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1. Introduction

The purpose of this paper is to provide a proof for a result announced in
[3]. The result arose from a search for just-non-Cross varieties (recall that a Cross
variety is one which can be generated by a finite group, and a just-non-Cross
variety is a non-Cross variety every proper subvariety of which is Cross). For the
motivation for this search, we refer the reader to [12]: for related results, see [1],
[12], [13].

To state the result precisely, we need some further notation. An y4-group is a
soluble locally finite group whose Sylow subgroups are all abelian. 2tn denotes the
variety of abelian groups of exponent dividing n.

THEOREM 1. Any non-Cross variety of A-groups contains the product variety
5Ip3l?2lr for some set of distinct primes p, q, r.

Since for distinct primes p, q, r Graham Higman [7] has shown that {$tp'$tq'>llr

is non-Cross, we have as an immediate consequence

COROLLARY 2. A variety of A-groups is just-non-Cross if and only if it has
the form 9tp3t?9tr/o/- distinct primes p, q, r.

The proof of Theorem 1 is divided into two steps:

(A) any infinite set of (non-isomorphic) critical groups in 2Ip2I93Ir generates
2Ip9l,,2Ir (p, q, r distinct primes),

(B) any non-Cross variety of A-groups contains an infinite set of {non-iso-
morphic) critical groups in 5Ip5I43tr,/or some set of three distinct primes p, q, r.

Our proof of (A) follows the lines of a proof of a more general result outlined
by Graham Higman at the conference at which these results were announced
(see [8]), and we shall not reproduce the proof here. Our concern here will be to
give a proof of (B). These results formed part of my Ph. D. Thesis, submitted to the
Australian National University [2]. This work was done under the supervision
of Dr L. G. Kovacs, and I welcome this opportunity to express my thanks for his
advice and encouragement at that time.
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2. Preliminaries

Our notation and terminology in general follows that of Hanna Neumann's
book [14]. All groups will be finite unless otherwise stated. For a group G, CG
will denote the centre of G, aG of the socle of G, a* G the centraliser in G of aG,
$>{G) the Frattini subgroup of G, F(G) the Fitting subgroup of G, G' the derived
group of G, and if/? is a prime, Gp is to mean an arbitrary Sylow/?-subgroup of G.
We define 5tG inductively by 50G = G, Si + 1G = ((5;G)', / ^ 0, and say G is
soluble of derived length d if ̂ _ , G ¥= 1 and 3dG = 1. We will adopt a right
normed notation for compounds of these subgroups: thus, for example,

If S3 is a locally finite variety, the exponent of 93, denoted by e(23), is the order
of its cyclic relatively free group. 21* will denote the variety of all soluble groups
of derived length at most k.

We will need the following results.

LEMMA 2.1. ((Kovacs and Newman [10] 2.1). Let H/K be a chief factor of
the soluble group G, and C the centraliser of H/K in G. If \H/K\ ^ m, \G/C\ ^ ml
and conversely if \G/C\ 5= m, H/K is elementary abelian on at most m generators.

LEMMA 2.2. If '93 is a variety of A-groups, then 93 is a Cross variety if and only
if there is a bound on the orders of chief factors of groups in 93.

This is an immediate consequence of the main result of Kovacs and Newman
[10].

The next two lemmas are results either contained in or easily derived from
Taunt [15].

LEMMA 2.3. For an A-group G, of derived length d,

(1) a*G = F(G),

(2) aG = oo*G = a£Gx • • • xa^ . j f fXff^^G,

(3) if L( is any system normaliser of 5{G relative to G, 0 ̂  / ̂  d—2, then
G = 6i + lGLi, 5i+1G n Lt = I,and

LEMMA 2.4. For a critical A-group G, of derived length d, a*G is an inde-
composable normal homocyclic subgroup of G, and for some prime p,

F(G) = G, = G*G = 8t-iG.

LEMMA 2.5. An A-group is critical if and only if it is monolithic.
This is a special case of Theorem 1.66 of Kovacs and Newman [11].
From Lemmas 2.2 and 2.4 and Hilfssatz 2.2 of Huppert [9], we obtain

LEMMA 2.6. Any metabelian variety of A-groups is a Cross variety.

https://doi.org/10.1017/S1446788700011228 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011228


[3] On non-Cross varieties of/^-groups 161

3. The proof of (B)

We first show that to prove (B) it is enough to prove (C) below. The main
task of this section will then be to establish (C).

(C) Let 58 be a non-Cross variety of A-groups satisfying the following two
conditions.

(i) 58 S 91PU, where U is a variety of A-groups of derived length at most

k ( ^ 2), and p is a prime which does not divide the exponent of VI, and

(ii) 58 n %k is a Cross variety.

Then there exist distinct primes q, r dividing e(U) such that for any positive
integer n, 58 contains a critical group G with G e 9tp9tg 9lr and \Gr\ ^ r".

(3.1) (B)is true if (C) is true.

PROOF. Let 28 be a non-Cross variety of ,4-groups, and suppose that

= e = p*1 • • -pfiPi, • • -,pt distinct primes).

It follows from Theorem 8.3 of Taunt [15] and Lemma 2.6 that t ^ 3.
Suppose k +1 is the smallest integer such that 28 n 9Xfc+ * = 28* is non-Cross:

then k ;> 2, by Lemma 2.6. Let 2t denote the set of critical groups in 28* whose
monolith is a />f-group. Each critical group falls into some 23 -t and hence at least
one, 3>\ say, will contain an infinite set of non-isomorphic critical groups.

For each G e S , , the chief factors of Gja*G have bounded order (by the
choice of 28*, and Lemmas 2.2 and 2.4), and so we get that the orders of the chief
factors of G in a*G are not bounded. But from Lemma 6.4 of Taunt [15] and
Lemma 2.4, o*G\<Pa*G is a chief factor of G, and all chief factors of G in a*G have
the same order. Let 2 = {G/4><r*G : G e S x ) : the variety generated by 2 has
groups with chief factors of arbitrarily large order, and so is non-Cross (by Lemma
2.2). Let 25 be the variety generated by 2, It the variety generated by
{G/a*G : G e ^ , } . Then SS ̂  9lpill, U is a variety of ^-groups of derived length
k, Pi is a prime not dividing e(il) (by Lemma 2.4). Also 23 n 21* ^ 28 n 91* and
so is Cross by assumption. This establishes 3.1.

The proof of (C) is carried out in several steps, numbered consecutively.
Let 58 be a variety satisfying the conditions of (C). For notational con-

venience we introduce the following conventions: if G e S3, then r\G will denote
a Hall p'-subgroup of G, XtG will denote a system normaliser of S(r]G relative
to r\G.

We have 58 ^ 2IpU, where II is a variety of A -groups of derived length at
most k,

e — e(U) = p\l • • • p*', where pt ,•••,/>, are distinct primes and t ^ 2,
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and 23 n 9t* is a Cross variety. It follows that 33 must contain an infinite set of non-
isomorphic critical groups of derived length k +1: choose 2 to be some such in-
finite set: from now on we will be working with this fixed S).

(3.2) The following sets are not bounded:

(i) y x = {|<TG| : G e S }

(ii) y 2 = {\ar,G\:Ge®}
(iii) ^ 3 = {\riG/<r*nG\ : G e S }

(iv) 9>A

PROOF, (i) is an immediate consequence of the choice of @> and Lemma 2.2.
(ii) Suppose s is an upper bound for ^ 2 . Then ot\G can be generated by s

elements, and hence so also can a*r\G (from Lemma 2.3). Also, r]Gja*r]G is faith-
fully represented by automorphisms of ar\G, and hence

\nG\ = \a*nG\ • \r\Gla*nG\ ^ essl.

But from Lemma 2.4, aG is a self centralising chief factor of G, and t]G = G/aG
and from Lemma 2.1 we get

\oG\ ^ ee's\

and £f Y is bounded, a contradiction.
(iii) Suppose s is an upper bound for SP3. Since r\G is faithfully and ir-

reducibly represented on aG, arjG is the normal closure of a single element
(Gaschiitz [6]). Hence \at]G\ ^ es, and £f2 is bounded, a contradiction.

(iv) Since dk^.1 r\G :g a*rjG by Lemma 2.3, this is an immediate consequence
of (iii).

(3.3) The sets &j = {\a^djr]G\ : G e 3>\, 0 ^ j ^ k-2, are bounded.

PROOF. By Lemma 2.3, we have aCS^G ^ XtG. Also, since i < k—\, we
have XtG of derived length at most k—\. If N is a normal subgroup of ktG
contained in a^b^G, then N is a normal subgroup of Y\G (from Lemma 2.3).

We consider aG as a GF(/?)(Ai (J)-module. By Maschke's Theorem it is
completely reducible: let M be an irreducible submodule, and K the kernel of the
representation of XtG on M. The possibility that K n aCS(r]G ^ 1 is ruled out by
Clifford's theorem ([5] Theorem 49.2).

For each G in D, construct a group G* = MXfifK, where as above M is an
irreducible component of aG considered as GF{p)(Xt G)-module, and Ktht kernel
of the corresponding representation. Clearly, G* is monolithic, with monolith
MK/K, and G* e 91*. Let I = var {G* : G e 3>}\ then X ̂  93 n 21* and so by
assumption X is a Cross variety. From Lemma 2.2 there is a bound, s say, on the
order of chief factors of groups in X. Since MK/K is a self centralising chief factor
of G*, and since
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a^iriG s {a^dinG)KIK g XfijK = r\G*,

we have from Lemma 2.1 |<x((5;?/G| ^ 5!, and so 3?t is bounded.

(3.4) The set 3?k_ x = {CT^_ t r\G : G e 2} is not bounded.

PROOF. Follows immediately from (3.2), (3.3) and Lemma 2.3.

(3.5) The set & = {\aXk_2G\ : G e 9} is not bounded.

PROOF. Suppose s is an upper bound for J?. Then aXk_2G can be gener-
ated by s elements, and hence so can a*Xk_2G giving |a*/lk_2G| ^ es. Also
At_2G/<J*_2G is faithfully represented by automorphisms of aXk^2G and so

\Xk-2Glo*Xk-2G\^s\,

whence \kk-2G\ ^ ess\. But Xk_2G = nG/Sk^1nG (from Lemma 2.3), and so S4

is bounded, contradicting (3.2) (iv).
We have

N = <7^8k_2nGx • • • x

by Lemma 2.3, and also N is a direct product of minimal normal subgroups of
nG, which are also minimal normal in Xk_2 G since they are centralised by 8k_ t rjG.
Hence N ^ oXk-2G. Let aG denote a Xk_2G-normal complement of iV in a/.k_2G.
From (3.3) and (3.5) we deduce

(3.6). The set stf = {|aG| : Ge S>) is not bounded: further, for some prime
Pi dividing e, the set stf\ = {\(xG)p.\ : G e 2} is not bounded.

(3.7) The representation of aG as a group of automorphisms of o5k^l r\G is
faithful.

PROOF. Suppose that a*r\G n a G / 1, and let M be a minimal normal sub-
group of /J.t-2G contained in this intersection. Then M is a minimal normal sub-
group of nG(= (o*nG)(Ak_2G)), and so

M ^ onG n Xk_2G = at,bk^2r]Gx • • • x at,r\G.

But then, from the definition of aG,

M ^ (onG n Xk-2G) n aG = 1,

a contradiction. Since aG centralises ar\G n Xk_ 2 G, it must intersect the centraliser
of <T(5jt_1 /7G in /7G trivially, and the result follows.

Now, choose a fixed prime p, for which JS/, is not bounded. For 1 ^ j ^ t,
and for G e S>, define AT, to be the centraliser of (c<5t_ 1 nG)p. in (aG)p,: note that
Kt = (aG)p, since G is an ^4-group. Since (oeG)p, is normal in At_2G, and
(aSk_lt]G)p. is normalised by 2k_2G, we have Kj normal in Xk-2G, 1 g j g r.
Now let KjG be a Xk_2G-normal complement of A"j- in (aG)pi, and put
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(3.8) For some j # /, the set Jf) is not bounded.

PROOF. Suppose that s is an upper bound for Jfj, 1 fS,j^t. From (3.7)
we have f]'j= x KjG = 1, and hence |(aC)Pl| ^ s', and J / , is bounded, contradicting
the choice of &/,. Thus at least one Jfj is not bounded: since Jfj = {1}, j # /
for such ay.

Note that if Jfj is not bounded, neither is the set {\((r8k_l nG)p.\ : G e £$},
using a by now familiar argument.

We choose a j such that Jfj is not bounded, and from now on will be working
with this fixed Jfj. Our aim will be, given an arbitrary positive integer n, to con-
struct a critical group H e 2lp2lPj.5lp, as a factor of some G e 9> such that |//pi| ^ p":
if we can do this, (C) is proved.

Thus suppose we are given a positive integer n. Since S3 n 31* is a cross variety,
there is a bound, m say, on the order of chief factors of groups in S3 n 51* by
Lemma 2.2. Choose G e 3) such that \KJ{G)\ 2: (m\)n. From now on we will be
working with this fixed G. Put S = (adk_1nG)pj, and let St x • • • x Sa be some
decomposition of S into minimal normal subgroups of r\G: then \S(\ ^ m,
1 ^ i | a. Let iVf denote the centraliser of S{ in K^G: then \KJG : iVj| 5j m\. Since
KyG is faithfully represented on S, we have f]"=i Nt = I.

(3.9) TAere exw? centralisers Nt, • • •, Nn, and minimal normal subgroups
o//. t_2(7, Mt, • • •, A/n, contained in KjG, such that for 1 ^ / ^ n,

Af( ^ P) JVU, Nt n A/; = 1.
u = l

PROOF. Relabelling S1!, • • •, Sa if necessary, we can choose Nt, • • •, Nb satis-
fying

(i) the Nt are minimal, 1 :g i ^ b: that is iV^ ^ JV; implies Nw = Nt,

(ii) N; # iVw if i # w, 1 ^ j , w ^ b,

(iii) Q AT, = 1, Q iV; # 1, 1 ̂  w ^ b.

Since \KJG : Nt\ ^ ml, \KJG\ ^ (w!)*. But \KJG\ ^ (m!)", and so b ^ n, and we
take the first n of these N,- 's.

Now choose Mt to be any minimal normal subgroup of Xk_2G such that

n

Mt ^ f]Nw, 1 ̂  / ^ n.

Then iVl9 • • •, Nn, M l 5 • • •, Mn satisfy the requirements of (3.9).
Now consider the subgroup Tof r\G, where T = < 5 t , • • •, Sn, M%, • • •, MB>.

If we put Ti = <S(, Mj>, we have r = Tx x • • • x TB. To prove this observe that
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the St are minimal normal ^-subgroups of Y\G, the Mt are minimal normal pr

subgroups of Afc_2C/, and [St, Mw] = 1 for / # w, 1 ^ i,w ^ n: hence it suffices
to show that the products St • • • Sn, Mt • • • Mn are direct. The first comes from
the choice of St, • • •, Sn, the second from the fact that Mt ^ Nw for i # w, and
Mt n Â j = 1, giving Mt n f]w# i Mw = 1.

Note that Slt' • •, Sn are elementary abelian />y-groups, Afl5 • • •, Mn are
elementary abelian/>,-groups, and hence Te 31 9lpi.

(3.10) fr , = 1, oT, = S , , U i g «.

PROOF. We may consider 5; as a non-trivial irreducible GF(pj)Ak^2 Cr-module:
since Mt is a normal subgroup of lk-2G, Clifford's Theorem gives us that Sh as
GF(pj)Mrmodule, is completely reducible, and the representation of Mt on each
irreducible submodule is non-trivial. Hence St n £Tt = 1.

If (Cr,)p, ^ 1, then (CTi)m n Mt ¥= 1, contradicting the choice of M,. We
conclude tJi — 1-

That CTJ; = Si now follows from the fact that Tt is metabelian and Lemma 2.3.
By Maschke's Theorem oG is completely reducible as a GF^T-module:

let /? be an irreducible component, and let C be the kernel of the representation

(3.11)

PROOF. From Clifford's Theorem, we deduce St ^ C, for each St is a minimal
normal subgroup of r\G, 1 ^ i g n.

Let 7t, denote the canonic projection of T onto J ; , 1 ^ i ^ n, and put
C; = CTT,-: note that C, is normal in Tt. Suppose that for some i, \{C,)PI\ = \Mt.
Then (C,)p, is also a Sylow p,-subgroup of Tt, and hence M{ is contained in C,.
If Q is any minimal normal subgroup of Tt, we have Q ^ St (from (3.10)). Now
[Af;, Q] = Q (for otherwise 0 would be centralised by Mt and St, and so by 7",,
contradicting (3.10)), and so

[C, Q] = [Cnt, Q]

^ [Mt, Q]

= Q-

Thus Q ^ C, and hence St ^ C, a contradiction. Thus

Now, consider the split extension of R by T: clearly C is normal in RT.
P u t # = i?r/C. Then if is a critical group in 2tp3lw2tPl, and 17fp, | = | ( r /C)J ^pi.
Hence (C) is proved.
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