ON THE ENDOMORPHISM SEMIGROUP OF AN ORDERED SET

by T. S. BLYTH†

(Received 22 October, 1993)

M. E. Adams and Matthew Gould [1] have obtained a remarkable classification of those ordered sets P for which the monoid End P of endomorphisms (i.e. isotone maps) is *regular*, in the sense that for every $f \in \text{End } P$ there exists $g \in \text{End } P$ such that fgf = f. They show that the class of such ordered sets consists precisely of

(a) all antichains;

(b) all quasi-complete chains;

(c) all complete bipartite ordered sets (i.e. given non-zero cardinals α , β an ordered set $K_{\alpha,\beta}$ of height 1 having α minimal elements and β maximal elements, every minimal element being less than every maximal element);

(d) for a non-zero cardinal α the lattice M_{α} consisting of a smallest element 0, a biggest element 1, and α atoms;

(e) for non-zero cardinals α , β the ordered set $N_{\alpha,\beta}$ of height 1 having α minimal elements and β maximal elements in which there is a unique minimal element α_0 below all maximal elements and a unique maximal element β_0 above all minimal elements (and no further ordering);

(f) the six-element crown C_6 with Hasse diagram

A similar characterisation, which coincides with the above for sets of height at most 2 but differs for chains, was obtained by A. Ya. Aizenshtat [2].

Now for every ordered set P the monoid End P can be ordered by defining

$$f \leq g \Leftrightarrow (\forall x \in P) \quad f(x) \leq g(x).$$

This order is compatible with the multiplication (composition) in End P. Our purpose here is to determine precisely those ordered sets P for which the ordered semigroup End P is regular and *principally ordered* in the sense that for every $f \in \text{End } P$ there exists

$$f^* = \max\{g \in \text{End } P; fgf \leq f\}.$$

For the general properties of principally ordered regular semigroups we refer the reader to [5, 6]. The main property that we shall require here is that in such a semigroup we have $ff^*f = f$, so that f^* is the biggest pre-inverse of f.

THEOREM 1. The ordered semigroup End P is regular and principally ordered if and only if P is a dually well-ordered chain.

Proof. \Rightarrow : Suppose that End P is regular and principally ordered. Then, by [1], P

†NATO CRG 910765 is gratefully acknowledged.

Glasgow Math. J. 37 (1995) 173-178.

must be one of the six types mentioned above. Suppose, by way of obtaining a contradiction, that P is not a chain.

If P is an antichain or M_{α} or $K_{\alpha,\beta}$ then it is readily seen that, for $a, b \in P$ with a || b, the mapping $f_{a,b}: P \to P$ defined by

$$f_{a,b}(x) = \begin{cases} b & \text{if } x = a; \\ x & \text{otherwise.} \end{cases}$$

belongs to End P and is idempotent. For every $g \in \text{End } P$ such that $f_{a,b}gf_{a,b} = f_{a,b}$ we have, applying each side to b, that $f_{a,b}g(b) = b$ from which it follows that necessarily $g(b) \in \{a, b\}$. Now, as a simple calculation reveals, $f_{b,a} \in \text{End } P$ is a pre-inverse of $f_{a,b}$, as is (trivially) $f_{a,b}$ itself. Consequently, $f_{b,a} \leq f_{a,b}^*$ and $f_{a,b} \leq f_{a,b}^*$. We therefore have $f_{a,b}^*(b) \in \{a, b\}$ with $f_{a,b}^*(b) \geq f_{b,a}(b) = a$ and $f_{a,b}^*(b) \geq f_{a,b}(b) = b$, which is impossible since $a \mid\mid b$. Thus P cannot be an antichain or M_{α} or $K_{\alpha,\beta}$.

If P is $N_{\alpha,\beta}$ then we can choose $\beta \ge 2$ (since $N_{\alpha,1} = K_{\alpha,1}$). In this case, let β_1 be a maximal element distinct from β_0 and consider the mapping $f_{\beta_1,\beta_0} \in \text{End } N_{\alpha,\beta}$. Here $f_{\beta_0,\beta_1} \notin \text{End } N_{\alpha,\beta}$ so consider $id_{N_{\alpha,\beta}}$ which is also a pre-inverse of f_{β_1,β_0} . From $f_{\beta_1,\beta_0} \le f_{\beta_1,\beta_0}^*$ and $id_{N_{\alpha,\beta}} \le f_{\beta_1,\beta_0}^*$ we obtain $f_{\beta_1,\beta_0}^*(\beta_1) \ge f_{\beta_1\beta_0}(\beta_1) = \beta_0$ and $f_{\beta_1,\beta_0}^*(\beta_1) \ge \beta_1$, which is impossible since β_0, β_1 are maximal. Thus P cannot be $N_{\alpha,\beta}$.

Finally, suppose that P is the crown

Define $f: P \rightarrow P$ by

$$f(x) = \begin{cases} \beta_0 & \text{if } x = \beta_1; \\ \alpha_2 & \text{if } x = \alpha_1; \\ x & \text{otherwise} \end{cases}$$

Then $f \in \text{End } P$ and is idempotent. A similar argument to the above gives $f^*(\beta_1) \ge f(\beta_1) = \beta_0$ and $f^*(\beta_1) \ge \text{id}_P(\beta_1) = \beta_1$, which is impossible. Thus P cannot be C_6 .

It follows from these observations that P must be a chain. In this case, for every $y \in P$ define

$$\psi_y(x) = \begin{cases} y & \text{if } x \ge y; \\ x & \text{otherwise} \end{cases}$$

Then $\psi_{y} \in \text{End } P$. Also, for $y, z \in P$ with $y \leq z$, define $\vartheta_{y,z} : P \to P$ by

$$\vartheta_{y,z}(x) = \begin{cases} z & \text{if } x \in [y, z]; \\ x & \text{otherwise.} \end{cases}$$

Then $\vartheta_{v,z} \in \text{End } P$.

Observe now that if $x \ge y$ then

$$\psi_{y}\vartheta_{y,z}\psi_{y}(x)=\psi_{y}\vartheta_{y,z}(y)=\psi_{y}(z)=y,$$

whereas if x < y then

$$\psi_{y}\vartheta_{y,z}\psi_{y}(x)=\psi_{y}\vartheta_{y,z}(x)=\psi_{y}(x)=x.$$

Consequently, $\psi_y \vartheta_{y,z} \psi_y = \psi_y$. It follows that, for all $z \ge y$, we have $\vartheta_{y,z} \le \psi_y^*$ and therefore

$$z = \vartheta_{y,z}(y) \leq \psi_y^*(y).$$

Thus we see that P has a biggest element, namely $\psi_v^*(y)$ for every $y \in P$.

Now let C be an ascending chain in P. By way of obtaining a contradiction, suppose that C is infinite. Since P has a biggest element, the set \overline{C} of upper bounds of C in P is not empty. For every $d \in C$ let

$$P_d = \{ y \in P; y \ge d, y \notin \overline{C} \}.$$

Define $\varphi_d: P \to P$ by

$$\varphi_d(x) = \begin{cases} d & \text{if } x \in P_d; \\ x & \text{otherwise.} \end{cases}$$

Then $\varphi_d \in \text{End } P$.

Suppose now that $z \in P_d$. Observe that if $x \in P_d$ then

$$\varphi_d \vartheta_{d,z} \varphi_d(x) = \varphi_d \vartheta_{d,z}(d) = \varphi_d(z) = d,$$

whereas if $x \notin P_d$ then

$$\varphi_d \vartheta_{d,z} \varphi_d(x) = \varphi_d \vartheta_{d,z}(x) = \varphi_d(x) = x.$$

Consequently, $\varphi_d \vartheta_{d,z} \varphi_d = \varphi_d$. It follows that, for every $z \in P_d$, we have $\vartheta_{d,z} \leq \varphi_d^*$ and therefore

$$z = \vartheta_{d,z}(d) \le \varphi_d^*(d).$$

Thus $\varphi_d^*(d)$ is an upper bound of C and so $\varphi_d^*(d) \in \overline{C}$. On the other hand,

$$\varphi_d \varphi_d^*(d) = \varphi_d \varphi_d^* \varphi_d(P_d) = \varphi_d(P_d) = d,$$

which shows that we must have $\varphi_d^*(d) \in P_d$. From this contradiction we conclude that C cannot be infinite. Hence all ascending chains in P are finite, so every non-empty subset of P has a biggest element, so P is dually well-ordered.

 \Leftarrow : Suppose, conversely, that P is a dually well-ordered chain. Since P is quasicomplete in the sense of [1] it follows that End P is regular. In what follows we shall use the notation

$$x^{\downarrow} = \{ y \in P; y \leq x \}, \qquad x^{\uparrow} = \{ y \in P; y \geq x \}.$$

Consider $f \in \text{End } P$. For every $x \in P$ such that $x^{\downarrow} \cap \text{Im } f \neq \emptyset$ define

$$f^+(x) = \max\{y \in P; f(y) \le x\}.$$

Let Θ_f be the equivalence relation given by $(x, y) \in \Theta_f$ if and only if f(x) = f(y). Then for every $x \in P$ we have

$$f^+f(x) = \max\{y \in P; f(y) \le f(x)\} = \max\{y \in P; f(y) = f(x)\} = \max[x]\Theta_f$$

and therefore

$$(\forall x \in P)$$
 $ff^*f(x) = f(x).$

As shown in [1, p. 197], for every $x \in P$ either $x^{\downarrow} \cap \text{Im } f$ has a biggest element x_i or $x^{\uparrow} \cap \text{Im } f$ has a smallest element x_F . Moreover, if for every $x \in \text{Im } f$ we choose and fix an element $h(x) \in f^{-1}\{x\}$ then $h: \text{Im } f \to P$ so defined is an isotone injection and the mapping $g: P \to P$ given by

$$g(x) = \begin{cases} h(x_I) & \text{if } x_I \text{ exists;} \\ h(x_F) & \text{otherwise,} \end{cases}$$

is an isotone pre-inverse of f. For our purpose here, we observe that the same is true of the mapping $g': P \rightarrow P$ given by

$$g'(x) = \begin{cases} h(x_F) & \text{if } x_F \text{ exists;} \\ h(x_I) & \text{otherwise.} \end{cases}$$

Now since P is dually well-ordered we can choose $h(x) = f^+(x)$ for every $x \in \text{Im } f$ and thereby obtain from g' the mapping $f^*: P \to P$ given by

$$f^*(x) = \begin{cases} f^+(x_F) & \text{if } x_F \text{ exists;} \\ f^*(x_I) & \text{otherwise.} \end{cases}$$

Then $f^* \in \text{End } P$ and is a pre-inverse of f. Our objective is to show that if $k \in \text{End } P$ is such that $fkf \leq f$ then $k \leq f^*$.

For this purpose, observe that if $x_1 = \max(x^{\downarrow} \cap \operatorname{Im} f)$ exists then $f(y) \leq x$ implies $f(y) \leq x_1$ so that we have

$$f^+(x_I) = f^+(x).$$

Also, for every $x \in P$, we have

$$fkf(x) \leq f(x) \Rightarrow kf(x) \leq f^+f(x).$$

There are two cases to consider.

(a) x_F exists.

In this case we have $x_F = f(z)$ for some $z \in P$ and so

$$k(x) \leq k(x_F) = kf(z) \leq f^+f(z) = f^+(x_F) = f^*(x).$$

(b) x_F does not exist.

Here there are two sub-cases:

(b₁) $x^{\uparrow} \cap \text{Im } f = \emptyset$. In this case, denoting by 1 the biggest element of *P*, we have $f(1) \leq x$ in which case $f^+(x) = 1$ and consequently

$$k(x) \le 1 = f^+(x) = f^+(x_I) = f^*(x).$$

(b₂) $x^{\uparrow} \cap \text{Im} f \neq \emptyset$. In this case $x \leq \inf\{f(y); f(y) \geq x\}$, the latter existing since P is join-complete and therefore the addition of a smallest element produces a complete

176

chain. Observe that the existence of $x_i \in \text{Im } f$ with $x_i \leq \inf\{f(y); f(y) \geq x\}$ implies the existence of $f^+(\inf\{f(y); f(y) \geq x\})$. Since

$$z \leq f^{+}(\inf\{f(y); f(y) \geq x\}) \Leftrightarrow f(z) \leq \inf\{f(y); f(y) \geq x\}$$
$$\Leftrightarrow z \leq \inf\{f^{+}f(y); f(y) \geq x\}$$

it follows that

$$f^{+}(\inf\{f(y); f(y) \ge x\}) = \inf\{f^{+}f(y); f(y) \ge x\}.$$

We thus have

$$k(x) \leq k(\inf\{f(y); f(y) \geq x\})$$

$$\leq \inf\{kf(y); f(y) \geq x\}$$

$$\leq \inf\{f^+f(y); f(y) \geq x\}$$

$$= f^+(\inf\{f(y); f(y) \geq x\}).$$

Now if $f(z) \le \inf\{f(y); f(y) \ge x\}$ then we cannot have f(z) > x, for this would imply that x_F exists. Hence $f(z) \le x$ and consequently

$$f^{+}(\inf\{f(y); f(y) \ge x\} = f^{+}(x) = f^{+}(x_{I}) = f^{*}(x).$$

It therefore follows that $k(x) \leq f^*(x)$.

Thus we see that in all cases $k(x) \leq f^*(x)$ and therefore $k \leq f^*$. Consequently, End P is principally ordered. \Box

In a principally ordered regular semigroup S every element has a biggest inverse [5], that of $x \in S$ being $x^0 = x^*xx^*$. Since $xx^0x = x$ we have, in general, $x^0 \leq x^*$. We say that S is *compact* if $x^0 = x^*$ for every $x \in S$. For example, if S is completely simple then S is compact; in fact, by [7, Theorem IV.2.4], if S is completely simple then $x^* \in V(x)$ so that $x^* \leq x^0$, whence $x^0 = x^*$.

THEOREM 2. If P is a dually well-ordered chain then the principally ordered regular semigroup End P is compact.

Proof. Since (whenever they exist) $x_I, x_F \in \text{Im } f$, and since $ff^+f(x) = f(x)$ for every $x \in P$, it follows from the definition of f^* that

$$ff^*(x) = \begin{cases} x_F & \text{if } x_F \text{ exists;} \\ x_I & \text{otherwise.} \end{cases}$$

Consequently, we have

$$f^{0}(x) = f^{*}ff^{*}(x) = \begin{cases} f^{+}(x_{F}) & \text{if } x_{F} \text{ exists;} \\ f^{+}(x_{I}) & \text{otherwise,} \end{cases}$$

and therefore $f^0 = f^*$ for every $f \in \text{End } P$. \Box

Suppose now that P is a dually well-ordered chain. Then since End P has a biggest element, namely the constant map $\pi: P \to P$ given by $\pi(x) = 1$ for every $x \in P$, the regular semigroup End P is trivially strong Dubreil-Jacotin [3]. We close by using End P to settle a question concerning perfect elements in such semigroups. Specifically, it is shown in [4] that if S is an ordered regular semigroup that is strong Dubreil-Jacotin then the subset

P(S) of perfect elements (i.e. those $x \in S$ such that $x = x(\xi:x)x$ where ξ is the bimaximum element of S) is a regular subsemigroup which is orthodox under certain conditions. We show as follows, using End P where P is a dually well-ordered chain, that it is possible for P(S) to be orthodox while S is not.

The perfect elements of End P are those isotone maps $f: P \to P$ such that $f = f\pi f$, i.e. those isotone maps f for which f(x) = f(1) for every $x \in P$, i.e. the constant maps. It follows that the perfect elements of End P form a left zero semigroup which is therefore orthodox. But End P itself is not orthodox. To see this, note that since P is dually well-ordered every $p \in P$ has a predecessor, namely

$$p_1 = \max\{x \in P; x < p\}.$$

Define recursively $p_2 = (p_1)_1, \dots, p_k = (p_{k-1})_1, \dots$, and let $f_{p,k}: P \to P$ be given by

$$f_{p,k}(x) = \begin{cases} p & \text{if } x \ge p; \\ p_k & \text{otherwise.} \end{cases}$$

Then each $f_{p,k} \in \text{End } P$ and is idempotent.

Now choose $p, q \in P$ and $k \ge 2$ such that $q_k . Then, for every <math>x \in P$,

$$f_{p,1}f_{q,k}(x) = f_{p,1}\begin{cases} q & \text{if } x \ge q; \\ q_k & \text{otherwise,} \end{cases}$$
$$= \begin{cases} p & \text{if } x \ge q; \\ p_1 & \text{otherwise.} \end{cases}$$

Since $f_{p,1}f_{q,k}(q) = p$ and $(f_{p,1}f_{q,k})^2(q) = f_{p,1}f_{q,k}(p) = p_1$, we see that $f_{p,1}f_{q,k}$ is not idempotent. Hence End P is not orthodox.

REFERENCES

1. M. E. Adams and Matthew Gould, Posets whose monoids of order-preserving maps are regular. Order 6 (1989), 195-201. See also Order 7 (1990), 105.

2. A. Ya. Aizenshtat, Regular semigroups of endomorphisms of ordered sets (Russian). Leningrad Gos. Ped. Inst. Ucen. Zap. 387 (1968), 3-11. English translation: Amer. Math. Soc. Translations, Series 2, 139 (1988), 29-35.

3. T. S. Blyth and M. F. Janowitz, Residuation Theory (Pergamon Press, 1972).

4. T. S. Blyth and E. Giraldes, Perfect elements in Dubreil-Jacotin regular semigroups. Semigroup Forum 45 (1992), 55-62.

5. T. S. Blyth and G. A. Pinto, Principally ordered regular semigroups. Glasgow Math. J. 32 (1990), 349-364.

6. T. S. Blyth and G. A. Pinto, Idempotents in principally ordered regular semigroups, Communications in Algebra. 19 (1991), 1549-1563.

7. M. Petrich, Introduction to semigroups (Merrill, 1973).

MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, ST ANDREWS KY16 9SS, SCOTLAND.