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Abstract

Interest in local environmental conditions and the occurrence and behaviour of parasites has
increased over the last 3 decades, leading to the discipline of Environmental Parasitology. The
aim of this discipline is to investigate how anthropogenically altered environmental factors
influence the occurrence of parasites and how the combined effects of pollutants and parasites
affect the health of their hosts. Accordingly, in this paper, we provide an overview of the direct
and indirect effects of pollutants on the occurrence and distribution of fish parasites.
However, based on current knowledge, it is difficult to draw general conclusions about
these interdependencies, as the effects of pollutants on free-living (larval) parasite stages, as
well as their effects on ectoparasites, depend on the pollutant–host–parasite combination as
well as on other environmental factors that can modulate the harmful effects of pollutants.
Furthermore, the question of the combined effects of the simultaneous occurrence of parasites
and pollutants on the physiology and health of the fish hosts is of interest. For this purpose,
we differentiate between the dominance effects of individual stressors over other, additive or
synergistically reinforcing effects as well as combined antagonistic effects. For the latter, there
are only very few studies, most of which were also carried out on invertebrates, so that this
field of research presents itself as very promising for future investigations.

Introduction

Aquatic organisms, and fish in particular, are affected by a variety of stressors caused by
anthropogenic influences that lead to changes in environmental parameters. These in turn eli-
cit stress responses of the organism in the sense that the affected organisms show reactions
outside their normal range. Stressors include chemical pollutants (i.e. contaminants), nutri-
ents, flow velocity, pH, dissolved oxygen, disturbance in light and temperature regimes and
many other physico-chemical variables that can be significantly altered by anthropogenic
activities (e.g. Birk et al., 2020). In this paper, the focus is mainly on the chemical pollutants
that can cause acute and/or chronic effects in biota when exceeding aqueous concentrations
above their natural range of occurrence. However, other factors such as the temperature
regime, pH and dissolved oxygen are also considered, as they may influence the solubility
and bioavailability of pollutants or, conversely, the pollutants may influence the natural ranges
of some of these factors (e.g. oxygen content, pH) and thus contribute significantly to the
effects of the pollutants.

Chemical contaminants include various micropollutants of inorganic and organic nature,
organometallic compounds, but also dissolved salts (NaCl, CO3

2−) and nutrients (e.g. NO3
−,

NO2
−, NH4

+, PO4
3−). The inorganic pollutants comprise various trace elements (metals and

metalloids such as Cd, Pb, As), which may be of geogenic origin (Erasmus et al., 2022). In
most cases, however, the elevated concentrations are related to anthropogenic activities such
as mining, industrial and domestic wastewater, agriculture, erosion of landfills, waste dump
and many others (e.g. Schertzinger et al., 2018, 2019; Kontchou et al., 2021; Rothe et al.,
2021; Erasmus et al., 2022; Link et al., 2022). Metals can affect for example the embryonic
and larval development of fish, its growth and fitness as well as reproduction (e.g. summarized
in Taslima et al., 2022). The modes of action comprise effects on molecular and cellular levels
as well as on the immune system, on the physiology, and the metabolism of fish (see Taslima
et al. (2022) and references therein). Some metals such as Cd, Cr, Hg and Pb may also act as
endocrine disruptors (reviewed in Chakraborty, 2021).

Elevated levels of dissolved salts (e.g. salinization) and nutrients are also related to
anthropogenic activities and can directly affect fish or indirectly affect environmental condi-
tions (e.g. in the case of eutrophication) and the species composition of the biota (Schröder
et al., 2015) as well as food availability for fish in general. Organic pollutants include a
large group of compounds used in industry (e.g. PCBs, PAHs, plasticizers, flame retardants)
and agriculture (e.g. pesticides), but also some that are used as pharmaceuticals or personal
care products or enter domestic wastewater as metabolic end products. Similar to inorganic
pollutants, they can have effects on different levels of organization in fish and might addition-
ally act as endocrine disruptors (Tierney et al., 2013).

In addition to the pollutants mentioned, parasites might represent an additional stressor for
fish at the individual, population or community level. Parasite infections can reduce host

https://doi.org/10.1017/S0031182022001172 Published online by Cambridge University Press

https://www.cambridge.org/par
https://doi.org/10.1017/S0031182022001172
https://doi.org/10.1017/S0031182022001172
mailto:bernd.sures@uni-due.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6865-6186
https://orcid.org/0000-0003-2501-9157
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0031182022001172&domain=pdf
https://doi.org/10.1017/S0031182022001172


fitness by inducing different pathological, immunological and
physiological responses (e.g. Sures et al., 2001; Münderle et al.,
2004; Buchmann and Bresciani, 2006; Gérard et al., 2016).
Nutrition and energy drain as well as host manipulation can
reduce the performance and fitness of infected individuals.
Parasite infection can also negatively affect the dynamics and
density of fish populations and thus the entire fish community.
Population effects are particularly significant for infections with
parasites that cause severe pathological damage (e.g. Sokolowski
and Dove, 2006; Shafaquat et al., 2016; Barišić et al., 2018;
Dezfuli et al., 2021) or with parasites that act as endocrine disrup-
tors and parasitic castrators (e.g. Trubiroha et al., 2010, 2011)
and/or manipulate their host to make it more vulnerable to pre-
dation (e.g. Giles, 1983; Museth, 2001; Gabagambi et al., 2019;
Svensson et al., 2022).

In general, parasite infections increase the susceptibility of
their hosts to various stressors (Combes, 1995), so that infected
fish exposed to multiple stressors may react differently than unin-
fected conspecifics. The aim of this paper is therefore to summar-
ize and discuss what is known about the complex interactions
between parasites and various contaminants from the perspective
of the fish host (see Fig. 1). In terms of Environmental Parasitology,
this overview sheds light on the role of parasites in ecosystems
where multiple stressors interact. First, we provide an overview
of (i) the direct interaction between parasite stages which are in
close contact to environmental contaminants (i.e. ectoparasites
and free-living stages of endoparasites), before (ii) summarizing
indirect effects of pollutants on fish parasite occurrence and
distribution. Additionally, we give examples of (iii) the complex
fish–parasite–pollution interaction and finally, provide some
(iv) concluding remarks and an outlook for future research.

Direct interaction between parasites and contaminants in
the aquatic environment

Parasites constitute a significant part of natural ecosystems and
produce a considerable amount of their biomass (Kuris et al.,
2008; Soldánová et al., 2016). Similar to free-living organisms,
parasites are affected by and respond to environmental

conditions. Fluctuations in the population dynamics of parasites
are still not very well understood, but in several cases, the reasons
lie in changes in environmental conditions (pollution, anthropo-
genic impact, etc.; see Thieltges et al., 2008) as well as in invasive
species encountering susceptible hosts after their arrival and then
succeeding accordingly (Goedknegt et al., 2016). Over the last 2
decades, research has shown that environmental factors have a
significant impact on parasites and can directly influence the
composition and diversity of parasite communities. The direct
mode of action includes effects on adult ectoparasites or larval
stages that are in immediate contact with the environment
(Gheorgiu et al., 2006; Gheorghiu et al., 2007; Thieltges et al.,
2008; Sures et al., 2017). Pollution-induced lethal responses lead
to lower transmission efficiency of parasites, which in turn affects
the structure and dynamics of parasite populations. Moreover,
ectoparasites have been found to respond very sensitive to pollu-
tion (e.g. eutrophication or chemical pollution) (Gilbert and
Avenant-Oldewage, 2021) similar to endoparasites with free-
living larval stages (e.g. cercariae, miracidia), which may also be
directly affected by environmental conditions (summarized by
Thieltges et al., 2008). A meta-analysis of published data
(Gilbert and Avenant-Oldewage, 2021) has shown that pollution
can have both positive and negative effects on monogenean com-
munities, while some pollutants show no clear effects. It can be
seen that metals tend to have a negative effect on monogenean
communities (lower abundance of some species and lower diver-
sity), while eutrophication has a positive effect (see Gilbert and
Avenant-Oldewage, 2021 and references therein). Direct effects
of pollutants on endoparasites are due to exposure of free-living
larval stages to pollutants. Metals have been reported to affect
trematode transmission by reducing the longevity, viability and
infectivity of cercariae (Pietrock and Marcogliese, 2003; Morley
et al., 2006). Similar effects were reported for organic pollutants
such as various pesticides (e.g. Koprivnikar et al., 2006, 2007;
Rohr et al., 2008; Raffel et al., 2009; Hua et al., 2016).

Free-living stages of endoparasites and ectoparasites can not
only be affected by pollutants, but also should in turn be able
to influence the level of pollutants in the environment. For
example, cercariae, which are excreted in large numbers and

Fig. 1. Changes in pollution levels of aquatic habitats can directly or indirectly affect the structure and composition of fish parasite communities. The direct mode
of action includes mainly effects on adult ectoparasites or larval stages that are in immediate contact with the environment. Adverse effects of pollutants lead to
lower transmission efficiency of parasites, which in turn affects the structure and dynamics of parasite populations.
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biomass by the molluscan intermediate host (Soldánová et al.,
2016; Díaz-Morales et al., 2022), could act as a pollutant sink at
low spatial scales, influencing the distribution and further bio-
availability of chemicals when accumulated by them. During
their short lifespan, cercariae provide a food source for various
aquatic organisms (Johnson et al., 2010), including fish, and
thus may additionally contribute to the distribution and trans-
location of chemicals within the various components of food
webs. It can be assumed that a significant proportion of pollutants
could be stored in free-living stages of parasites in ecosystems, as
various parasitic taxa have an excellent accumulation capacity (see
e.g. Sures et al., 2017). Interestingly, to the best of our knowledge,
no study is available addressing a possible pollutant uptake by cer-
cariae although studies by Morley and colleagues (Morley et al.,
2003, 2006) suggest the availability of metals for cercariae with
subsequent fatal effects. Regardless of a possible pollutant load,
the majority of the cercariae die, sediment together with the sus-
pended matter and become demineralized. Ectoparasites such as
crustaceans and monogeneans, which can accumulate metals
(Pérez-del-Olmo et al., 2019; Nachev et al., 2022), can also pre-
sumably take up pollutants from the environment. It has already
been shown that, for example, metals may become incorporated
into the sclerotized structures of the haptor in monogeneans
(Gilbert and Avenant-Oldewage, 2017). Often, such a contamin-
ant exposure lead to malformation of the haptor in several fam-
ilies of monogeneans (see e.g. Šebelová et al., 2002; Pečínková
et al., 2005; Dzika et al., 2007; Rodríguez-González et al., 2020)
and could therefore even be used to indicate metal pollution in
aquatic ecosystems (Gilbert and Avenant-Oldewage, 2021).

Indirect effects of contaminants on parasite occurrence and
distribution in the aquatic environment

Indirect effects of contaminants on individual parasites and their
communities refer to the presence and abundance of free-living
intermediate or definitive hosts involved in the life cycle of multi-
host parasites. Host organisms require an optimal range of envir-
onmental conditions and respond to deviations from these or to
the presence of stressors with reduced abundance, while in the
extreme range of conditions they may even be absent. As a result,
parasites show lower species richness and diversity, and changes
in species composition. Nachev and Sures (2009) reported lower
parasite diversity in fish from polluted sites (higher metal concen-
trations and eutrophication) in comparison to less polluted local-
ities. Similar patterns were reported by Krause et al. (2010) in
relation to general water quality in combination with adverse
environmental conditions as well as by Barišić et al. (2018) and
Braicovich et al. (2020) as a consequence of industrial and agricul-
tural activities and effluent of a wastewater treatment plant. The
richness and structure of parasite communities were found to fol-
low gradients of salinity and eutrophication, with fecal coliform
counts and temperature serving as proxies for the pulp mill and
municipal effluents (Blanar et al., 2011), land use and the concen-
tration of hydrocarbons (PAHs) in sediments (Blanar et al., 2016),
pharmaceuticals (Pravdová et al., 2022) or levels in PCBs in sedi-
ments (Carreras-Aubets et al., 2012) as well as the level of urban-
ization (Taglioretti et al., 2018). Also anthropogenic activities
such as clearcutting (Marcogliese et al., 2001) and precipitation
(Marcogliese et al., 2016), which alter the temperature, chemistry
and hydrology of aquatic systems and the composition of free-
living communities, were found to impact the communities of
fish parasites.

But also the opposite scenario has been described in the litera-
ture. The host’s physiology and immune system may undergo a
number of stressor-induced changes when exposed to environ-
mental contaminants that are beneficial to the parasites’ infection

success, for example, if the host’s immune system is weakened. In
this case, levels of pollutants positively correlate with the abun-
dance of some parasite taxa (Marcogliese, 2004, 2005). Positive
effects are described for ectoparasites such as monogeneans,
which often occur in higher abundance and diversity as a result
of the host’s immune system being compromised by pollution
(Pérez-del Olmo et al., 2007; Sanchez-Ramirez et al., 2007;
Pravdová et al., 2021). Although comparatively, much informa-
tion is available on the effects of contaminants on the immune
system of fish, most of these studies are correlative in nature.
Mechanistic studies, on the other hand, dealing with the immu-
notoxicity of xenobiotics are mainly based on challenges by
viral and bacterial pathogens or synthetic antigens (Regala
et al., 2001; Sures, 2008a). Comparable studies investigating the
immunosuppressive effects of environmental pollutants on meta-
zoan parasites are relatively rare, as they are quite complicated to
conduct (Hoole, 1997). Laboratory infection experiments of
European eels (Anguilla anguilla) with the swim bladder nema-
tode Anguillicola crassus revealed that exposure of eels to PCB
126 resulted in a complete suppression of the eels’ antibody
response although no higher infection intensities were found in
PCB 126-exposed eels when compared to unexposed conspecifics
(Sures and Knopf, 2004). Moreover, a combined Cd- and PCB
126-exposure together with experimental infection with A. crassus
induced significantly increased cortisol levels in eel blood, which
themselves are assumed to be immunosuppressive (Sures et al.,
2006).

Interactive effects of simultaneously occurring pollution
and parasitism on fish

Following the ecological concept of stressor interaction
(Birk et al., 2020) pollutants and parasites can interact in many
ways (Fig. 2) and 3 main types of impact on their hosts can be
distinguished: (1) only 1 of the 2 stressors has relevant effects
on the host, i.e. the effects of 1 stressor outweigh those of the
other stressor (stressor dominance); (2) parasites and pollutants
act independently in a way that their joint effect is the sum of
the individual effects (additive effects); and (3) 1 stressor either
strengthens (synergistic) or weakens (antagonistic) the effects of
the other. As previously mentioned various organic and inorganic
contaminants can act as toxic substances with adverse effects
on the physiology of the host that can be modulated by
simultaneously occurring parasites.

In the case of a dominant stressor, there are examples of both
parasites as well as pollutants. Especially monoxenous parasites
with short life cycles and high infectivity can quickly threaten
fish to such an extent that they die, so that further stressors
such as pollutants hardly play a role in these scenarios. For
example, the monogenean Gyrodactylus salaris has shown high
virulence towards East Atlantic salmon in rivers in Norway, lead-
ing to high mortality of fry and parr (Heinecke et al., 2007 and
references therein). On the other hand, pollutants can also show
stressor dominance, especially if they are really highly toxic sub-
stances that are present in correspondingly high concentrations.
There are a number of environmental disasters that show how
dominant and fatal pollution as a stressor can be. One of the
most prominent ones in freshwater ecosystems is probably the
Sandoz accident that occurred in 1986 in Switzerland (Van Urk
et al., 1993). A fire in a chemical production plant led to the
release of toxic agrochemicals into the River Rhine, killing a
large part of the eel population and severely damaging other
fish species and macroinvertebrates as far downstream as the
Netherlands (Güttinger and Stumm, 1992).

Probably, the most common scenario is where the negative
effects of pollutants and parasites are more pronounced when
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they occur together, in the sense of an additive or synergistic
interaction, than if only a single stressor were present (Fig. 2).
Accordingly, in these cases, the damage to the fish is also signifi-
cantly greater as if only a single stressor occurs (Sures, 2008b).
Many studies have shown that acute and chronic effects of chemi-
cals can be exacerbated by parasitism, through lower fish survival
(e.g. Boyce and Yamada, 1977; Pascoe and Cram, 1977; Gheorgiu
et al., 2006), poorer body condition (e.g. Thilakaratne et al., 2007)
and various physiological markers (e.g. Marcogliese and Pietrock,
2011 and references therein; Sures et al., 2017 and references
therein). In particular, interest in the interaction between parasites
and environmental pollution has increased in recent years in
terms of biomarker responses. Currently, it appears that mostly
the pathogenicity of parasites can be enhanced when they coexist
with pollutants, such that the negative effects induced by pollu-
tion are exacerbated by the parasites (Marcogliese et al., 2010;
Frank et al., 2013). However, the modulation of pollutant–bio-
marker responses in organisms by parasites is a phenomenon
that is currently not well understood and therefore deserves fur-
ther investigation (Sures et al., 2017).

The most interesting interactions are antagonistic effects,
where the presence of 1 stressor mitigates the negative effects of
the other. The ability of some helminth species such as cestodes,
acanthocephalans and nematodes to accumulate pollutants in
high concentrations is the best-known example in this context.
Due to their enormous pollutant (mainly metals) accumulation
capacity, these parasites can significantly reduce the levels of accu-
mulated pollutants within the fish body (summarized in Sures
et al., 2017). This has been demonstrated in laboratory and field
studies for concentrations of various trace elements whose con-
centrations were reduced in fish infected by acanthocephalans
(Sures et al., 1999, 2003; Filipović Marijić et al., 2013, 2014;
Brázová et al., 2015; Paller et al., 2016), cestodes (Gabrashanska
and Nedeva, 1996; Turcekova and Hanzelova, 1999; Eira et al.,
2009; Oyoo-Okoth et al., 2010; Baruš et al., 2012; Brázová et al.,

2015; Torres et al., 2015; Leite et al., 2021) and nematodes
(Bergey et al., 2002; Hursky and Pietrock, 2015). Similar patterns
were reported also for organic pollutants, with acanthocephalan
infected fish (Brázová et al., 2012) having significant lower con-
centrations of PCBs. From a theoretical point of view, one
would expect less severe effects if the pollutant concentration in
infected hosts is lower than in non-infected hosts. Lower
pollutant-related toxicity could also result if alternative physio-
logical pathways are activated by parasites, leading to changes in
the host’s pollutant metabolism. However, these reduced pollutant
effects must of course be weighed against the pathological effects
of parasites. And this assessment must be carried out individually
for each host–parasite–pollutant combination, so that we are cur-
rently still a long way from understanding antagonistic effects of
parasites and pollutants. Beneficial effects of infection with
acanthocephalans on the physiology of fish (reduced oxidative
damage) were recorded in natural habitats with higher levels of
organic micropollutants (Molbert et al., 2020) and in laboratory
exposure studies with PAH (Molbert et al., 2021). Also from non-
vertebrate hosts antagonistic interactions between pollutants and
parasites are known. Freshwater mussels, Pisidium amnicum, par-
tially infected with larvae of digenean trematodes, were exposed to
pentachlorophenol (PCP), resulting in a significantly shorter sur-
vival time of the uninfected mussels compared to infected conspe-
cifics, which survived up to twice as long (Heinonen et al., 2001).
For Artemia parthenogenetica Sánchez et al. (2016) demonstrated
a higher host resistance to increasing arsenic concentrations for
intermediate hosts infected with different parasite species.

Compared to additive or synergistic interactions of parasites
and pollutants, there have been few studies on antagonistic effects
where parasites can reduce pollutant effects. Parasite-reduced pol-
lutant concentrations in infected hosts certainly appear beneficial
if hosts face increasing levels of pollution, as lower pollutant con-
centrations are usually associated with less toxic effects. This rela-
tionship should be explored in more detail in future studies, with

Fig. 2. Interactive effects of pollutants and parasites on different organization levels of fish. Parasites are an additional stressor for fish that might superimpose the
effects of environmental factors, which can lead to various forms of stressor interaction. In addition to frequently observed additive and synergistic negative
effects on fish, there are also examples of antagonistic effects where parasite infections appear to be beneficial to infected individuals. Also, dominance effects
might occur where 1 stressor outweigh effects of the other stressor. Effects of these stressors often manifest on molecular and subcellular levels but their effects
might be seen on the population or even community level.

Parasitology 1825

https://doi.org/10.1017/S0031182022001172 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182022001172


a clear focus on whether the negative effects of a parasitosis can be
outweighed by the potentially positive effects of lower pollutant
concentrations. In addressing these aspects, studies should be
conducted not only at the individual level but also, if possible,
at the population and ecosystem levels.

Conclusions

The interactions between pollutants and parasites presented here
show that parasites must be regarded as organisms that are in
close mutual exchange with pollutants. This interaction of para-
sites and pollutants is significant for both – the occurrence of
parasites in ecosystems and for the health of their hosts. In envir-
onmental studies, parasites need to be taken into account because
they can influence the interaction between fish and pollutants and
thus the results of the studies in general. Lower accumulation of
contaminants in organism infected with parasites, for example,
could make free-living established indicator organisms less reli-
able for environmental monitoring. On the other hand, contami-
nants are capable of significantly affecting fish–parasite
interactions and parasite transmission, which may lead to an
increase or decrease in parasite infestation in fish populations.
Systematic studies on the mechanisms of action and the complex-
ity of the interaction between fish and parasites in a polluted
environment are largely lacking, so that the basic relationships
are often poorly understood. It is known that parasites are also
successfully transferred to the next host in polluted environments
through host manipulation (e.g. Fanton et al., 2020). However,
there is not much research studies on changes in host behaviour
under pollution conditions and how this affects the transmission
efficiency of parasites. Acute or chronic toxic effects on e.g. inter-
mediate hosts may weaken them and make them more susceptible
to predation by fish, which could be beneficial for trophically
transmitted parasites (e.g. Acanthocephala, Cestoda).
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