
Canad. J. Math. Vol. 77 (2), 2025 pp. 665–682
http://dx.doi.org/10.4153/S0008414X24000117
© The Author(s), 2024. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is
properly cited.

On restricted Falconer distance sets
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Abstract. We introduce a class of Falconer distance problems, which we call of restricted type, lying
between the classical version and its pinned variant. Prototypical restricted distance sets are the
diagonal distance sets, k-point configuration sets given by

Δdiag(E) = { ∣(x , x , . . . , x) − (y1 , y2 , . . . , yk−1)∣ ∶ x , y1 , . . . , yk−1 ∈ E }

for a compact E ⊂ Rd and k ≥ 3. We show that Δdiag(E) has non-empty interior if the Hausdorff
dimension of E satisfies

dim(E) >
⎧⎪⎪
⎨
⎪⎪⎩

2d+1
3 , k = 3,
(k−1)d

k , k ≥ 4.
(0.1)

We prove an extension of this to Cω Riemannian metrics g close to the product of Euclidean metrics.
For product metrics, this follows from known results on pinned distance sets, but to obtain a result
for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof
of the full result, which is based on estimates for multilinear Fourier integral operators.

1 The Falconer distance problem and its many variants

The Falconer distance problem, a continuous analogue of the celebrated Erdős dis-
tance problem asks: How large does dim(E), for a compact set E ⊆ R

d , need to be to
ensure that the Lebesgue measure of its distance set

Δ(E) ∶= {∣x − y∣, x , y ∈ E}
is positive? Here and below, dim(E) denotes the Hausdorff dimension of the set
E. Falconer introduced this problem in 1985 in [10] and established the dimensional
threshold dim(E) > d+1

2 .
Further, Falconer conjectured the threshold is dim(E) > d

2 and showed the result
could not hold true strictly below that threshold. Falconer’s problem has stimulated
much activity and been the focus of many outstanding results (e.g., [5–9, 18, 34]).

For two compact sets E , F ⊆ R
d , one can also consider an asymmetric version,

given by
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Δ(E , F) ∶= {∣x − y∣ ∶ x ∈ E , y ∈ F},

so that Δ(E , E) = Δ(E). Note that all the standard proofs adapt to this setting and the
threshold condition can be replaced by a lower bound on (dim(E) + dim(F))/2.

Yet another variant of the Falconer problem was introduced by Mattila and
Sjölin [29], who asked how large does dim(E) need to be in order to ensure that
Δ(E) satisfies the stronger condition of having nonempty interior, and showed that
dim(E) > d+1

2 is sufficient.
Both the Falconer and Mattila–Sjölin problems have pinned versions, asking how

large does dim(E) need to be to guarantee that there exists an x such that the pinned
distance set,

Δx(E) ∶= {∣x − y∣ ∶ y ∈ E},

has positive Lebesgue measure or nonempty interior. Peres and Schlag [33] showed
that this holds for dim(E) > d+2

2 , d ≥ 3 (see [22] for some improvements and gen-
eralization). More recently, improvements to thresholds in the Falconer distance
problem automatically transfer over to the pinned setting due to the magical formula
of Liu [26].

Nowadays one can view the original result of Falconer as well as the one of Mattila
and Sjölin through the same lens (see, e.g., [28]). As with Falconer’s original problem,
this has led to considerable further work in more general settings [14–16, 23, 25,
30, 31].

2 A new problem and motivation

In this paper, we introduce new variants of the Falconer and Mattila–Sjölin problems,
which we call restricted distance problems.1 These lie between the original distance
problems and their pinned variants, and when stated in general encapsulate both of
them.

For a compact set E ⊆ R
d , let F ⊆ R

d be a compact set which might depend on E.
Defining the restricted distance set,

ΔF(E) ∶= {∣x − y∣ ∶ x ∈ F , y ∈ E},

we ask what lower bounds on dim(E) guarantee that ΔF(E) has positive Lebesgue
measure or nonempty interior. Note that if F has no dependence on E, then
ΔF(E) = Δ(E , F) and one is in the asymmetric setting of the Falconer or Mattila–
Sjölin problem.

The two simplest cases of a set F which is dependent on E are the extremes when
(i) F = E, so that ΔF(E) = Δ(E), the standard distance set of E,

and

1After the original version of this preprint was posted, Borges, Iosevich, and Ou posted [4], which
also discusses restricted distance problems and in some cases obtains lower thresholds than we obtain
here. See Section 3.1 for a discussion. However, we believe that Theorem 3.3 is not currently accessible
to the methods of [4], and in any case the techniques used to prove it indicate that positive results for
restricted Mattila–Sjölin-type problems can be proven in great generality.
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Figure 1: A sketch of how one could view Δdiag(E).

(ii) F = {x0} for some point x0, fixed in advance. This is similar to a pinned distance
problem, but stronger than the usual one, since the pin is fixed. (A result giving
nonempty interior for the set of volumes of parallelepipeds generated by an arbitrary
x0 and all d-tuples of points in E ⊂ R

d is in [15, Theorem 1.2], where this is referred to
as a strongly pinned result.)

To illustrate the type of restricted distance problems in which we are interested,
we focus on a prototype lying between (i) and (ii). For a compact set E ⊆ R

d , let
F = { (x , x) ∶ x ∈ E } ⊂ R

2d , the diagonal of E × E. With ∣ ⋅ ∣ denoting the Euclidean
norm on R

2d , we ask what lower bound on dim(E) ensures that

ΔF(E × E) = { ∣ (x , x) − (y1 , y2) ∣ ∶ x , y1 , y2 ∈ E},(2.1)

which we will also denote by Δdiag(E), has positive Lebesgue measure or nonempty
interior in R. See Figure 1.

As noted in [4], in order to make the problem more interesting, in (2.1), one
should impose a condition y1 ≠ y2 because, if y1 = y2 were allowed, then Δdiag(E) ⊃√

2 ⋅ Δ(E), which would then have positive Lebesgue measure or nonempty interior if
dim(E) is greater than the thresholds inR

d for the standard Falconer or Mattila–Sjölin
distance problems, respectively. We thus include this condition and its extensions in
the statements below. So, we define F

Δ̊diag(E) ∶= { ∣ (x , x) − (y1 , y2) ∣ ∶ x , y1 , y2 ∈ E , y1 ≠ y2 }.
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or an E ⊂ R
d and an F ⊂ R

l d , define

Δ̊F(E) ∶= { ∣x − y∣ ∶ x ∈ F , y = (y1 , . . . , y l) ∈ E l , y i ≠ y j , ∀i ≠ j } ,

where ∣ ⋅ ∣ is the Euclidean norm on R
l d .

We are now ready to pose the following set of questions generalizing the
prototype:

Restricted Falconer and Mattila–Sjölin Problems. Fix l ∈ N and a map F from the
collection C (Rd) of compact sets in R

d to 2C(R
l d), denoting the image of a compact

E by FE .
Q. What lower bounds on dim(E) ensure that either

(i) there exists an F ∈ FE such that Δ̊F(E) has positive Lebesgue measure (or
nonempty interior); or

(ii) for a.e. F ∈ FE (with respect to some measure on F); or
(iii) for every F ∈ FE ,

the same property holds.

Remarks 1. For l = 1, case (i), and positive Lebesgue measure, the choice of FE =
{E} yields the classical Falconer distance problem, while FE = {{x} ∶ x ∈ E} yields its
standard pinned variant. On the other hand, Δ̊diag(E) corresponds to l = 2,FE = {F},
where F is the diagonal of E × E in R

2d . If F is a singleton, the questions (i), (ii),
and (iii) collapse into one, concerning a three-point configuration problem of either
Falconer or Mattila–Sjölin type, and in this paper we will focus on this, for Δ̊diag(E)
and its k-point configuration generalizations.

2. Rd can be replaced by a smooth d-dimensional manifold with a smooth density,
and Theorem 3.3 below is formulated in this setting.

3. Returning to the prototype (2.1), note that if we do not restrict to the diagonal but
instead consider the full R2d distance set Δ(E × E), the best results known for the R2d

Falconer problem would yield a sufficient lower bound on dim(E). Since dim(E) >
d
2 + 1

8 implies that dim(E × E) > 2d
2 + 1

4 , and 2d is even, the results of [7, 18] yield
that Δ(E × E) has positive Lebesgue measure. However, for the restricted Falconer
problem we are considering, the set Δ̊diag(E) consists only of distances from points
on the diagonal of E to general points of E × E.

4. By a result of Peres and Schlag [33], if dim(E) > (d + 2)/2, with d ≥ 3, then there
exists an x such that the pinned distance set Δx(E) = { ∣x − y1∣ ∶ y1 ∈ E } contains
an interval. This immediately implies that Δ̊diag(E) contains an interval, since y2
in (2.1) can simply be fixed. The same principle applies to any Δ̊F(E) with F of the
form

F = {(x , ϕ2(x), . . . , ϕ l(x)) ∶ x ∈ E},(2.2)

with arbitrary continuous functions ϕ j ∶ Rd → R
d . Further comments are in Sec-

tion 3.1. below. However, this argument relies on both the form of F and the product
nature of the Euclidean metric on R

l d , and thus does not apply to our most general
result, Theorem 3.3.
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3 The main results

Our main results are the following, in increasing order of generality.

Theorem 3.1 If E ⊆ R
d , d ≥ 2, is a compact set with dim(E) > 2d+1

3 , then
Int(Δ̊diag(E)) ≠ ∅.

Theorem 3.1 is the k = 3 case of the following theorem.

Theorem 3.2 Let E ⊆ R
d be compact, d ≥ 2. For k ≥ 3, define the k-point configuration

set,

Δ̊diag
k (E) ∶= { ∣ (x , . . . , x) − (y1 , . . . , yk−1) ∣ ∶ x , y1 , . . . , yk−1 ∈ E , y i ≠ y j} ,

∣ ⋅ ∣ being the Euclidean norm on R
(k−1)d . Then Int(Δ̊diag

k (E)) ≠ ∅ if

dim(E) >
⎧⎪⎪⎨⎪⎪⎩

2d+1
3 , k = 3,
(k−1)d

k , k ≥ 4.
(3.1)

In fact, the Euclidean structure is not necessary. More generally, we have the
following theorem.

Theorem 3.3 Suppose d ≥ 2 and k ≥ 3. Let G denote the space of Cω Riemannian
metrics on (Rd)k−1. For any g ∈ G, let dg be the induced distance function, which
is defined on at least a neighborhood of the diagonal of (Rd)k−1. Let g0 denote the
Euclidean metric. Then there is an N = Nd ,k ∈ N and a neighborhood U of g0 in the
CN topology on G such that if g ∈ U, and for a compact E ⊂ R

d , we define

Δ̊diag
g (E) ∶= { dg ((x , . . . , x) , (y1 , . . . , yk−1))

∶ x , y1 , . . . , yk−1 ∈ E , y i ≠ y j , ∀ i ≠ j},

then Int(Δ̊diag(E)) ≠ ∅ if (3.1) holds.

3.1 Relations with known results

As explained in Remark 4 above, a result for the pinned Mattila–Sjölin problem in
R

d automatically yields nonempty interior for Δ̊F(E) whenever F is of the form (2.2),
which includes the (k − 1)-fold diagonal. Thus, the pinned distance set threshold of
dim(E) > (d + 2)/2, d ≥ 3, from Peres and Schlag [33], produces a better result than
Theorem 3.1 for d ≥ 4, and similarly for [22] for d ≥ 5. However, Theorem 3.1 is better
for d = 3, and for d = 2, where [33] does not apply. Similarly, [33] yields for k ≥ 4 a
threshold at least as good as Theorem 3.2 in all d ≥ 3.

The recent preprint of Borges, Iosevich, and Ou [4] gives a lower threshold than
our Theorem 3.1 in all dimensions. The authors state that their method extends to the
context of Theorem 3.2, but without giving specific thresholds. On the other hand, it
is not clear that the technique of [4] would apply in the setting of Theorem 3.3, due to
the non-product nature of general Riemannian metrics we allow on (Rd)k−1.

https://doi.org/10.4153/S0008414X24000117 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000117


670 J. Gaitan, A. Greenleaf, E.A. Palsson, and G. Psaromiligkos

It is reasonable to ask why we are persisting in stating and proving Theorems 3.1
and 3.2. The point is that, rather than proving Theorem 3.3 immediately, we will build
up to it with a proof of Theorem 3.1 based on an L2 × L2 → L2 decay bound for a
bilinear spherical averaging operator. This naturally leads to the multilinear operators
and estimates yielding Theorem 3.2, which we analyze and prove in the Fourier integral
operator (FIO) framework of Greenleaf, Iosevich, and Taylor [15]. With minimal
additional effort, this then leads to Theorem 3.3 in the case of a product metric; the
inherent stability of the FIO approach under general perturbations then allows it to
be proven in full generality.

We now start with the proof of Theorem 3.1.

4 The bilinear spherical averaging operator

Let d ≥ 2. Then, for x ∈ Rd , t > 0, and for functions f , g ∈ S(Rd), define the bilinear
spherical averaging operator,

Ar( f , g)(x) ∶= ∫
S2d−1

f (x − ru) g(x − rv) dσ(u, v),

where σ is the standard surface measure on unit sphere S2d−1 in R
2d ,

S
2d−1 = {(u, v) ∈ Rd ×R

d ∶ ∣u∣2 + ∣v∣2 = 1}.

Next, we define the (full) maximal bilinear spherical operator

M( f , g)(x) ∶= sup
r>0

∣Ar( f , g)(x)∣,

as well as its single-scale (localized) version,

M̃( f , g)(x) ∶= sup
r∈[1,2]

∣Ar( f , g)(x)∣.

4.1 Known results and goals

The operators Ar and M first appeared in the paper of Geba et al. [11], where the
authors proved some initial Lp improving estimates for these operators. Subsequently,
the Lp improving estimates for M were further developed in the works of Barrionevo
et al. (see [1]), Grafakos, He, and Honzík (see [13]), and Heo, Hong, and Yang (see
[19]). Finally, the full region Lp improving estimates for the operator M were given in
the work of Jeong and Lee (see [24]) as the result of a clever “slicing” argument enabled
them to pointwisely dominate the maximal bilinear spherical averaging operator
by the product of a Hardy–Littlewood maximal operator and a linear spherical
averaging operator, both of which have been extensively studied. Furthermore, in
the same work, the authors explored the Lp improving estimates for the operator M̃
obtaining a large region of exponents; however, there is still work left open in this
case. Subsequent developments have included sparse domination results [3, 32] and
very recent lacunary maximal operator results [2].

We already know the operator is bounded from L2 × L2 → L2, but this is not
enough. For our work, rather than Lp improving estimates for Ar , we need
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L2 × L2 → L2 estimates with decay in the frequency variable. The key to achieve this is
to exploit the decay of the surface measure on the unit ball in R

2d and work on dyadic
scales.

A key ingredient in the proof of Theorem 3.1 will be the following:

Proposition Let i , j ∈ N, and let f , g be functions with

supp( f̂ ) ⊂ {ξ ∈ Rd ∶ 2i−1 < ∣ξ∣ ≤ 2i+1}

and

supp(ĝ) ⊂ {ξ ∈ Rd ∶ 2 j−1 < ∣ξ∣ ≤ 2 j+1},

then

∥Ar( f , g)∥2 ≲r (22i + 22 j)−
2d−1

4 2min{i , j} d
2 ∥ f ∥2∥g∥2 .

Let σr to be the surface measure on the sphere of radius r in R
d ×R

d :

S
2d−1
r = {(u, v) ∈ Rd ×R

d ∶ ∣u∣2 + ∣v∣2 = r2 },

so that σ = σ1 and, by a change of variable, one has

Ar( f , g)(x) = 1
r2d−1 ∫

S
2d−1
r

f (x − u) g(x − v) dσr(u, v).

As a tool in the proof of Proposition 4.1, we note the Fourier decay of these
measures. For (ξ, η) ∈ Rd ×R

d , by the dilation property of the Fourier transform and
stationary phase, respectively, one has

σr
⋀(ξ, η) = r2d−1σ⋀(rξ, rη) and ∣σr

⋀(ξ, η)∣ ≲ r
2d−1

2 ∣(ξ, η)∣− 2d−1
2 .(4.1)

For the purpose of proving Proposition 4.1, we may assume that f̂ and ĝ, besides
being compactly supported, are smooth. Thus, for ξ ∈ Rd , we use Fourier inversion
formula and Fubini’s theorem, justified since f̂ , ĝ ∈ C∞0 , to calculate

r2d−1 Ar( f , g)
⋀

(ξ)

= ∫
Rd ∫

S
2d−1
r

f (x − u) g(x − v) dσr(u, v) e−2πix ⋅ξ dx

= ∫
Rd ∫

S
2d−1
r

∫
Rd ∫

Rd
f̂ (η) ĝ(x′) e2πi(x−u)⋅η e2πi(x−v)⋅x′dx′dη dσr(u, v) e−2πix ⋅ξ dx

= ∫
Rd ∫Rd ∫Rd

f̂ (η) ĝ(x′) e2πi(x ,x ,x)⋅(η ,−ξ,x′)∫
S

2d−1
r

e−2πi(u ,v)⋅(η ,x′)dσr(u, v) dx′ dη dx

= ∫
Rd ∫

Rd
f̂ (η) ĝ(x′) σ̂r(η, x′) ∫

Rd
e2πi(x ,x ,x)⋅(η ,−ξ,x′) dx dx′ dη.

Since

∫
Rd

e2πi(x ,x ,x)⋅(η ,−ξ,x′) dx = δ(η − ξ + x′),
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where δ(⋅) is the delta distribution on R
d , this gives the representation

Ar( f , g)
⋀

(ξ) = 1
r2d−1 ∫

Rd
f̂ (η) ĝ(ξ − η) σ̂r(η, ξ − η) dη

= ∫
Rd

f̂ (η) ĝ(ξ − η) σ̂(r(η, ξ − η)) dη.

We can now prove Proposition 4.1.

Proof Without loss of generality, we can assume that i ≤ j. Applying Plancherel and
the identity above yields

∥Ar( f , g)∥2
2 = ∥Ar( f , g)
⋀

∥2
2 = ∫

Rd
(∫

Rd
f̂ (η) ĝ(ξ − η) σ̂(r(η, ξ − η)) dη)

2
dξ.

The Fourier decay of the measure in (4.1) gives

≲r (22i + 22 j)−
2d−1

2 ∫
Rd

(∫
Rd

∣ f̂ (η)∣ ∣ĝ(ξ − η)∣ dη)
2
dξ

since ∣η∣ ∼ 2i , ∣ξ − η∣ ∼ 2 j , and so ∣(η, ξ − η)∣2 = ∣η∣2 + ∣ξ − η∣2 ∼ 22i + 22 j .
Next, let Aξ

i , j ∶= {η ∶ ∣η∣ ∼ 2i , ∣ξ − η∣ ∼ 2 j}. Note that the inner integral is sup-
ported on this set and so we can estimate it by Cauchy–Schwarz:

∫
Aξ

i , j

∣ f̂ (η)∣ ∣ĝ(ξ − η)∣ dη ≲ 2
id
2
⎛
⎝∫Rd

∣ f̂ (η)∣2 ∣ĝ(ξ − η)∣2dη
⎞
⎠

1
2

,

which gives, after applying Fubini’s theorem (again justified since f̂ , ĝ ∈ C∞0 ) and a
change of variable:

∥Ar( f , g)∥2
2 ≲r (22i + 22 j)−

2d−1
2 2id∥ f ∥2

2∥g∥2
2

This finishes the proof of Proposition 4.1. ∎

5 Proof of Theorem 3.1

In this section, we prove Theorem 3.1 using the estimates for the bilinear spherical
averaging operator Ar in Proposition 4.1.

Proof Let E ⊂ R
d with dim(E) > 2d+1

3 , and fix an s ∈ ( 2d+1
3 , dim(E)). We argue as in

the proof of Theorem 4.6 in [28]. By Frostman’s lemma [28, Theorem 2.8], there exists
a measure μ ∈M(E) with Is(μ) < ∞. This then induces the distance measure, νμ ∈
M(Δ̊diag(E)), which is the image (or pushforward) of μ × μ × μ under the distance
map (or configuration function)

E × E × E ∋ (x , y1 , y2) → ∣(x , x) − (y1 , y2)∣ ∈ R.

More explicitly, for a Borel set B ⊂ R,

νμ(B) ∶= (μ × μ × μ) ({(x , y1 , y2) ∶ ∣(x , x) − (y1 , y2)∣ ∈ B}) .

We have seemingly enlarged the set being measured by including the set y1 = y2, but
note that, for any x, (μ × μ) ({(y1 , y2) ∶ y1 = y2}) = 0. This follows from the fact that
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in R
2d , dim ({y1 = y2}) = d, of dimension strictly less than dim(E × E), since, by [28,

Theorem 2.10],

dim(E × E) ≥ 2 dim(E) > (4d + 2)/3 > d .

Equivalently, for a continuous function g on R,

∫
R

g(r) dνμ(r) = ∫
E
∫

E
∫

E
g(∣(x , x) − (y1 , y2)∣) dμ(x) dμ(y1) dμ(y2).

Next, we claim that, for an f ∈ C∞0 (Rd), ν f ∶= ν f ⋅dx is also a function. To see this,
write

∫
R

g(r) dν f (r) = ∫
Rd ∫

Rd ∫
Rd

g(∣(x , x) − (y1 , y2)∣) f (x) f (y1) f (y2) dx d y1 d y2

= ∫
R2d ∫Rd

g(∣(x , x) − y∣)( f ⊗ f )(y) f (x) dx d y

= ∫
R
∫
S2d−1∫

∞

0
g(r) f (x − rω1) f (x − rω2) r2d−1 dr dσ(ω) f (x)dx ,

where in the second equality for y = (y1 , y2) ∈ Rd ×R
d we write ( f ⊗ f )(y) ∶=

f (y1) f (y2), and in the third equality, we used polar coordinates, with ω = (ω1 , ω2) ∈
S

2d−1. Therefore, after applying Fubini’s theorem (justified by f ∈ C∞0 ) and using the
definition of the bilinear spherical averaging operator Ar , we obtain

∫
∞

0
g(r) dν f (r) = ∫

∞

0
g(r) r2d−1 Ar( f , f )(x) f (x) dx dr,

which implies that ν f is a function, with

ν f (r) = r2d−1 ∫
Rd

Ar( f , f )(x) f (x) dx .

Next, we approximate weakly the Frostman measure μ: Let ψ ∈ C∞0 (Rd) with
∫ ψ = 1, and for ε > 0, define ψε(x) = ε−dψ( x

ε ). Then, setting με ∶= ψε ∗ μ, we have
με → μ weakly as ε → 0, and so νμε → νμ weakly, as well. Moreover, μ̂ε(x) =
ψ̂(ε x) μ̂(x) → μ̂(x) for all x ∈ Rd .

For any ε > 0, με , is a function; thus, applying the formula above for ν f , we get

νμε(r) = r2d−1 ∫
Rd

Ar(με , με)(x) με(x)dx ,

and by the comments above, the left side converges weakly to νμ(r). We would like to
see what the right-hand side converges to. Using Parseval’s theorem, we see

νμε(r) = r2d−1 ∫
Rd

Ar(με , με)
⋀

(ξ) με
⋀(ξ)dξ.

Next, we have lim
ε→0

με
⋀(ξ) = μ̂(ξ) pointwise, and since

Ar(με , με)
⋀

(ξ) = ∫
Rd

ψ̂(ε η )μ̂(η) ψ̂(ε (ξ − η)) μ̂(ξ − η) σ̂(r(η, ξ − η)) dη,

we get

lim
ε→0

Ar(με , με)
⋀

(ξ) = ∫
Rd

μ̂(η) μ̂(ξ − η) σ̂(r(η, ξ − η)) dη
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with passing the limit inside justified by the dominated convergence theorem. Note
that

∣μ̂(η) μ̂(ξ − η) σ̂(r(η, ξ − η))∣ ≲r ∣μ̂(η) μ̂(ξ − η)∣∣(η, ξ − η)∣− 2d−1
2

≲r ∣μ̂(η) μ̂(ξ − η)∣ ∣η∣− 2d−1
4 ∣ξ − η∣− 2d−1

4

and the last function is integrable (in η) by utilizing the Cauchy–Schwarz inequality, a
change of variable, and the fact I 1

2
(μ) ≤ Is(μ), since μ has compact support and s > 1

2 .
Now we write

νμε(r) = r2d−1 ∫
Rd

Bε(ξ)Eε(ξ) dξ,

where

Bε(ξ) = ∣ξ∣ d−s
2 ∫

Rd
ψ̂(ε η )μ̂(η) ψ̂(ε (ξ − η)) μ̂(ξ − η) σ̂(r(η, ξ − η)) dη

and

Eε(ξ) = ∣ξ∣ s−d
2 ψ̂(ε ξ) μ̂(ξ).

We will dominate each of these functions by L2 integrable functions, independently
of ε, so that Bε(ξ)Eε(ξ) will be dominated by an L1 function, independently of ε; this
will allow us to use the dominated convergence theorem, yielding the formula

νμ(r) = r2d−1 ∫
Rd

⎛
⎝∫Rd

μ̂(η) μ̂(ξ − η) σ̂(rη, r(ξ − η)) dη
⎞
⎠

μ̂(ξ)dξ.(5.1)

Note first that

∣Eε(ξ)∣ = ∣ξ∣ s−d
2 ∣ψ̂(ε ξ) μ̂(ξ)∣ ≲ψ ∣ξ∣ s−d

2 ∣μ̂(ξ)∣

and the L2 norm of the right side is exactly equal to Is(μ) which is finite. Second,

∣Bε(ξ)∣ ≲ψ ∣ξ∣ d−s
2 ∫

Rd
∣μ̂(η)∣ ∣μ̂(ξ − η)∣ ∣σ̂(r(η, ξ − η))∣ dη.

Now we will decompose μ̂ on dyadic scales. Consider the Schwartz functions η0(ξ)
supported at ∣ξ∣ ≤ 1

2 and η(ξ) supported in the spherical shell 1
2 < ∣ξ∣ ≤ 2 such that the

quantities η0(ξ), η j(ξ) ∶= η(2− j ξ), with j ≥ 1, form a partition of unity.
Then we define μ j(x) ∶= μ ∗

̂
η j(x) and so μ̂ j(ξ) = μ̂(ξ)η j(ξ). Thus, μ̂(ξ) =

∞
∑
j=0

μ̂ j(ξ) and, moreover,

∣Bε(ξ)∣ ≲ψ
∞
∑

i , j=0
∣ξ∣ d−s

2 ∫
Rd

∣μ̂ i(η)∣ ∣μ̂ j(ξ − η)∣ ∣σ̂(r(η, ξ − η))∣ dη

≲
∞
∑

i , j=0
(2i + 2 j) d−s

2 ∫
Rd

∣μ̂ i(η)∣ ∣μ̂ j(ξ − η)∣ ∣σ̂(r(η, ξ − η))∣ dη
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since ∣ξ∣ ≤ ∣η∣ + ∣ξ − η∣ ≲ 2i + 2 j on the supports of μ̂ i , μ̂ i and d > s. Now the function
on the right is independent of ε and L2 integrable as

I ∶= (∫
Rd

⎛
⎝
∞
∑

i , j=0
(2i + 2 j) d−s

2 ∫
Rd

∣μ̂ i(η)∣ ∣μ̂ j(ξ − η)∣ ∣σ̂(r(η, ξ − η))∣ dη
⎞
⎠

2

dξ)
1
2

≤
∞
∑

i , j=0
(2i + 2 j) d−s

2 (∫
Rd

⎛
⎝∫Rd

∣μ̂ i(η)∣ ∣μ̂ j(ξ − η)∣ ∣σ̂(r(η, ξ − η))∣ dη
⎞
⎠

2

dξ)
1
2

≲r
∞
∑

i , j=0
(2i + 2 j) d−s

2 (22i + 22 j)−
2d−1

4 2min{i , j} d
2 ∥μ i∥2∥μ j∥2

by Minkowski’s integral inequality and Proposition 4.1.
Next, we want to evaluate the L2-norms of the functions μ i . We have, using

Plancherel’s theorem in the first line and the Fourier transform characterization of
the energy integral [28, Theorem 3.10] in the third line,

∥μ i∥2
2 = ∥μ̂ i∥2

2 ≲ 2i(d−s) ∫
Rd

∣ξ∣−d+s ∣μ̂ i(ξ)∣2dξ

≲η 2i(d−s) ∫
Rd

∣ξ∣−d+s ∣μ̂(ξ)∣2dξ

= 2i(d−s)Is(μ)
≲μ 2i(d−s) .

With this at hand, we continue estimating I by utilizing the symmetry of the summand,

I ≲
∞
∑
i=0

∞
∑
j=i

2 j d−s
2 2− j 2d−1

2 2i d
2 2i d−s

2 2 j d−s
2

=
∞
∑
i=0

2i(d− s
2 )
∞
∑
j=i

2 j( 1
2−s)

≲
∞
∑
i=0

2i(d− s
2 ) 2i( 1

2−s) ,

which is finite since s > 2d+1
3 .

Therefore, for a set E with dim(E) > 2d+1
3 , from the dominated convergence theo-

rem, it follows that the function in (5.1) is continuous in r. Finally, since supp(νμ) ⊂
Δdiag(supp(μ)) ⊂ Δdiag(E), we see that Δ̊diag(E) has non-empty interior. ∎

Remark 5.1 The same proof works for an arbitrary number of points. Namely, for
k ≥ 3, if for E ⊂ R

d compact we define the k-point configuration set Δ̊diag
k (E) as in

Theorem 3.2, then

dim(E) > (k − 1)d + 1
k

implies that Int(Δ̊diag
k (E)) ≠ ∅,

extending what we have just shown for k = 3. However, as we show in the next section,
it turns out that using the FIO approach of [14, 15] allows one to lower this by 1/k for
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k ≥ 4. Additionally, the FIO approach does not require the metric to be Euclidean, or
a product, or even translation invariant, leading to Theorem 3.3.

6 A Fourier integral operator approach

We now prove Theorem 3.2 using multilinear FIOs, improving on the threshold,
mentioned in Remark 5.1, which can be obtained for k ≥ 4 by Fourier transform
methods.

The FIO method, introduced in [14] for two-point configuration sets and then
extended to k-point configurations in [15], is based on optimizing linear FIO estimates
over all bipartite partitions of the variables. The flexibility of this approach and its
stability under perturbations then sets the scene for the proof of Theorem 3.3.

We will give the calculations needed to prove Theorem 3.2, using the general
framework and notation of [15], which the reader should consult for a full exposition.
In the terminology of [12], the k-configuration set Δ̊diag

k (E) is a Φ-configuration
set. For convenience, we relabel (x , y1 , . . . , yk−1) as (x0 , x 1 , . . . , xk−1) and define Φ ∶
(Rd)k → R,

Φ(x0 , x 1 , . . . , xk−1) = 1
2

k−1
∑
i=1

∣x0 − x i ∣2 ,(6.1)

so that Int(Δ̊diag
k (E)) ≠ ∅ iff

Δ̊Φ(E) ∶= {Φ (x0 , x 1 , . . . , xk−1) ∶ x0 , . . . , xk−1 ∈ E , x i ≠ x j , ∀i ≠ j} ,

has nonempty interior.
We start by finding a base point in R

kd about which to work. Let s0 = s0(d , k)
be the threshold for dim(E) in (3.1) in the statement of Theorem 3.2, and suppose
dim(E) > s0. Pick an s with s0 < s < dim(E), and let μ be a Frostman measure
supported on E and of finite s-energy (see [27, Theorem 8.17]). We claim that there
exist points x0

0 , . . . , xk−1
0 ∈ E and an ε > 0 such that μ(B(x i

0 , ε)) > 0, 0 ≤ i ≤ k − 1,

x i
0 ≠ x0

0 , ∀ i > 0, and x i
0 ≠ x j

0 , ∀ 1 ≤ i ≠ j ≤ k − 1,

and then set

t0 ∶= 1
2

k−1
∑
i=1

∣x0
0 − x i

0∣ 2 > 0.(6.2)

To see this, one can argue as in [15, Section 4.1]. The key point is that if we define

W ∶= {(x0 , . . . , xk−1) ∈ Rkd ∶ x i ≠ x0 , ∀ i > 0, and x i ≠ x j , ∀ 1 ≤ i ≠ j ≤ k − 1} ,
(6.3)

then W is a Zariski open subset of Rkd , whose complement is contained in a union
of algebraic varieties of dimensions ≤ (k − 1)d (since each {x i = x j} is codimension
d). Hence, dim (Rkd/W) ≤ (k − 1)d < s, so that (μ × ⋅ ⋅ ⋅ × μ)(Rkd/W) = 0. See [15],
where this type of argument is given for several different Φ-configurations, for more
details.
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For each t > 0, the configuration function Φ induces a surface measure,

Kt(x0 , . . . , xk−1) = δ (Φ (x0 , . . . , xk−1) − t) ∈D′ (Rkd) ,

where δ(⋅) is the delta distribution on R. Each Kt supported on its incidence relation,

Zt ∶= { (x0 , . . . , xk−1) ∈ Rkd ∶ Φ(x0 , . . . , xk−1) = t } ,(6.4)

and is a Fourier integral (or Lagrangian) distribution on R
kd in the sense of Hör-

mander [20, 21]: by Fourier inversion of δ on R, Kt has an oscillatory representation,

Kt(⋅) = c ∫
R

e iτ(Φ(x0 , . . . ,x k−1)−t)1(τ) dτ.

The phase function parametrizes the conormal bundle of Zt , denoted
N∗Zt ⊂ T∗ (Rkd) /0, which is a Lagrangian submanifold, while the amplitude
1(τ) is a symbol of order 0. Thus, by Hömander’s formula for the order of a Fourier
integral distribution,

ord(Kt) = ord(1(⋅)) + # phase vars
2

− # spatial vars
4

= 0 + 1
2
− kd

4

and one writes Kt ∈ I 1
2−

kd
4 (N∗Zt).

For convenience, we will write N∗Zt with each pair of spatial and cotangent
variables, (x i , ξ i), grouped together. Thus,

N∗Zt =
⎧⎪⎪⎨⎪⎪⎩
(x0 , τ

k−1
∑
i=1

(x0 − x i); x 1 ,−τ(x0 − x 1); . . . ; xk−1 ,−τ(x0 − xk−1))

∶ (x0 , . . . , xk−1) ∈ Zt , τ ≠ 0
⎫⎪⎪⎬⎪⎪⎭

.(6.5)

To make this more explicit, we parametrize an open subset of Zt by letting x0 range
freely over Rd , and then write x i = x0 + y i , 1 ≤ i ≤ k − 1. Writing y⃗ = (y1 , . . . , yk−2) ∈
R
(k−2)d , set r( y⃗, t) = (2t −∑k−2

i=1 ∣y i ∣2)
1
2 and let

Ůt ∶= { ( y⃗, yk−1) ∈ R(k−1)d ∶ ∣y i ∣ > 0, ∀ 1 ≤ i ≤ k − 1;
k−2
∑
i=1

∣y i ∣2 < 2t; yk−1 = r(y1 , . . . , yk−2 , t)ω, ω ∈ Sd−1;

and y i ≠ y j , ∀ 1 ≤ i ≠ j ≤ k − 1},

which is an open subset of R(k−1)d . Since all of the x i − x0 = y i are distinct, it follows
that x i ≠ x j , ∀0 ≤ i ≠ j ≤ k − 1. Thus,

Zt ⊃ Z̊t ∶= { (x0 , x0 + y1 , . . . , x0 + yk−2 , x0 + yk−1)

∶ x0 ∈ Rd , ( y⃗, yk−2) ∈ Ůt},
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allowing us to parametrize the open subset N∗Z̊t ⊂ N∗Zt as

N∗Z̊t = {(x0 ,−τ (
k−2
∑
i=1

y i + r( y⃗, t)ω) ; x0 + y1 , τy1; . . . ;

x0 + yk−2 , τyk−2; x0 + r( y⃗, t)ω, τr( y⃗, t)ω)(6.6)

∶ x0 ∈ Rd , ( y⃗, yk−1) ∈ Ůt , ω ∈ Sd−1 , τ ≠ 0}.

Note that (x0
0 , x 1

0 , . . . , xk−1
0 ) ∈ Z̊t0 , with t = t0 as in (6.2). Multiplying Kt by a

smooth cutoff function in order to localize to where x i ≠ x j , ∀0 ≤ i ≠ j ≤ k − 1, yields,
for m = 1

2 − kd
4 , an element of Im (N∗Z̊t), which for simplicity we still denote by Kt .

With all of this in place, we commence the proof of Theorem 3.2, showing how the
FIO approach of [15] can be used to reprove Theorem 3.1. We begin by treating the
case k = 3, using [15, Theorem 2.1], relevant for three-point configurations. It suffices
to find a partition σ of the three variables, x0 , x 1 , x2, into one on the left and two on
the right, which we write as σ = ( σL ∣ σR ) = ( i ∣ j k ), with i , j, k ∈ {0, 1, 2} distinct,
and the choice of which gives rise to the nondegenerate structure we are about to
describe. In fact, we focus on σ ∶= (0 ∣ 12 ). This corresponds to treating Kt as the
Schwartz kernel of a linear FIO, T σ

t , taking functions of x 1 , x2 to functions of x0. From
(6.6), the canonical relation Cσ

t of T σ
t is the conormal bundle N∗Z̊t , with the (x0 , ξo)

variables on the left and the (x 1 , ξ1 , x2 , ξ2) on the right, which simplifies to

Cσ
t = {(x0 ,−τ (y1 + r(y1 , t)ω) ; x0 + y1 , τy1; x0 + r(y1 , t)ω, τr(y1 , t)ω)

∶ x0 ∈ Rd , (y1 , y2) ∈ Ůt ⊂ R
2d , ω ∈ Sd−1 , τ ≠ 0}(6.7)

⊂(T∗Rd/0) × (T∗R2d/0) ,

where r(y1 , t) = (2t − ∣y1∣2)
1
2 . Since Cσ

t avoids the zero sections of both T∗Rd/0 and
T∗R2d/0, the linear FIO/generalized Radon transform T σ

t maps D(R2d) → E(Rd)
and E′(R2d) →D′(Rd).

Note that Cσ
t has dimension 3d. We claim Cσ

t is nondegenerate, in the sense that
the projections πL ∶ Cσ0

t → T∗Rd and πR ∶ Cσ0
t → T∗R2d have maximal rank, i.e., are

a submersion and an immersion, respectively. By a general property of canonical
relations, at any point, one of these holds iff the other does, so we only need to verify
that πL is a submersion. This already follows from ∣D(x0 , ξ0)/D(x0 , ω, τ)∣ ≠ 0. By [15,
Theorem 2.1(ii)], with p = 1 since the configuration function Φ is R1-valued,

if dim(E) > 1
3
[max(d , 2d + 1)] = 2d + 1

3
, then Int (Δ̊Φ(E)) ≠ ∅,

as desired.
One can check that the other nontrivial choices of σ , namely (1∣02) and (2∣01) up

to irrelevant permutations, could also have been used and yield the same result, but
do no better.

For k ≥ 4 below, we will again exhibit one partition that implies the claimed
threshold. However, when k ≥ 4, the geometry of the Cσ

t is less favorable than for
k = 3: the only way to partition the variables to make Cσ

t nondegenerate is to make the
total spatial dimension dL of the variables on the left much less than the dimension
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dR on the right, and then that incurs a penalty by raising the effective order of the
associated linear FIO, T σ

t . (See the discussion in [15, Section 5].) On the other hand,
for dL as close to dR as possible, we will see that the projections drop rank, resulting in
T σ

t losing derivatives on L2-based Sobolev spaces. This forces us to use [15, Theorem
5.2(i)] in place of part (ii).

To start, suppose that k ≥ 4 is even. Partition the variables x0 , x 1 , . . . , xk−1 into two
groups of equal cardinality k/2 on the left and right, respectively, picking

σ = (σL ∣ σR ) =
⎛
⎝

0 1 ⋅ ⋅ ⋅ k − 2
2

∣ k
2

⋅ ⋅ ⋅ k − 1
⎞
⎠

.

Using (6.6), one sees that this choice has the following properties.
(i) The total spatial dimensions on the left and right groups are dL = dR = kd/2.
(ii) Using σ to rearrange N∗Z̊t into Cσ

t ⊂ T∗Rkd/2 × T∗Rkd/2, Cσ
t avoids the

zero sections on both sides, so that Kt is the Schwartz kernel of a linear FIO, T σ
t ∈

I 1
2−

kd
4 (R kd

2 ,R kd
2 ; Cσ

t ).
(iii) Cσ

t has the property that the projections to the left and right have rank at least
(k + 2)d/2 + 1. As remarked above, we only need to verify this for πL ∶ Cσ

t → T∗Rkd/2.
From (6.6), one calculates that DπL restricted to

span{Tx0R
d , {Ty iR

d}(k−2)/2
i=1 , y

k
2 ⋅ ∂

y
k
2

, TωS
d−1 , ∂τ}

is injective. This uses the fact that the radial derivative of r( y⃗, t) with respect to y k
2 is

nonzero. (We could have used y i ⋅ ∂y i for any of the variables y i , k/2 ≤ i ≤ k − 2.)
(iv) Since rank(DπL) ≥ (k + 2)d/2 + 1 at each point of Cσ

t , it follows that
corank(DπL) = kd − rank(DπL) ≤ (k − 2)d/2 − 1. We now recall Hörmander’s esti-
mates for FIO, in the form that we need from [15]:

Theorem 6.1 [20, 21] Suppose that C ⊂ (T∗X/0) × (T∗Y/0) is a canonical relation,
where dim(X) = n1 , dim(Y) = n2, and A ∈ Imeff − ∣n1−n2 ∣

4 has a compactly supported
Schwartz kernel.

(a) If C is nondegenerate, then A ∶ L2
s (Y) → L2

s−meff
(X) for all s ∈ R.

(b) If the spatial projections from C to X and to Y are submersions and, for some l,
the corank of DπL (and thus that of DπR) is ≤ l at all points of C, then A ∶ L2

s (Y) →
L2

s−meff − l
2
(X).

(c) Furthermore, the operator norms depend boundedly on a finite number of
derivatives of the amplitudes and phase functions.

By part (b), T σ
t loses at most βσ = (k − 2)d/4 − 1/2 derivatives on L2-based Sobolev

spaces, and this is locally uniform in t. (To use these estimates, one also needs that the
spatial projections from Cσ

t onto the left and right variables are submersions, which is
easily verified.)

(v) In the notation of [15, Theorem 5.2(i)], dL = dR = kd/2, p = 1, 2βσ ≤ (k −
2)d/2 − 1 and all of the sets E i = E; hence, by that result, Int(Δ̊diag

k (E)) ≠ ∅ if
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dim(E) > 1
k
(max(dL , dR) + p + 2βσ)

= 1
k
( kd

2
+ 1 + (k − 2)d

2
− 1) = (k − 1)d

k
,

finishing the proof of Theorem 3.2 for k ≥ 4 and even.
Finally, for k ≥ 5 and odd, parity prevents the existence of an equidimensional

partition, as it did for k = 3. Choosing

σ = (σL ∣ σR ) =
⎛
⎝

0 1 ⋅ ⋅ ⋅ k − 3
2

∣ k − 2
2

⋅ ⋅ ⋅ k − 1
⎞
⎠

,

one has dL = (k − 1)d/2 < dR = (k + 1)d/2, and the resulting canonical relation Cσ
t ⊂

T∗R(k−1)d/2 ×R
(k+1)d/2 avoids the zero section on each side. Calculations almost

identical to the case of k even show that rank(DπL) ≥ (k + 1)d/2 + 1 at each point
of Cσ

t , so that corank(DπL) = (k − 1)d − rank(DπL) ≤ (k − 3)d/2 − 1 and thus [15,
Theorem 5.2(i)], with max(dL , dR) = (k + 1)d/2, p = 1, 2βσ = (k − 3)d/2 − 1, implies
that Int (Δ̊diag

k (E)) ≠ ∅ if

dim(E) > 1
k
((k + 1)d

2
+ 1 + (k − 3)d

2
− 1) = (k − 1)d

k
,

finishing the proof of Theorem 3.2.

7 Riemannian setting: proof of Theorem 3.3

As indicated in Theorem 6.1(c), Hörmander’s estimates for FIO on R
d or a d-

dimensional smooth manifold are stable with respect to perturbations which are small
in the CN topology on the canonical relations and amplitude, for some N = Nd . This
might not be stated explicitly in the literature, but is a folk theorem, being clear
from the proofs of the estimates for the underlying oscillatory integrals (see, e.g., [17,
Lemma 2.3]), as they are based on integration by parts using vector fields constructed
from the phase functions.

Due to this stability, Theorem 3.3 follows almost immediately from the proof
of Theorem 3.2 above. Perturbing the Euclidean metric g0 on R

(k−1)d in the CN+3

topology (for N = N(k−1)d ) results in a CN+1 perturbation of the geodesic flow, and
hence a CN+1 perturbation of the distance function. Thus, the configuration function

Φg(x0 , . . . , xk−1) = 1
2

dg ( (x0 , . . . , x0) , (x 1 , . . . , xk−1) )2

is a CN+1 perturbation of

Φg0(x0 , . . . , xk−1) = 1
2
∣ (x0 , . . . , x0) − (x 1 , . . . , xk−1) ∣ 2 ,

which was the starting point (6.1) for the analysis in the previous section. The
existence of a base point (x0

0 , x 1
0 , . . . , xk−1

0 ) ∈ Rkd around which to run the whole
argument follows as before, since the analogue of W in the Riemannian case of (6.3)
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from the Euclidean case is again an analytic variety of codimension ≥ d and thus has
measure zero w.r.t. μ × ⋅ ⋅ ⋅ × μ. Forming Z̊ g

t as above, it is a CN+1 perturbation of
Z g0

t and hence the conormal bundle N∗Z g
t is a CN perturbation of (6.5). As a result,

for the same choices of partitions σ as in the Euclidean case, the canonical relations
Cσ

t in the Riemannian case are CN perturbations of the Cσ
t analyzed in the previous

section. Since CN perturbations of submersions are submersions, this means the
same L2-Sobolev estimates hold, yielding nonempty interior of Δ̊diag

g (E) for the same
lower bounds on dim(E) (3.1) as in the Euclidean case.
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