G) in Mcb(A(G)) by Acb(G).
We collect a few basic properties of Acb(G).

Proposition 2.2 Let G be a locally compact group. Then Acb(G) is a regular, com-

mutative, Tauberian (quantized) Banach algebra whose character space is canonically

identified with G.

Proof It is clear that Acb(G) is commutative and semisimple, and by [F1, Lemma 1],
the character space of Acb(G) is G in the canonical way. Let F ⊂ G be closed, and let

x ∈ G \ F. Since A(G) is regular (see [E]), there is f ∈ A(G) ⊂ Acb(G) such that
f |F ≡ 0 and f (x) = 1. Hence, Acb(G) is also regular.

To see that Acb(G) is Tauberian, let f ∈ Acb(G), and let ǫ > 0. Since A(G) is dense
in Acb(G), there is g ∈ A(G) with ‖ f − g‖Acb(G) < ǫ

2
, and since A(G) is Tauberian,

there is h ∈ A(G) with supp(h) compact and

‖g − h‖Acb(G) ≤ ‖g − h‖A(G) <
ǫ

2
.

It follows that ‖ f − h‖ < ǫ. Since ǫ > 0 is arbitrary, this means that Acb(G) is
Tauberian.

Leptin’s theorem [Le], motivates the adverb “weakly” in the following definition.

Definition 2.3 A locally compact group is said to be weakly amenable if Acb(G) has
a bounded approximate identity.

Remarks

1. This definition of a weakly amenable, locally compact group is not quite the
original one (cf. [CH]), but is easily seen to be equivalent [F2, Proposition 1].

2. Weakly amenable groups have the approximation property of [HK], whereas

the converse is false.

3. In [BCD], a notion of weak amenability for Banach algebras was introduced.

This Banach algebraic amenability, which can easily be adapted to the quantized
setting, is related to Definition 2.3 only in the sense that both weak amenabilities
are weaker than the notions of amenability for Banach algebras and locally compact
groups, respectively. There are no analogs of [J1, Theorem 2.5] or [R, Theorem 3.6]:
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L1(G) is weakly amenable [J2] and A(G) is operator weakly amenable [S1] for every
locally compact group G.

Examples

1. By [Le], every amenable, locally compact group is weakly amenable.

2. Even though F2 is not amenable, it is weakly amenable [dCH, Corollary 3.9].

3. It is shown in [D1] that SL(2, R) ⋊ R
N is not weakly amenable for N ≥ 2. In

[D2], this is used to show that every simple Lie group with real rank greater than or

equal to two fails to be weakly amenable.

It is clear from [R, Theorem 3.6], combined with elementary hereditary properties

of operator amenability, that Acb(G) is operator amenable for every amenable, locally
compact group. In the remainder of this section, we shall see that the converse need
not be true.

We first present three lemmas. Let A be a Banach algebra, and recall that a Banach

A-bimodule is called pseudo-unital (or neo-unital) if E = {a ·x ·b : a, b ∈ A, x ∈ E}.

Lemma 2.4 Let A be a quantized Banach algebra with a bounded approximate iden-

tity. Then A is operator amenable if and only if, for each pseudo-unital, quantized

Banach A-bimodule E, every completely bounded derivation D : A → E∗ is inner.

Proof The proof for the classical case [Ru1, Proposition 2.1.5] carries over nearly
verbatim.

Let A be a Banach algebra, and let I be a closed ideal of A. The I-strict topology

on A is the locally convex topology induced by the seminorms

A → [0,∞), a 7→ ‖ax‖ + ‖xa‖ (x ∈ I).

(Note that this topology need not be Hausdorff.)

Lemma 2.5 Let A be a quantized Banach algebra, let I be a closed ideal of A with a

bounded approximate identity, let E be a pseudo-unital, quantized Banach I-bimodule,

and let D : I → E∗ be a completely bounded derivation. Then E is a quantized Ba-

nach A-bimodule in a canonical fashion, and there is a completely bounded derivation

D̃ : A → E∗ extending D which is continuous with respect to the I-strict topology on A

and the w∗-topology on E∗.

Proof By [Ru1, Proposition 2.1.6], the module action of I on E extends canonically
to A, and D has a bounded extension D̃ : A → E∗ which is continuous with respect

to the I-strict topology on A and the w∗-topology on E∗. (Since I is dense in A in the
I-strict topology, D̃ is uniquely determined by its continuity properties.)

Two claims remain to be checked: that E is indeed a quantized Banach A-bimodule,
and that D̃ is completely bounded.
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We first verify that E is a quantized Banach A-bimodule. Let (eα)α be an approx-
imate identity for I bounded by C ≥ 0. Note that since E is a pseudo-unital Banach

A-bimodule, we have

lim
α

[eα · x j,k] = [x j,k] = lim
α

[x j,k · eα] (n ∈ N, [x j,k] ∈ Mn(E)).

Let κ ≥ 0 be the cb-norm of the completely bounded bilinear map I × E ∋ (b, x) 7→
b · x, and fix n ∈ N. Let [a j,k] ∈ Mn(A) and let [xν,µ] ∈ Mn(E). It follows that

∥∥ [a j,k · ξν,µ]
∥∥

Mn2 (E)
= lim

α

∥∥ [a j,k · (eα · xν,µ)]
∥∥

Mn2 (E)

= lim
α

∥∥ [a j,keα · xν,µ]
∥∥

Mn2 (E)

≤ κ lim sup
α

∥∥ [a j,keα]
∥∥

Mn(I)

∥∥ [xν,µ]
∥∥

Mn(E)

≤ κC
∥∥ [a j,k]

∥∥
Mn(A)

∥∥ [xν,µ]
∥∥

Mn(E)
,

so that the extended module left module action A × E ∋ (a, x) 7→ a · x is completely

bounded (by κC). Similarly, one sees that E × A ∋ (x, a) 7→ x · a is completely
bounded. Consequently, E is indeed a quantized Banach A-bimodule.

Next, we turn to showing that the extension D̃ : A → E∗ from [Ru1, Proposition
2.1.6] is not only bounded, but completely bounded. Let a ∈ A, let x ∈ E, and let

b, c ∈ I, and note that

〈b · x · c, D̃a〉 = lim
α
〈eαb · x · c, D̃a〉 = lim

α
〈b · x · c, (D̃a) · eα〉

= lim
α
〈b · x · c, D(aeα) − a · D(eα)〉.

Since E is pseudo-unital, this means that

D̃a = σ(E∗, E- lim
α

(D(aeα) − a · D(eα)) (a ∈ A)

and, consequently,

D̃(n)([a j,k]) = σ(Mn(E∗), Tn(E))- lim
α

(
D([a j,keα]) − [a j,k · D(eα)]

)
,

for n ∈ N, [a j,k] ∈ Mn(A), where D̃(n) : Mn(A) → Mn(E∗) denotes the n-th am-
plification of D̃ for n ∈ N. To see that D̃ is completely bounded, let n ∈ N and
[a j,k] ∈ Mn(A), and note that by the foregoing,

‖D̃(n)([a j,k])‖Mn(E∗) ≤ lim sup
α

‖(D([a j,keα]) − [a j,k · D(eα)]‖Mn(E∗)

≤ lim sup
α

(
‖D‖cb‖a j,k‖Mn(A)‖eα‖ + κ̃‖a j,k‖Mn(A)‖D‖‖eα‖

)

≤ (C‖D‖cb + κ̃C‖D‖)‖a j,k‖Mn(A),

where κ̃ is the cb-norm of the left module action A × E∗ ∋ (a, φ) 7→ a · φ. Hence, D̃

is indeed completely bounded (with ‖D̃‖cb ≤ C‖D‖cb + κ̃C‖D‖).
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Our final lemma is the following.

Lemma 2.6 Let G be a discrete group. Then the following topologies coincide on norm

bounded subsets of Mcb(A(G)):

(i) the w∗-topology,

(ii) the topology of pointwise convergence on G,

(iii) the Acb(G)-strict topology.

Proof That (i) and (ii) coincide on norm bounded subsets follows from [dCH,
Lemma 1.9], and the fact that Acb(G) is Tauberian yields the corresponding state-
ment for (ii) and (iii).

We can now state and prove the main result of this section.

Theorem 2.7 Let G be a weakly amenable discrete group such that C∗(G) is residually

finite-dimensional. Then Acb(G) is operator amenable.

Proof Let E be a quantized Banach Acb(G)-bimodule, and let D : Acb(G) → E∗

be a completely bounded derivation. Since G is weakly amenable, i.e., Acb(G) has
a bounded approximate identity, we may invoke Lemma 2.4 and suppose without
loss of generality that E is pseudo-unital. By Lemma 2.5, E is a quantized Banach
Mcb(A(G))-bimodule in a canonical way, and there is a completely bounded deriva-

tion D̃ : Mcb(A(G)) → E∗ that extends D and is continuous with respect to the
Acb(G)-strict topology on Mcb(A(G)) and the w∗-topology on E∗.

Due to Lemma 2.6, an argument as in the proof of [Ru4, Theorem 3.5] yields that
the dual, quantized Banach Mcb(A(G))-module E∗ is actually normal and that D̃ is

w∗-w∗-continuous.
Since C∗(G) is residually finite-dimensional and since G has the approximation

property, Mcb(A(G)) is operator Connes-amenable by Proposition 2.1. Consequently,
D̃, and therefore D, is inner.

With Theorem 2.7 proved, it is not hard to come up with examples of locally com-
pact groups G that fail to be amenable, but for which Acb(G) is nevertheless operator
amenable.

Example Since F2 is weakly amenable and C∗(F2) is residually finite-dimensional,
Acb(F2) is operator amenable by Theorem 2.7.

Even though we have exhibited non-amenable (discrete) groups G for which
Acb(G) is operator amenable, we are still far from a characterization of those locally

compact groups G such that Acb(G) is operator amenable. It may be that Acb(G) is
operator amenable whenever G is weakly amenable.

As in [ER], ⊗̂ stands for the projective tensor product of operator spaces. If A is a
quantized Banach algebra, A ⊗̂ A becomes a quantized Banach A-bimodule via

a · (x ⊗ y) := ax ⊗ y and (x ⊗ y) · a := x ⊗ ya (a, x, y ∈ A),
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so that the multiplication operator

∆ : A ⊗̂ A → A, a ⊗ b 7→ ab

becomes a completely bounded homomorphism of A-bimodules.

The following definition arises naturally in A. Ya. Helemskiı̆’s topological homol-
ogy ([H1]), or rather in its quantized version (see [A, H2], for example).

Definition 2.8 A quantized Banach algebra A is called operator biprojective if the
multiplication operator ∆ : A ⊗̂ A → A has a completely bounded right inverse

which is also a homomorphism of A-bimodules.

Example Let G be a locally compact group. As was shown independently by
O. Yu. Aristov [A] and P. J. Wood [W2], A(G) is operator amenable if and only if
G is discrete.

Let G be any locally compact group such that Acb(G) is operator biprojective. Then
G has to be discrete by (the quantized analogue of) [Da, Corollary 2.8.42]. It is pos-
sible that the converse implication holds as well.

Concluding this section, we shall see that Acb(G) is operator biprojective at least
for those groups G that satisfy the hypotheses of Theorem 2.7.

The key is the following lemma, whose straightforward proof we omit.

Lemma 2.9 Let E1, E2, F1, F2 be operator spaces, and let T j ∈ CB(E j , F j) be norm

limits of finite rank operators for j = 1, 2. Then T1 ⊗ T2 ∈ CB(E1 ⊗̂ E2, F1 ⊗̂ F2) is a

norm limit of finite rank operators and thus compact.

Proposition 2.10 Let A be a commutative, semisimple, Tauberian quantized Banach

algebra with discrete character space and a bounded approximate identity. Then A is

operator biprojective if and only if A is operator amenable.

Proof Any operator biprojective quantized Banach algebra with a bounded approx-
imate identity is operator amenable. Hence, only the “if” part needs proof.

Suppose that A is operator amenable. By [R, Proposition 2.4], it has an approxi-

mate diagonal, i.e., a bounded net (mα)α∈A such that

a · mα − mα · a → 0 (a ∈ A)

and

a∆mα → a (a ∈ A).

For a ∈ A, let La, Ra ∈ CB(A) denote the operator of left and right multiplication
by a, respectively. Since A is semisimple and Tauberian and has a discrete character
space, La and Ra are norm limits of finite rank operators for each a ∈ A. Let U be

https://doi.org/10.4153/CJM-2007-041-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-041-9


976 B. E. Forrest, V. Runde, and N. Spronk

an ultrafilter on A dominating the order filter, and let a ∈ A. By Cohen’s factor-
ization theorem [Da, Theorem 2.9.24], there are b, c ∈ A such that a = bc, and by

Lemma 2.9, Lb ⊗ Rc ∈ CB(A ⊗̂ A) is compact. It follows that

lim
U

a · mα = lim
U

b · mα · c = lim
U

(Lb ⊗ Rc)mα

exists. Define

ρ : A → A ⊗̂ A, a 7→ lim
U

a · mα.

Then ρ is completely bounded, and easily seen to be an A-bimodule homomorphism

and a right inverse of ∆.

Remark The proof of the non-obvious direction of Proposition 2.10 is very simi-

lar to that of [LRRW, Corollary 3.2]. However, we do not know if a straightforward
quantization of [LRRW, Corollary 3.2] is possible. Unlike for the projective tensor
product of Banach spaces, we do not know whether the tensor product of two com-
pact, completely bounded maps between operator spaces is a compact map between

the corresponding projective tensor products (of operator spaces).

In view of Proposition 2.1 and Theorem 2.7, we obtain the following.

Corollary 2.11 Let G be a weakly amenable discrete group such that C∗(G) is residu-

ally finite-dimensional. Then Acb(G) is operator biprojective.

3 Complementation of Ideals in A(G) and Acb(G): An Application

In this section, we will consider (complete) complementation properties of ideals in
A(G) and Acb(G), where G is a discrete group such that Acb(G) is operator amenable.

Let G be a locally compact (mostly discrete) group, and let F ⊂ G be closed. We

set

I(F) := { f ∈ A(G) : f |F ≡ 0} and Icb(F) := { f ∈ Acb(G) : f |F ≡ 0}.

(Since A(G) and Acb(G) have the same character space, we use different symbols when
dealing with A(G) and Acb(G), respectively, in order to avoid confusion.) Similarly,
we define

J(F) := { f ∈ A(G) : supp( f ) is compact, and F ∩ supp( f ) = ∅}
‖ · ‖A(G)

and

Jcb(F) := { f ∈ A(G) : supp( f ) is compact, and F ∩ supp( f ) = ∅}
‖ · ‖Acb(G)

.

We say that F is a set of synthesis for A(G) or Acb(G), respectively, if J(F) = I(F) or
Jcb(F) = Icb(F), respectively.

We begin with a useful observation.
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Proposition 3.1 Let G be a weakly amenable locally compact group, and let F ⊂ G be

a set of synthesis for A(G). Then F is a set of synthesis for Acb(G).

Proof We first claim that I(F) is dense in Icb(F). To see this, let (eα)α∈A be a
bounded approximate identity for Acb(G) contained in A(G), and let f ∈ Icb(G),
so that f = limα f eα. Since f eα ∈ A(G) ∩ Icb(F) = I(F) for each α ∈ A, this proves

the claim.
Since F is a set of spectral synthesis for A(G), it follows that I(F) ⊂ Jcb(F), so that

Icb(F) = Jcb(F).

Corollary 3.2 Let G be a discrete and weakly amenable group. Then every subset of

G is a set of synthesis for Acb(G).

Proof This follows immediately from the Proposition 3.1 and [KL, Proposition 2.2].

Let E be an operator space, and let F be a closed subspace of E. We say that F

is completely complemented in E if there exists a completely bounded projection P

from E onto F, and we say that F is completely weakly complemented in E if there
exists a completely bounded projection from E∗ onto F⊥. As in the classical situation
[Ru1, Theorem 2.3.7], a closed ideal in an operator amenable, quantized Banach
algebra is operator amenable if and only if it is weakly complemented and if and only

if it has a bounded approximate identity (see [RS, Lemma 1.6]).
The following proposition adds two more equivalent statements in the case where

the quantized Banach algebra is of the form Acb(G) for a discrete group G.

Proposition 3.3 Let G be a discrete group such that Acb(G) is operator amenable, and

let I be a closed ideal of Acb(G). Then the following are equivalent:

(i) I is completely complemented;

(ii) I is completely weakly complemented;

(iii) there is F ⊂ G with 1F ∈ Mcb(A(G)) such that I = Icb(F);

(iv) I has an approximate identity bounded in the cb-multiplier norm;

(v) I is operator amenable.

Proof As already stated, (ii) ⇔ (iv) ⇔ (v) are well known (and hold for any closed
ideal in a quantized Banach algebra). Furthermore, (i) ⇒ (ii) is trivial.

(iv) ⇒ (iii): Let F be the hull of I, i.e., F := {x ∈ G : f (x) = 0 for all f ∈ I}.

By Corollary 3.2, we have I = Icb(F). Let (eα)α be a bounded approximate identity
for I. Since Mcb(A(G)) is a dual space, we can suppose that (eα)α converges in the
w∗-topology to some f ∈ Mcb(A(G)). Since w∗-convergence in Mcb(A(G)) entails
pointwise convergence on G, it follows that f = 1G\F , so that 1F = 1 − 1G\F ∈
Mcb(G).

(iii) ⇒ (i): Since 1F ∈ Mcb(A(G)), the map

Acb(G) → Acb(G), f 7→ 1G\F f
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is a completely bounded projection onto I.

Remark The first four equivalences of Proposition 3.3 can be viewed as extensions
of the main results of [W1], which were primarily about the Fourier algebra of an
amenable group. The proof of Proposition 3.3 is very similar to the corresponding

arguments in [W1].

A somewhat more surprising result is that, under the same hypotheses as in Propo-
sition 3.3, we can obtain the equivalence of (i) to (iv) for closed ideals of the Fourier
algebra with its original norm (Corollary 3.5).

The crucial implication is the following.

Theorem 3.4 Let G be a discrete group such that Acb(G) is operator amenable, and let

I be a weakly completely complemented closed ideal of A(G). Then there is F ⊂ G with

1F ∈ Mcb(G) such that I = I(F).

Proof Since G is discrete and weakly amenable, [KL, Proposition 2.2] yields F ⊂ G

such that I = I(F). It remains to be shown that 1F ∈ Mcb(G).

Since I is an ideal of A(G), it is a weakly completely complemented Acb(G)-sub-

module of the (symmetric) quantized Banach Acb(G)-module A(G). By definition,
I⊥ thus is a completely complemented, closed Acb(G)-submodule of the dual Acb(G)-
module VN(G). Since Acb(G) is operator amenable, [W1, Theorem 1] implies that
I⊥ is completely invariantly complemented, i.e., there is a completely bounded pro-

jection P : VN(G) → I⊥ which is an Acb(G)-module homomorphism.

Define Q : A(G)∗∗ → A(G)∗∗ as the complementary projection of P∗, i.e., Q :=
idA(G)∗∗ −P∗. Then Q is a completely bounded projection from A(G)∗∗ onto (I⊥)⊥ =

I∗∗, and is an Acb(G)-module homomorphism.

Let x ∈ G, so that 1{x} ∈ A(G), and note that

Q
(

1{x}

)
= Q

(
12
{x}

)
= 1{x} · Q

(
1{x}

)
.

Since G is discrete, A(G) is an ideal in A(G)∗∗, so that Q(1{x}) ∈ A(G). Since A(G) is

Tauberian, it follows that Q(A(G)) ⊂ A(G).

All in all, Q is completely bounded, maps A(G) into itself, and is an Acb(G)-mod-
ule homomorphism. It follows that Q|A(G) is a completely bounded multiplier of
A(G), i.e., there is g ∈ Mcb(A(G)) such that Q f = g f for all f ∈ A(G). Finally, as Q

is a projection onto I∗∗, it is clear that g = 1G\F , so that 1F ∈ Mcb(A(G)).

Corollary 3.5 Let G be a discrete group such that Acb(G) is operator amenable, and

let I be a closed ideal of A(G). Then the following are equivalent:

(i) I is completely complemented;

(ii) I is completely weakly complemented;

(iii) there is F ⊂ G with 1F ∈ Mcb(A(G)) such that I = I(F);

(iv) I has an approximate identity bounded in the cb-multiplier norm.
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Proof (i) ⇒ (ii) is trivial, (ii) ⇒ (iii) follows from Theorem 3.4, and (iii) ⇒ (i)
follows as in the proof of Proposition 3.3.

(iii) ⇒ (iv): Since Acb(G) is operator amenable, it has a bounded approximate
identity, so that A(G) has an approximate identity, say (eα)α, that is bounded in
Acb(G) [F2, Proposition 1]. Then (1G\Feα)α is the desired approximate identity.

(iv) ⇒ (iii): This is proven similarly to the corresponding implication of Proposi-

tion 3.3.

Remark The equivalence of Corollary 3.5(i) and (iii) was proved by Wood, first
for amenable discrete groups [W1] and later for all discrete groups [W2]. Wood’s
techniques, however, do not allow proving the equivalence of (i) and (ii) or of (i) and

(iii) with (iv) without the stronger hypothesis that G be amenable.
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