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Abstract

In studying the coupled differential equations for the moments of a stochastic process it is
often found that the equation for theyth moment involves higher moments. The usual
methods of "decoupling" such a system of equations to obtain estimates of the moments
are surveyed and shown generally to result in a system of nonlinear simultaneous
differential equations which may be readily solved by numerical methods.

Often, estimates of the first and second moments are the main concern. In this case,
two further assumptions reported in the literature can be used to simplify the system and
avoid the expense of solving the nonlinear equations. These two techniques are evaluated
and compared with a new technique. Two processes are analysed, one representing a
chemical reaction and the other population growth.

1. Introduction

In studying birth and death processes, where the population level at time t is N{t),
we consider the system of equations,

^ ^ = Uk_,Pk_x{t) + Dk+xPk+x{t) ~ (Uk + Dk)Pk(t), (1)

where

Pk(t) = P{N(t) = k/N{0) = NO)

and N(t) is confined to a discrete set of states.
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[21 Coupled moment equations 87

The quantities Uk and Dk are called, respectively, the infinitesimal birth and
death rates. Further, UkAt + o(Af) is the probability at time t that in a popula-
tion of size k there will be a single birth in the next time interval A/. Similarly
DkAt + e>(A?) represents the probability of a death in the next time interval Ar
and o{y) is any function such that lim>,_0 o(y)/y = 0.

The differential equation for the yth moment, Mj(t) = E(NJ(t)), can be
obtained from (1) by multiplying by k> and summing over k to give

^fL = 2 [Uk{(k + 1)' - * ' ) - Dk{V -(k- \)J)]Pk(t) fo r , > 1.
k

(2)

If Uk = 2^=o «,k' and £>* = 2?=0P,k' we have, from (2), that the differential
equation for My(f) will be free of moments higher than they'th provided a2 = f$2

and a, = /?,- = 0 for 3 < / < M. In this case, the system of differential equations
(2) can be solved successively. If this condition is violated we find that the
differential equation for Mj(t) involves moments higher than theyth and conse-
quently the system of differential equations, an open coupled set, cannot be
solved successively. Various methods of decoupling this set of equations have
been proposed.

If we are concerned only with obtaining estimates of the first / moments, Goel
and Richter-Dyn [2] suggest expressing all the moments higher than the /th
moment, appearing in the first / equations, in terms of the first / moments. This is
done by using the approximation,

Mj(t) = M^M^it) foij>l.

Wang, [7] assumes that Mj(t) = £j is a smooth function of j and uses this to
express £y fory > /, in terms of £,, £2»- • • >£/ by polynomial extrapolation where, in
general,

j
Bailey [1] suggests setting the (/ + l)th cumulant of the process to zero. This is

equivalent to expressing the (/ 4- l)th moment in terms of lower moments and as
with the previous two suggestions results in a set of / nonlinear differential
equations which may be solved by numerical methods. Truncation of the set of
equations (2) at a higher order results in an improvement of the estimates of the
moments but is achieved at the expense of more difficult computation.

If only estimates of M,(/) and M2(t) are required, then McQuarrie [4] suggests
two techniques. Each of these avoids the numerical solution of a pair of nonlinear
differential equations as required by any of the previous methods. McQuarrie
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88 Graham Winley and Keith Tognetti [ 3 ]

presents these two approaches in discussing a stochastic model of an irreversible
biomolecular chemical reaction for which results obtained from the exact equa-
tions of the process are available for comparison.

We describe a new technique for estimating M,(/) and M2(t) which compares
favourably with the two techniques proposed by McQuarrie and produces esti-
mates in closer agreement with the exact solutions. We also consider a biologically
plausible model of population growth for which Kendall [3] has shown that the
moments cannot be found explicitly by the use of the moment generating
function. Applying our techniques, as well as McQuarrie's, to the estimation of
the first two moments of this growth process illustrates a serious defect in one of
the techniques suggested by McQuarrie.

2. A system of two coupled equations

We reduce the system (2) by having Uk = ao + a^k + a2k
2, Dk = /?0 + /?,k +

P2k
2 and a2 ¥= p2, to obtain

^ - = co + ClMt(t) + c2M2(t) (3)

and

^ = d0 + (2c0 + d,)Mx{t) + (2c, + d2)M2(t) + 2c2M3(t), (4)

where

Cl-at- ft and d, = a, + /?, for / = 0,1,2.

Both the chemical and population processes that we will investigate are in this
form. It is necessary to introduce an approximation for M2{t). Following Goel we
replace M3(Q in (4) by M,(/)M2(f)- Wang's technique replaces M3(t) by
(2]JM2(t) — M,(f))3 and Bailey's suggestion amounts to using M3(t) =
3Ml(t)M2(t) — 2M,3(/)- Any of these approaches will produce a pair of simulta-
neous nonlinear differential equations which could be integrated by a numerical
method. We will refer to these as the nonlinear techniques.

3. Fast techniques

McQuarrie offers two techniques for avoiding the often expensive task of
solving these nonlinear differential equations.

In the first technique he uses M2(t) — Af,2(/) in (3) to obtain an estimate of
M,(0- This estimate of Af,(/) together with the assumption that Af3(/) =
M2(t)Mi(t) is then used in (4) to obtain an estimate of M2(t). It is important to
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realise that using M2(f) = Af,2(r) in (3) to estimate M,(f) is equivalent to
assuming that the variance of the stochastic process is zero only for the purpose
of estimating Mx(t). This means that the estimate of Af,(f) is in agreement with
that obtained from the deterministic model of the process. However, the estimate
of M2(t) from (4) is not the same as Mx

2(t). Consequently McQuarrie is not
reducing the stochastic model of the deterministic model. In this case, from (3),

Aeal - B

2c2[l - Ceal]

2N0 + ( j y , + 2co)t
2-(2c2N0

for cf > 4c0c2

for c\ = 4c0c2

(5)

where

a = / c? - 4c0c2 , B = c t - a , D = cx+a,

C = (2c27V0 + B)/ (2c2N0 + D) and A = DC.

Substituting (5) into (4) and using M3(f) = M2(t)Mx(t) gives a linear first order
differential equation of the form dM2{t)/dt + P(t)M2(t) = Q(t) which can be
solved, using the integrating factor exp[fP(t)dt], to give an estimate of M2(t).
Equation (5) is a more general result than that proposed by McQuarrie since he
considered the use of this technique in relation to (9) and (10), which are special
cases of (3) and (4).

To gain insight into the second technique used by McQuarrie we make the
simplifying assumption that M2(t) — /(f)M,2(0- Differentiating and using (3)
gives

= / ' ( / )<( / ) + 2f(t)Ml(t)[c0 + c,M,(O + c2M2(r)]. (6)
If we insist that (6) be identical to (4) at t = 0 then, using M2(0) = M,2(0) = N£,
we have

/(0) = 1 and /'(0) = (do + dxN0

Consequently, we see why McQuarrie assumed that

M2(t) = M?(t)e
(7)

P=f'(P).
By using (7) in (3) together with the substitution

Ml(t) = -(du(t)/dt)/{c2u(t)e"),
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we can obtain the series solution

c2N0- 1 ««„/"-'

c2\l-c2N0t+ 2 uHt»\e"
n=0

where

n(n - \)un - (c, + p){n - l)un_, + c0c2 2 / " ^ _ x, = 0 for n > 2,
m=o v" z "•/•

and

u o = 1, «, = -c2^0-

Using (8) in (7) gives an estimate for M2(t). It should be noted that implicit in (7)
is the assumption that the process has a coefficient of variation (c.v.) given by

(c.v.f = (M2(/) - M?{t))/M?(t) = e»-\.

For the chemical reaction considered by McQuame in (9) and (10) this assump-
tion seems reasonable. However, as we shall see in discussing a population
process represented by (12) and (13), this assumption cannot be made for all
processes. Again the estimates given by (8) and (7) are more general than those
used by McQuame who was considering (9) and (10). As we shall see, closed form
expressions can often be obtained for M,(f) and M2(t) in (8) and (7).

4. The new technique (method 3)

This is another fast technique and, as with McQuarrie's first technique, assumes
that M2(t) — M?(t) in (3) and consequently we arrive at the same estimate of
M,(f) as obtained by McQuarrie in (5). This estimate is then used in (4) together
with the substitution M3(0 = 3M,(O^2(O ~ 2Mi(0- The result is that (4)
becomes a differential equation in M2(t) only. It is different in general from that
obtained by McQuarrie's first technique, described above, but is still of a form
that can be readily solved analytically by the use of an appropriate integrating
factor. McQuarrie's first technique could be described as being based on Goel's
suggestion for decoupling (3) and (4) while the present technique is based on
Bailey's suggestion where, in both cases, the solution of a pair of nonlinear
simultaneous differential equations has been avoided by assuming M}(t) = M2(t)
in (3).
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5. A chemical process

In [4], McQuarrie describes an irreversible bimolecular reaction where the
differential equations for the moments of the process are given by

£1 = rMx{t) - rM2{t), (9)

= -2rM,(/) + 4rM2(t) - 2rM3(t). (10)
M l

It is seen that this is a particular case of (3) and (4).
Using McQuarrie's first technique to decouple (9) and (10) we have, from (5),

which, when used in (10), gives

and

Numerical values based on these estimates are shown in Table 1 under the
column headed "Method 1". McQuarrie [4] tabulates exact experimental values
for this process and these have been reproduced in the column headed "Exact
solutions" in Table 1.

If McQuarrie's second technique, which led to the estimates (8) and (7), is
applied to (9) and (10) we have

Norepl - (rN0 - p - r)e~rl

and

M2{t) = M?(t)e",

where

p = 2r(N0 - \)/N0

and

(c.o.)2 = « " - 1.
These estimates have been used to arrive at the numerical values in the column

headed "Method 2" of Table 1.
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TABLE 1

Comparison of McQuarrie's techniques (methods 1, 2) and the

new technique (method 3) with the exact solutions for chemical process

[7]

Nnrt
Method 1

Mx(t)/N0 c.v.
Method 2

c.v.

Method 3
Mx{t)/NQ c.v.

Exact solutions
CO.

0.25
0.50
0.75
1.00
1.50

0.25
0.50
0.75
1.00
1.50

0.25
0.50
0.75
1.00
1.50

0.818
0.695
0.606
0.539
0.444

0.803
0.671
0.577
0.508
0.408

0.801
0.670
0.574
0.503
0.402

0.213
0.304
0.375
0.435
0.542

0.099
0.141
0.172
0.199
0.244

0.070
0.100
0.122
0.141
0.173

0.802
0.684
0.592
0.513
0.411

0.801
0.670
0.575
0.502
0.401

0.801
0.668
0.573
0.501
0.401

0.214
0.306
0.377
0.444
0.548

No =
0.101
0.141
0.172
O.200
0.246

No =
0.070
0.100
0.122
0.141
0.173

= 10
0.818
0.695
0.606
0.539
0.444

= 50
0.803
0.671
0.577
0.508
0.408

= 100
0.801
0.670
0.574
0.503
0.402

0.174
0.215
0.240
0.258
0.285

0.082
0.101
0.113
0.123
0.138

0.075
0.079
0.081
0.087
0.099

0.815
0.686
0.593
0.521
0.421

0.803
0.670
0.576
0.504
0.404

0.801
0.669
0.574
0.502
0.402

0.196
0.258
0.300
0.332
0.382

0.091
0.119
0.137
0.152
0.176

0.059
0.082
0.097
0.109
0.125

Using our technique (method 3) we have

= 2 Q«e""/(e"
n-l

2 Qne"(n~
n=\ - 1
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TABLE 2

The numerical solutions of the nonlinear pair of

equations (9) and (10) for chemical process

93

M 3 (0in(10)

replaced by

Goel

Mx{t)M2{t)

Wang Bailey

- 2M,3(O

NQrt

0.25
0.50
0.75
1.00
1.25
1.50

0.25
0.50
0.75
1.00
1.25
1.50

0.25
0.50
0.75
1.00
1.25
1.50

Mx(t)/N0 c.v.

0.814
0.680
0.577
0.493
0.422
0.357

0.803
0.669
0.573
0.499
0.441
0.394

0.801
0.668
0.572
0.500
0.443
0.397

0.240
0.382
0.526
0.685
0.871
1.102

0.111
0.173
0.230
0.287
0.345
0.403

0.079
0.122
0.162
0.201
0.204
0.279

Mt(t)/N0 c.v.
No=l0

0.815 0.191
0.687 0.250
0.593 0.288
0.523 0.317
0.476 0.340
0.423 0.359

0.803 0.091
0.671 0.117
0.576 0.136
0.504 0.151
0.449 0.163
0.404 0.173

JV0 = 100
0.801 0.063
0.669 0.083
0.573 0.097
0.502 0.107
0.447 0.116
0.492 0.124

M,(O/J

0.815
0.687
0.593
0.522
0.466
0.421

0.803
0.671
0.576
0.504
0.449
0.404

0.801
0.669
0.573
0.502
0.447
0.402

Vo c.v.

0.192
0.255
0.297
0.331
0.360
0.385

0.089
0.118
0.137
0.152
0.165
0.176

0.063
0.084
0.097
0.108
0.117
0.125

where

A = (l- No)/N0, g , = 2A5/3, Q2 = 5A\ Q3 = 16A\

QA = {No* - 1 - 2/4 - \6A3 - 5A4 - 2A5/3 - %A2rt),

Qs - 2 A and Q6 = 1.

Numerical values based on these estimates appear in Table 1 under the heading

"Method 3".
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Table 2 shows the numerical solutions of the nonlinear pair of equations (9)
and (10), obtained by replacing M3(t) in (10) by the expressions suggested by
Goel, Wang and Bailey. A fourth order Runge-Kutta method was used to obtain
the solutions.

From Tables 1 and 2 we see that the best estimates of Af,(r) and c.v. are given
by Bailey's method. Wang's technique provides the next best estimates. However,
both these techniques, as well as Goel's technique, require the computationally
expensive solution of a pair of simultaneous nonlinear differential equations. We
note that Goel's technique provides the worst estimates of the seven techniques
being compared.

Of the fast techniques (methods 1,2,3) our new technique (method 3) provided
an estimate of M,(f) second only to method 2 and gave the best estimate of c.v.

6. A population process

For the population we define:
b = the mean birth rate per individual at low population level,
m = mean mortality (death rate) per individual at low population level,
and r — b — m.

Now consider the model described by (1) where

Dk = km 1 +
* L mL \

with
r > 0 and L> NO>1.

Hence, if the population is of size k at time t then Ukh.t + o( A/) and DkAt + o( A/)
represent the probabilities of a birth and death respectively in the next time
interval Af. Realistically, these probabilities should depend on k, the present
population size, and should decrease and increase respectively to the same
limiting value as k approaches L. Such is the case if we use Uk, Dk as in (11) with
the condition that y, + y2 = 1 where 0 < 7, < 1.

Using (11) in (3) and (4) we have

= rMM-j-M2(t), (12)

(2r + d2)M2{t) - ^ M , ( 0 , (13)

where dl = b + m and d2 — (r/L)(l - 2y,).
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Decoupling (12) and (13) by McQuarrie's first technique we have

M,(0 = — L (14)

and

M2(t) =

M?{t) dxL

N0(r

dxL Ldx{L - N0)e-"
for d2 ¥= 0,

For large values of /, these estimates become

= L, M2(t) =

2 , dxL , Ldx{L-N0)

_Ld±

d2

Ld,t + L2

N0(r

Ldx(L - No)

and

for d2 > 0,

for d2 < 0,

for d2 = 0,

(15)

Ld2 LN0(r Ld2

Li, - 1

dxt dx(L-N0)
L rLN0

for d2 > 0,

for d2 < 0,

for d1 = 0.

The approximate solution for Mx(t) in (24) is recognized as the familiar logistic
equation. Since it was obtained by using M2(t) = Mx

2(t) in (12) we are assuming
that the stochastic population model has mean behaviour which is approximated
by the deterministic logistic relationship.

dN(t) _
T=•*«>- z«!«>- (16)
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The relationship between stochastic models with mean behaviour described by
(12) and those with mean behaviour described by (16) is given by Tognetti and
Winley [6]. Using our technique for obtaining estimates of Mt(t) and M2(t) we
have Mt(t) as in (14) and

M2{t) =

2 e/"rt

2, Rne

n = -\

" 4 - 2 Qn\e
d>'\ford2¥=0,

»=-i J J

,* - 2 K -
A5d,

for d2 = 0,

where A = (L - No)/No, <2-, = - ^ A ' + d2), Qo = -5A%/d2, Qx =
2A\5dl + 2rL)/(r - d2), Q2 = 2A2(5dx + 6rL)/(2r - d2), Q, = A(5d, +
12rL)/(3r - d2), Q4 = (d, + 4rL)/(4r - d2), Rn = Qn, with d2 = 0, for n =
-1,1,2, 3,4 and Ro = 5A*dxt. For large values of f we have

M , ( 0 = i , A/2(/) =!,(</, +4rL)/(4r-</2)

and

Both techniques assume a mean population size which is approximately logistic.
However, our technique leads to a smaller estimate for M2(t) than that obtained
by McQuarrie's method.

Turning to the second technique proposed by McQuarrie we assume M2(t) —
M?(t)epl in (12). Solving for Mx(t) we have

w , . x _ N0L(r+p)

where, from (7),

[{L(r+p)-rNo)e-" + rNoe>"]'

p = d] + d2N0>

M2(t) = Mf(t)e

(18)

and

ForO

L

(c.v.f =
< 1, p > 0. As / increases, M,(0 increases to a maximum value of

L(r+p)-rN0\r+p

then decreases asymptotically to zero.

a t t = •
1

p)
In

L(r+p)-rN0
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Pielou [5] discusses the long term behaviour of this population process in the
particular case where b = 0.7, m = 0.2, y, = 0.9, L = 100 and No = 70. It is
shown that stochastic realizations of the process, obtained by simulation, give a
long term mean population size of 99.55 with a variance of 49.13.

From (15), McQuarrie's first technique estimates the long term population
mean at 100 with variance 22500. From (18) his second technique gives a mean
population size and variance which decrease asymptotically to zero. Our new
technique (17) predicts a long term population mean of 100 with a variance of 30.

This indicates that the assumption that M?(t)ep' = M2(t), which is the basis of
McQuarrie's second technique, may not be plausible when "decoupling" moment
equations of the type in (3) and (4). On the other hand, we note the reasonable
agreement between the results of simulating the process and the estimates
obtained by our technique.

7. Discussion

A new fast technique for "decoupling" a set of differential equations for the
moments of a stochastic process to obtain estimates of the first and second
moments has been described. Applied to a stochastic model of a chemical process,
the new technique gives estimates which compare favourably with those obtained
by more expensive techniques based on the solution of a pair of simultaneous
nonlinear differential equations. The new technique is inexpensive and compares
most favourably with two other fast techniques proposed by McQuarrie [4]. For
the chemical process the new technique provided the second best estimate of the
first moment and the best estimate of the coefficient of variation. When com-
pared to results obtained by the simulation of a stochastic population process the
new technique gave better estimates of the long term mean and variance of
population size than either of McQuarrie's techniques.
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