Adaptive Optics-Based Measurements of the Black Hole in Abell 2162–BCG

Nicholas J. McConnell¹, James R. Graham¹, Chung-Pei Ma¹, Karl Gebhardt², and Tod R. Lauer³

¹Astronomy Department, University of California, Berkeley, United States Email: nmcc@berkeley.edu

²Department of Astronomy, University of Texas, Austin, USA ³National Optical Astronomy Observatory, USA

Keywords. galaxies: nuclei, galaxies: halos, galaxies: clusters: individual (Abell 2162)

We present preliminary measurements of the central black hole mass $M_{\rm BH}$, and stellar mass-tolight ratio M_{\star}/L_R , in the Brightest Cluster Galaxy of Abell 2162 (A2162–BCG), using integralfield unit (IFU) data from OSIRIS on Keck 2 with laser guide star adaptive optics (LGS-AO). Our results demonstrate early success in an ongoing effort to obtain stellar dynamical measurements of $M_{\rm BH}$ in nine BCGs using ground-based AO.

Measuring $M_{\rm BH}$ in a statistically significant sample of BCGs will establish how $M_{\rm BH}$ scales with luminosity L and velocity dispersion σ in the most massive galaxies, indicating the number density of galaxies with $M_{\rm BH} > 3 \times 10^9 M_{\odot}$. At galaxy cluster scales, $M_{\rm BH}$ in the BCG sets the integrated energy from AGN feedback. The relationships between $M_{\rm BH}$, L, and σ in the BCG also constrain the role of radial mergers in forming galaxy clusters.

Our measurements of $M_{\rm BH}$ and M_{\star}/L_R in A2162–BCG use data from OSIRIS as well as seeing-limited, IFU data from GMOS on Gemini North. Out to 19 kpc, we adopt the major-axis kinematics of Carter, Bridges, & Hau (1999). We use axisymmetric stellar orbit models, including a dark matter halo (Gebhardt & Thomas 2009), to fit the observed line-of-sight kinematics. Because our data span insufficient radii to empirically distinguish enclosed halo mass from stellar mass, we have examined suites of models with four different fiducial halos. We measure lower values of M_{\star}/L_R and higher values of $M_{\rm BH}$ as the enclosed halo mass increases (Figure 1). Our results reproduce the trend seen by Gebhardt & Thomas (2009) for M 87, indicating that the extended dark matter profile of BCGs must be constrained to accurately determine $M_{\rm BH}$ from stellar dynamics.

Figure 1. Measurements of $M_{\rm BH}$ and M_{\star}/L_R in A2162–BCG, modeling four different dark matter halos. The enclosed halo mass is defined at 19 kpc. Error bars represent 68% confidence.

References

Carter, D., Bridges, T. J., & Hau, G. K. T. 1999, *MNRAS*, 307, 131 Gebhardt, K. & Thomas, J. 2009, *ApJ*, 700, 1690

208