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1. In troduct ion 

It is proverbial that one picture says more than a thousand words. Pictures shape 
our ideas about all kinds of astronomical objects, from planets to the universe 
itself. Moreover, the inquiring mind transcends the (visual) appearance of the things 
with theory, only to find itself trying to visualise abstract concepts back again 
(graphs,...). A good example thereof is the H-R diagram, which is a picture that 
compactly summarizes stellar evolution. 

In this contribution, I will try to introduce a particular way of visualising the 
dynamical state of a galaxy. This doesn't seem to fit in well with the subject of this 
symposium, were it not that I will use tracer populations of AGB stars (mainly 
OH/IR stars and PNs) to reach that goal. 

2. E lements of Dynamica l Mode l l ing 

The ultimate dynamical knowledge is to know for every star, at all times, its location 
in phase space, which is the product of configuration space (normal 3-space) and 
velocity space. On the other hand, such a complete knowledge is impossible and 
(as of now) unmanageable; this is why both theory and assumptions are needed to 
simplify this ultimate picture. 

When studying the dynamics of a tracer population, it is obvious that self-
consistency is not required, i.e. the gravitational potential is not generated by the 
tracer population. This means that the gravitational potential can be decoupled 
from the original set of equations, and this potential therefore must be a given. 
The specification of the gravitational potential is the first important decision one 
has to make when building an equilibrium model. In particular, one has to decide 
on the prevailing geometry, i.e. whether the potential is spherical, axisyrnrnetric or 
triaxial. 

The potential generates structure in phase space, because it creates orbits. The 
quintessential orbit is the linear harmonic oscillator, e.g. a spring. At every moment 
it has a length ζ which changes at a rate vz. Phase space is the 2-dimensional 
space (z,vz). If we do not know the dynamical state of the spring completely, it is 
natural to ask what information we can single out as particularly important. The 
maximum length zm must be such a quantity, because then, at least, we can confine 
the length of the spring, though we've lost the ability to predict its actual length 
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at any particular moment. This zm is an example of an integral of the motion l : 
it is a function of phase space coordinates that remains a constant along the orbit, 
and therefore it can be used as a label for that orbit. Hence, we can now describe 
the linear harmonic oscillator with zm ( a constant) and only one rapidly changing 
coordinate (z, or vz, or something else). 

In 3 dimensions, one would expect 3 constants of the motion and 3 rapidly 
changing variables for every orbit. This is true for integrable potentials, by def-
inition. Most potentials however are not integrable, but it is likely that for most 
astrophysical purposes there exist good integrable fits (Goodman and Schwarzschild 
1981, Dejonghe L· de Zeeuw 1988), safe possibly for tumbling triaxial figures. A very 
elegant class of integrable potentials are the Stäckel potentials, which have the nice 
property that the integrals of the motion are quadratic functions of the velocities. 

In order to better understand the significance of these integrals, let's consider 
the following experiment. We affix many springs to a flat surface. The springs only 
vibrate in the z-direction (perpendicular to the surface), and hence their χ and y 
coordinates which are markers on the surface are constants of the motion. Now we 
disturb the springs, for example by pushing them down simultaneously by hand. 
The imprint of the hand will be lost very quickly, and in the analysis of the resulting 
dynamical state, it will certainly not matter very much to focus on the description of 
the rapidly changing coordinates. If we only knew zm (x·, y), then we would know the 
profile of the perturber, which is everything that there is to know in this experiment. 
Consider next the somewhat different situation that at every location (x,y) there 
are a lot of springs (for example molecules), which may or may not start to vibrate 
due to infalling light, then the number of excitations Ν will be proportional with 
the intensity, while the degree of excitation (the zm) will tell us something about 
the wavelength of the infalling light. The function N(x,y, zm) we call a distribution 
function. It is written here as a function in integral space. It cannot exist without 
a medium for which it is a probability density, though it may provide us with 
important information on something else (the infalling light). This function is very 
analogous to the concept with the same name in stellar dynamics; the medium there 
is called a tracer population. On a photographic plate, the distribution function is 
a faithful representation of the perturbing radiation, and in stellar dynamics it is 
hoped that the distribution function will teach us similarly important things about 
the formation of galaxies. 

Though the distribution function F is defined as a probability density in phase 
space, we will, according to Jeans' theorem, write it as a function of the integrals 
of the motion. Hence, it is, for all purposes, a function in integral space. For time 
independent potentials, the specific binding energy Ε is always one of them, and 
according to the geometry and the potential, there may be 2 more integrals. The big 
difference with the previous examples is that all these integrals are highly non-local, 
just as an orbit is. 

In order to determine this distribution function, we must write down its relation 
with observable quantities. This relation can almost always be written in the form 

1 The concept is actually rather complicated, and a precise definition is far beyond the scope 
of this contribution 
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of an average of the distribution function. As already indicated, the body of data 
can be very inhomogeneous, including star counts, mean velocities and velocity 
dispersions, line profiles, proper motions, etc... No general theorem exists that would 
enable us to decide on the uniqueness of this inversion, let alone analytic procedures 
to perform such an inversion. Hence, a pragmatic approach is in order. 

One way to proceed is with quadratic programming (QP, Dejonghe 1989). In 
this method we assume that the distribution function can be written as a linear 
combination of (preferably analytically simple) components, with coefficients c,·. A 
X 2 - t y p e function (quadratic in the cx·) is then mimimized, subject to the constraint 
that the distribution function must be positive everywhere (linear constraints in 
the c,·). 

Only numerical experience at this point can give us an idea to what degree 
we can have confidence in the computed distribution function. It is obvious that 
the more the data cover phase space, the more the distribution function will be 
constrained. Also, the more restrictive we are in the functional form of F (function 
of one, two, or three integrals), the less indeterminacy we will encounter when trying 
to determine a distribution function, but also the less realistic our results may be. 
Only partial results on these issues are available (Dejonghe L· Merritt 1992), and 
there still remains a lot to do. 

3. Some mode l s for tracer populat ions 

As an obvious consequence from the preceding section, a tracer population which 
may be used to stake some claims about the global dynamical state of our Galaxy 
must be present in a substantial volume of the Galaxy, and must also be detectable 
there. This inevitably puts infrared astronomy in a privileged place, and the IRAS 
satellite certainly has earned her marks in that respect. 

3.1. OH/IR STARS 

The OH/IR stars have the advantage of being old, strong infrared emittors with 
a characteristic spectrum around the 1612 Mhz rnaser peak. Their mostly old age 
and AGB status make them rather useful for equilibrium dynamical modelling, 
since it helps that we can assume that somehow older objects must have under-
gone some form of relaxation, which is presumably sufficient (but not necessary) 
for equilibrium. Their strong infrared emission makes them shine right through the 
dusty galactic plane (GP), a property which is needed for a sufficient spatial cover-
age. The characteristic double rnaser peak, caused by an expanding shell, is easily 
recognizable, and provides a simple way of measuring the line-of-sight velocity. In 
addition, the velocity of the expanding circuinstellar shell may indicate an age, in 
the (statistical) sense that larger expansion velocities are associated with younger 
stars. This provides an interesting test on the models, since it can be expected that 
the younger population is more confined to the disk. 

All this is reason enough to systematically search for them, and this has been 
done by Eder et.ai (1988), Sivagnanam et.al. (1989) and te Lintel Hekkert et.al. 
(1991a), hereafter tLH, and further references therein. The IRAS PSC provides 
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a Fl/(l2^im)/Fl/(2hfim) versus Fu(2hfnn)/Fu(60fim) color diagram in which the 
OH/IR stars occupy a fairly well defined place. A list of candidate OH/IR stars 
results, and these are then individually radio-checked for the 1612 Mhz emission. 
About 1500 OH/IR stars are now known. 

The IRAS satellite was severely confused in the GP, because of the high den-
sity of sources. In order to find OH/IR stars there, one must resort to mapping 
type surveys. The first such survey close to the galactic center (GC) was done by 
Habing et.al. (1983), and yielded 34 stars within a radius of 1° around the GC. 
This survey has been substantially improved in a more limited region by Lindqvist 
et.al. (1992a), hereafter L, yielding 134 stars. None of these surveys have been com-
pletely satisfactory in their velocity coverage, for technical and feasibility reasons, 
a window of ±217 krn/s, the tLH sample that (a few) high velocity stars can be 
expected to turn up when searching for them (van Langevelde 1992). 
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Fig. 1. (a) The L sample (crosses) and the truncated tLH sample (triangles) in (t,b) on 
the sky. (b) The L sample (crosses) and the truncated tLH sample (triangles) in ( l , v r ) 
space. 

I will now summarize the first results from the tLH and L surveys. Some of these 
results can be found in te Lintel Ilekkert et.al. (1991b), and Lindqvist et.al. (1992b). 
Figure la shows the b) diagrams for the L and the tLII samples, the latter being 
truncated to ±3° in longitude and ±5° in latitude. It is obvious that both samples 
are complementary, but certainly not enough so. Currently a consortium headed 
by Habing and te Lintel Ilekkert is working on surveys at the VLA and the AT to 
fill in a few gaps. The tLH survey is believed to be fairly complete up to 3 Jy at 
12/jm, for |6| > 2.5°, the latter limitation clue to IRAS. This is very clear from the 
"zone of avoidance" in Fig. 1 for the tLH sample. In future surveys, considerable 
attention and care will have to be taken to treat completeness properly, in order to 
link the different surveys together. 

Figure lb shows the (f.,vr) plot for both samples (heliocentric velocities). The 
regression lines are the linear approximations to the rotation curves. The L rotation 
curve (crosses) in this plot lias a slope of about 500 krn/s/degree or about 3.7 
km/s/pc, using 72q = 7.5kpc. These values are about right as is obvious from the 
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plot, but are a factor of three higher than quoted by Lindqvist et.al (1992b). They 
note however that the slope is very uncertain, depending on the elimination of a 
few stars, as must be since the slope is very steep. The mass of the point source in 
the GC is therefore not so well constrained, and values are given in Lindqvist et.al. 
(1992b). The slope of the tLH sample is 11 km/s/degree or about 82 km/s/kpc. 
Such a rotation curve reaches its presumed peak value of about 220 km/s at about 
2.5 kpc, which is very reasonable. These slopes are so different because the tLH 
sample ignores the GC and the G P. 
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Fig. 2. The histograms of old stars in the t' 
as a function of galactic longitude and lati 
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sample (dashes) and the young stars (solid) 

From the analysis by Lindqvist et.al. (1992b) it would seem that indeed the 
projected velocity dispersion of the younger stars is smaller than the dispersion for 
the older stars, as one could expect if stars are born on primarily circular orbits. In 
Fig. 2 we see histograms as a function of longitude and latitude for a selection of the 
tLH sample, divided into two groups defined by the "oldest" and "youngest" stars, 
each containing about 150 stars. It is clear that, a few dissenters notwithstanding, 
the younger population is more confined to the disk, and somewhat more bulgy. 

As explained in the first section, equilibrium dynamical modelling needs an 
assumption on the potential. There is no obvious sign of triaxiality in the tLH data, 
and therefore it seems unnecessary to waste ones effort at this point in producing 
dynamical models in a triaxial potential. This does not mean that, sooner or later, 
the potential of the galaxy will turn out to be triaxial, especially in the central 
regions. In fact, it is hard to see how it could not be! But, in any case, triaxiality in 
a tracer population (stars or gas) does not, imply that the underlying gravitational 
potential is triaxial, since there is certainly no self-consistency requirement. 

Similarly, since the radial velocity does not give any information on the z-
component of the velocity for stars in the GP, it is natural to try two integral 
models first (based 011 the specific binding energy Ε and the ^-component of the 
angular momentum, which are both integrals of the motion in an axisymmetric. 
potential). Such models have the property that σν — σζ. Only when the projected 
velocity dispersion turns out to be much too small (since for two-integral models a r 
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Fig. 3. The da ta for the tLH sample at b = 2° (solid lines) compared with a 2-integral 
model (dashes) in an approximation to the BS potential. Left panels: logarithm of pro-
jected star counts per square degree, middle panels: projected mean velocity, right panels: 
projected velocity dispersions. Top panels: the old stars, bot tom panels: the young stars. 

is determined by the thinness of the disk), will we be able to rule out two-integral 
models. 

Figure 3 shows the result of the fit of two-integral models embedded in an 
approximation to the Bahcall-Soneira potential (BS) for the Galaxy. For details, 
see te Lintel Hekkert et.al. (1991b). The data where smoothed by averaging at every 
point with the 15 closest neighbours, and the fit was produced on the basis of the 
projected star counts, fluxes and pressures. The fit looks good, to the degree that 
it cannot be expected to reproduce all details in the data, which may not be real 
anyway. Problem areas may be the projected velocity dispersion for the old stars, 
which is somewhat too low, and the mean velocity which rises a bit too fast for 
both samples. This may indicate the possible need for a third integral. In Fig.4, 
the spatial number density, mean rotation and radial velocity dispersion are plotted 

0 5 10 15 0 5 10 15 0 5 10 15 
r(kpc) r(kpc) r(kpc) 

Fig. 4. The logarithm of the spatial density in the plane, the mean rotation and the radial 
velocity dispersion for the young (solid) and old (dashed) stars 
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for both groups of stars. The old stars show a nice exponential disk (no artifact of 
the components used in QP!) with scale factor 3.5 kpc. The mean rotation follows 
very closely the rotation curve, and the old stars have overall a somewhat higher 
velocity dispersion, which clearly shows a bulge component. Finally, Fig. 5 shows the 
distribution function in turning point space (the color version is much nicer!). All 
well-known components are present. The dynamic range is very large: the highest 
value is about 107 s t a r s /kpc 3 / (km/s ) 3 in the thin disk, but, clearly, such values are 
very uncertain. 

- 1 0 10 
per icenter (kpc ) 

Fig. 5. The distribution function in turning point space. Contours are logarithmically 
spaced. Dotted contours correspond to values that are smaller than one. The dynamic 
range is of the order 1012. 

3 . 2 . PLANETARY NEBULAE 

About 1500 PNs are known. An ancient but standard reference is the catalogue 
by Perek L· Kohoutek (1967). It has been (and still is) the basis for many surveys. 
This list however contains quite a few objects that later turned out to be something 
else, like M stars, symbiotic stars, or worse, HI I regions. Subsequent cataloguing 
includes the work of Acker et.al. (1983), which is a good reference to the literature 
prior to 1983, and Acker et.al. (1991,1992). 

A different approach uses the IRAS PSC, which, again, has been essential in 
the search for PN's. Just as is the case with the OH/ IR stars, the PNs are strong 
infrared emittors, and occupy a fairly well defined place in the Fμ (12 μηι) / F„(Ί^μτη) 
versus Fv(25fim)/Fu(60fim) color diagram (Pottash et.al. 1988, Ratag et.al. 1990). 
Subsequent radio interferometry can be used to decide on the true nature of the 
candidates (see also Zijlstra et.al. 1989). This method up to now yielded about 50 
new PNs within 15° from the galactic center, on a total of about 400 in roughly 
the same region (Acker et.al. 1991). In any case, the final number of detected PNs 
in the Galaxy is in reasonable agreement with the total number of OH/ IR stars 
known. 
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Fig. 6. The tlH sample (dots) ant the Acker et.al. sample (crosses) 

No extensive dynamical modelling has been done as of now for the PNs. A 
preview of what is in store there can be seen by simply comparing the tLH sample 
and the Acker et.al. (1991) sample, such as if Fig. 6. The PN's extend towards 
higher latitudes then the OH/IR's . In the GP the coverage of the PNs is poor. 

It is a pleasure to thank H. Habing for providing the data of the OH/ IR stars near 
the GC in electronic form, and A. Acker for doing the same for the PNs. 

Acker, Α., Marcout, J., Ochsenbein, F., Lortet, M.C., 1983, Astron. Astrophys. Sappl., 54 , 315 
Acker, Α., Koppen, J., Stenholm, B., Raytchev, B., 1991, Astron. Astrophys. Suppl., 89 , 237 
Acker, Α., Ochsenbein, Stenholm, Β., Tylenda, Ft., Marcout, J., Scholm, C., 1992, Strasbourg-ESO 

Catalogue of Galactic Planetary Nebulae, Part I, ESO publ icat ion 
Dejonglie , H., 1989, Astrophys. J., 3 4 3 , 113 
Dejonghe, H. & de Zeeuw, P.T., 1988, Astrophys. J., 3 2 9 , 720 
Dejonglie , H. h Merritt, D. , 1992, Astrophys. J., 
Eder, J., Lewis, B.M., Terzian, Y. , 1988, Astrophys. J. Stippl., 66 , 183 
G o o d m a n , J. & Schwarzschild, M., 1981, Astrophys. J., 2 4 5 , 1087 
Habing, H.J., Olnon, F.M., Winnberg, Α., Matthews, H.E., Baud, B., 1983, Astron. Astrophys., 

128 , 230 
Lindqvist , M., Winnberg, Α., Habing, H.J., Matthews, H.E., 1992a, Astron. Astrophys. Suppl, 92 , 

43 
Lindqvist , M., Habing, H.J., Winnberg, Α., 1992b, Astron. Astrophys., 2 5 9 , 118 
Perek, L., &; Kohoutek, L., 1967, Catalogue of Galactic Planetary Nebulae, Prague Academic 

Press 
Pot tash , S.R., Bigneil , C., Oiling, R., Zijlstra, A.A. , 1988, Astron. Astrophys., 2 0 5 , 248 
Ratag, M.A., Pot tash , S.R., Zijlstra, A.A. , Menzies, J., 1990, Astron. Astrophys., 2 3 3 , 181 
Sivagnanam, P., Braz, M.A., Le Squeren, A.M., Tran Minli, F., 1989, Astron. Astrophys., 2 1 1 , 

341. 
te Lintel Hekkert, P., Caswell, J.L., Habing, H.J., Norris, R.P., Haynes, R.F. , 1991a, Astron. 

Astrophys. Suppl., 90 , 327 
te Lintel Hekkert, P., Dejonghe, H., Habing, H.J., 1991b, Proc. of Astron. Soc. of Austr., 9, 20 
van Langevelde, H.J., Brown, A.G.Α. , Lindqvist , M., Habing, H.J., de Zeeuw, P.T., 1992, Astron. 

Astrophys. Lett., submit ted 
Zijlstra, A.A. , Pottash , S.R., Bignell, C., 1989, Astron. Astrophys. Suppl., 79 , 329 

A c k n o w l e d g e m e n t s 

References 

https://doi.org/10.1017/S0074180900172389 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900172389

