Subaru/HSC identifications of protocluster candidates at $z \sim 6-7$: Implications for cosmic reionization

Ryo Higuchi^{1,2}, Masami Ouchi^{1,3}, Yoshiaki Ono¹, Takatoshi Shibuya¹, Jun Toshikawa¹, Yuichi Harikane^{1,2}, Takashi Kojima^{1,2}, Yi-Kuan Chiang⁴, Eiichi Egami⁵, Nobunari Kashikawa^{6,7}, Roderik Overzier⁸, Akira Konno^{1,9}, Akio K. Inoue¹⁰, Kenji Hasegawa¹¹, Seiji Fujimoto^{1,9}, Tomotsugu Goto¹², Shogo Ishikawa^{13,14}, Kei Ito⁷, Yutaka Komiyama^{6,7} and Masayuki Tanaka⁶

¹Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan

²Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

³Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

⁴Department of Physics & Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

 $^5 \mathrm{Steward}$ Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA

⁶Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan

⁷Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), Mitaka, Tokyo 181-8588, Japan

⁸Observatório Nacional, Rua José Cristino, 77. CEP 20921-400, São Cristóvão, Rio de Janeiro-RJ, Brazil

⁹Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

¹⁰Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nakagaito, Daito 574-8530 Osaka, Japan

¹¹Department of Physics and Astrophysics, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

¹²Institute of Astronomy, National Tsing Hua University, No. 101,Section 2, Kuang-Fu Road, Hsinchu, Taiwan

¹³Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

¹⁴Department of Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan email: rhiguchi@icrr.u-tokyo.ac.jp

Abstract. We report fourteen and twenty-eight protocluster candidates at z = 5.7 and 6.6 over 14 and 19 deg² areas, respectively, selected from 2,230 Ly α emitters (LAEs) photometrically identified with Subaru/Hyper Suprime-Cam (HSC) deep images. Six out of the 42 protocluster candidates include at least 1 spectroscopically confirmed LAEs at redshifts up to z = 6.574. By the comparisons with the cosmological Ly α radiative transfer (RT) model reproducing LAEs with the reionization effects, we find that more than a half of these protocluster candidates might be progenitors of the present-day clusters with a mass of $\gtrsim 10^{14} M_{\odot}$. We also investigate

231

the correlation between LAE overdensity and Lya rest-frame equivalent width (EW), because the cosmological Ly α RT model suggests that a slope of EW-overdensity relation is steepened towards the epoch of cosmic reionization (EoR), due to the existence of the ionized bubbles around galaxy overdensities easing the escape of Ly α emission from the partly neutral intergalactic medium. The available HSC data suggest that the slope of the EW-overdensity correlation does not evolve from the post-reionization epoch z = 5.7 to the EoR z = 6.6 beyond the moderately large statistical errors.

Keywords. galaxies: high-redshift - galaxies: evolution - galaxies: formation

1. Introduction

It is important to study the physical process of cosmic reionization in astronomy today. In theoretical models, it is predicted that star-forming galaxies make ionized regions in the IGM around galaxies, called ionized bubbles. Large ionized bubbles are expected to form in galaxy high-density regions, and it is suggested that the cosmic reionization proceeds from high- to low-density regions (Overzier 2016). This process is called 'inside-out scenario'. The observation of galaxy high-density regions and identification of signatures of ionized bubbles are keys to testing the inside-out scenario of cosmic reionization. Observations of galaxy high-density regions near the epoch of cosmic reionization (EoR) are also important for a study of the early galaxy formation. In standard structure formation models, it is predicted that a large fraction of high-z galaxy high-density regions evolve into massive galaxy clusters at z=0. These galaxy high-density regions are called protoclusters. A protocluster is usually defined as a structure expected to evolve into a galaxy cluster with a halo mass $M_{\rm h} > 10^{14} \,\mathrm{M_{\odot}}$ (Chiang *et al.* 2013; Overzier 2016). Protoclusters at the EoR would be important examples of the early galaxy cluster formation (e.g. Ishigaki *et al.* 2016). Although the importances of high-z galaxy high-density regions are well recognized, there are only a few protoclusters at z > 6 reported (ouch et al. 2005; Utsumi et al. 2010; Toshikawa et al. 2012, 2014; Chanchaiworawit et al. 2017). To enlarge samples of protocluters at z > 6, we need large field survey of galaxy highdensity regions. In this study, we conduct protocluster survey at z = 5.7 and 6.6 based on the samples of $Ly\alpha$ emitters (LAEs) obtained with Subaru/Hyper Suprime-Cam (HSC).

2. Data

<u>HSC LAE Sample</u>. We use LAE samples of HSC SSP data to calculate galaxy overdensity and identify protocluster candidates (see also Shibuya *et al.* 2018a). Shibuya *et al.* (2018a) select LAEs based on the HSC datasets. The color selection criteria are defined as

$$i - NB816 \ge 1.2 \text{ and } g > g_{3\sigma} \text{ and } [(r \le r_{3\sigma} \text{ and } r - i \ge 1.0) \text{ or } (r > r_{3\sigma})]$$
 (2.1)

and

$$z - NB921 \ge 1.0 \text{ and } g > g_{3\sigma} \text{ and } r > r_{3\sigma} \text{ and}$$
$$[(z \le z_{3\sigma} \text{ and } i - z \ge 1.0) \text{ or } (z > z_{3\sigma})]$$
(2.2)

for z = 5.7 and 6.6 LAEs, respectively. We find 1,077 (1,153) LAEs at z = 5.7 (6.6).

<u>SC LAE Sample</u>. In addition to the HSC LAE samples, we use photometric samples of Ouchi *et al.* (2008) (Ouchi *et al.* 2010) to select the spectroscopic targets of z = 5.7 (6.6) LAEs. Ouchi *et al.* (2008) and Ouchi *et al.* (2010) find 401 and 207 LAEs at z = 5.7 and 6.6, respectively.

Figure 1. (Left) Example of the sky distribution of the LAEs with δ contours (gray colors) at z = 5.7. Black filled circles indicate HSC LAEs used for δ calculation. The gray filled circles show spec-LAEs. Masked regions and shallow regions are shown with gray regions. White quivers show the position of protocluster candidates. (Right) Example of our protocluster candidates at z = 6.6. The bottom panel is same as the left figure, but for the example of protocluster candidates at z = 6.6. The top-left panel presents the distribution of the spec-LAEs on the plane of R.A. vs. redshift directions. The top-right panel shows the redshift distribution of the spec-LAEs with the mean expected number of LAEs (black line).

<u>Spectroscopic Sample</u>. We carry out spectroscopic observations for our LAE samples. The details of spectroscopic observations for the HSC (SC) samples are shown in Shibuya *et al.* (2018b) (Higuchi *et al.* 2018). In addition to the spectroscopic sample of Shibuya *et al.* (2018b) and Higuchi *et al.* (2018), we refer other redshift catalogues of confirmed LAEs at z = 5.7 (6.6) taken from Ouchi *et al.* (2005), Ouchi *et al.* (2008) and Mallery *et al.* (2012) (Chanchaiworawit *et al.* 2017, and Guzmán *et al.* 2017). We make unified catalogs of ~ 200 spectroscopically confirmed LAEs (spec-LAEs) at z = 5.7 and 6.6.

3. Results and Discussions

<u>Overdensity Measurements</u>. We calculate LAE overdensities with the HSC LAE samples. The LAE overdensity δ is defined as $\delta = \frac{n-\overline{n}}{\overline{n}}$, where n (\overline{n}) is the total (average) number of LAEs found in a circle for the δ measurements. We use a circle with a radius of 0.07 deg (10 cMpc), which would be a typical size of protoclusters at $z \sim 6$ (Chiang *et al.* 2013). We show an example of the HSC LAE sky distribution and the δ map at z = 5.7 in Figure 1. We find some regions where δ values significantly exceed beyond those expected by random distribution. We call these regions as high-density regions (HDRs). We define a HDR as a region which has at least 4 LAEs in a radius of 0.07 deg. We identify 14 (28) z = 5.7 (6.6) HDRs in total.

<u>Halo Mass Estimates</u>. We estimate the probability of HDRs evolving into massive galaxy clusters at z = 0. From the theoretical model of Inoue *et al.* (2018), we derive a relation between the halo mass and δ ($M_{\rm h}$ - δ relation). We calculate the present-day halo masses of the haloes at z = 5.7 and 6.6, using the $M_{\rm h}$ - δ relation and extended Press-Schechter model of Hamana *et al.* (2006). We find that ~60% of the haloes in the HDRs are expected to evolve into haloes with a mass of > 10¹⁴ M_☉ by z = 0. Because more than a half of the haloes in the HDRs are supposed to be progenitors of the present-day clusters, these HDRs can be regarded as protocluster candidates (the properties of protocluster candidates are listed in Higuchi *et al.* 2018).

Implications for Csomic Reionization. We study the relations between Ly α rest-frame equivalent width (EW) and δ (EW- δ relation) at z = 5.7 and 6.6. We calculate EW values for HSC LAE samples and fit a linear function to the EW and δ to evaluate the evolution of the slope of the linear function. We find that the EW- δ relation does not evolve from z = 5.7 to 6.6 beyond the errors. We conduct the same analysis for the model (Inoue *et al.* 2018), and find the evolution beyond statistical errors towards the early EoR due to the existence of the ionized bubbles around galaxy high-density regions. The model suggests there is a possibility of detecting the evolution of the EW - δ relation from z = 5.7 to 7.3 by the upcoming HSC observations which provides larger samples of LAEs including a new sample of LAEs at z = 7.3 (see also Higuchi *et al.* 2018).

References

- Chanchaiworawit, K., Guzmán, R., Rodríguez Espinosa, J. M., Castro-Rodríguez, N., Salvador-Solé, E., Calvi, R., Gallego, J., Herrero, A., et al. 2017, MNRAS, 469, 2646
- Chiang, Y.-K., Overzier, R., Gebhardt, K., et al. 2013, ApJ, 779, 127
- Guzmán, R., Chanchaiworawit,, K., Rodríguez-Espinosa, J. M., Calvi, R. and Salvador-Solé, E., Manrique, A., Marín-Franch, A., Gallego, J., et al. 2017, in Early stages of Galaxy Cluster Formation, 12
- Hamana, T., Yamada, T., Ouchi, M., Iwata, I., Kodama, T., et al. 2006, MNRAS, 369, 1929
- Higuchi, R., Ouchi, M., Ono, Y., Shibuya, T., Toshikawa, J., Harikane, Y., Kojima, T., Chiang, Y.-K., et al. 2018, ArXiv e-prints, arXiv:1801.00531
- Inoue, A. K., Hasegawa, K., Ishiyama, T., Yajima, H., Shimizu, I., Umemura, M., Konno, A., Harikane, Y., et al. 2018, PASJ, 70, 55
- Ishigaki, M., Ouchi, M., Harikane, Y., et al. 2016, ApJ, 822, 5
- Mallery, R. P., Mobasher, B., Capak, P., Kakazu, Y., Masters, D., Ilbert, O., Hemmati, S., Scarlata, C., et al. 2012, ApJ, 760, 128
- Ono, Y., Ouchi, M., Harikane, Y., et al. 2018, PASJ, 70, S10
- Ouchi, M., Shimasaku, K., Akiyama, M., Sekiguchi, K., Furusawa, H., Okamura, S., Kashikawa, N., Iye, M., et al. 2005, ApJ, 620, L1
- Ouchi, M., Shimasaku, K., Akiyama, M., Simpson, C., Saito, T., Ueda, Y., Furusawa, H., Sekiguchi, K., et al. 2008, ApJS, 176, 301
- Ouchi, M., Shimasaku, K., Furusawa, H., Saito, T., Yoshida, M., Akiyama, M., Ono, Y., Yamada, T., et al. 2010, ApJ, 723, 869
- Overzier, R. A. 2016, A&A Rev., 24, 14
- Pavesi, R., Riechers, D. A., Capak, P. L., et al. 2016, ApJ, 832, 151
- Shibuya, T., Ouchi, M., Konno, A., Higuchi, R., Harikane, Y., Ono, Y., Shimasaku, K., Taniguchi, Y., et al. 2018a, PASJ, 70, S14
- Shibuya, T., Ouchi, M., Harikane, Y., Rauch, M., Ono, Y., Mukae, S., Higuchi, R., Kojima, T., et al. 2018b, PASJ, 70, S15
- Toshikawa, J., Kashikawa, N., Ota, K., Morokuma, T., Shibuya, T., Hayashi, M., Nagao, T., Jiang, L., et al. 2012, ApJ, 750, 137
- Toshikawa, J., Kashikawa, N., Overzier, R., Shibuya, T., Ishikawa, S., Ota, K., Shimasaku, K., Tanaka, M. , et al. 2014, ApJ, 792, 15
- Utsumi, Y., Goto, T., Kashikawa, N., Miyazaki, S., Komiyama, Y., Furusawa, H., & Overzier, R., et al. 2010, ApJ, 721, 1680

Discussion

T. GOTO: Do lyman break galaxies cluster around PCCs?

R. HIGUCHI: We have not checked lyman break galaxies around PCCs because we do not have GOLDRUSH sample at $z \sim 7$ (see Ono *et al.* 2018). I remember Pavesi *et al.* (2016) referred to our study and suggested that a dusty, starbursting galaxy at z = 5.7 exists around our PCCs.