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Most stars contain regions which are convectively unstable and one 
of the more daunting tasks facing astrophysics today is to find a 
satisfactory theoretical formulation of turbulent energy transport in 
stars. Various theories have been proposed, such as the mixing-length 
formalism and its extensions, and it would be most useful if one could 
test the accuracy of such models in view of their importance in the 
theory of stellar structure and evolution. 

Fortunately, the outer layers of the sun are convectively unstable 
and the sun is near enough for some of its surface characteristics, such 
as granulation and supergranulation, to be observed. Granules have an 
average cell diameter of 2,000 kms, horizontal and vertical velocities 
of the order of 1 km/sec, an intensity modulation of 15%, a temperature 
difference of about 900° K between ascending and descending currents and 
an average lifetime of approximately 20 minutes. On the other hand, 
supergranules have an average horizontal extent of 30,000 kms, 
horizontal and vertical velocities of .3 to .5 km/sec, have no 
observable intensity modulation and a lifetime of approximately 20 
hours. 

Such a wealth of information should allow us to probe the structure 
of the sun's outer layers and ultimately to test the validity of 
existing models. Unfortunately, in order to do this one must be able to 
model fairly accurately large-scale convective motions in a highly 
stratified compressible layer. 

Numerous attempts have been made to study thermal convection within 
the Boussinesq and even the anelastic approximation but, since the depth 
of the convective layer is very much larger than the pressure scale 
height, a satisfactory model of granulation and supergranulation should 
be based on the fully compressible equations. Such equations, for 
layers with polytropic structure, were derived some time ago 
(Van der Borght 1977) within the framework of the one-mode approximation 
and have lately (Van der Borght and Fox 1983) been integrated in an 
attempt to model granulation. The results are very encouraging and 
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velocities of the order of 0.97 km/sec, an intensity modulation of 
16.37% and an e-folding time of 6 minutes are obtained in a medium for 
which the Prandtl number is 0.2. 

Unfortunately, such models make it necessary to fit a polytropic 
structure to the model and requires the introduction of average values 
for the buoyancy, eddy diffusivity and eddy viscosity with a resultant 
loss in accuracy. The depth dependence of these quantities is ignored 
and the models are not accurate enough to enable us to compare the 
accuracy of competing models. 

The basic hydrodynamic equations can be written (Van der Borght 
1980). 

Continuity equation: 

U + ;T- K-) =0 d) 
at dX. 1 

1 
Equation of motion: 

h (pV + ^r Huj + V " V + 6 i 3 8 P = ° (2) 

where the viscous tensor P.. is defined as follows 

/3u. 8u. ? 3u \ 
pi: = i^ + ̂  " 3 5ij 4 ) <3> 
and u is the viscosity. 

Energy equation: 

+ pu. - K f- - u.P. .} = 0 (4) 
where E is the internal energy per unit mass and K is the 
conductivity. 

State equation: 

P = RnpT (5) 

where n is the inverse of the molecular weight. 

https://doi.org/10.1017/S0074180900030552 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900030552


CONVECTIVE MOTIONS AS AN INDICATOR OF SOLAR STRUCTURE 73 

For a given model (e.g. Bohm 1963, Kohl 1966) the values and 
variation with depth of the conductivity K, internal energy E and 
inverse molecular weight n are known. The only quantity in the above 
equations which is left unspecified is the eddy viscosity u. One could, 
for instance, assume that the viscosity is constant or that the 
kinematic viscosity is constant (models A and B of Graham and Moore, 
1978). It would be even better if the exact values were given by the 
theory of turbulence, if one were available. In any case, as mentioned 
above, enough observed characteristics are available to distinguish not 
only between the accuracy of various models but also to establish the 
best law of variation of viscosity with depth. 

Solving the full three-dimensional equations is out of the question 
for the moment, due mainly to the numerical complexities. But, since 
granulation and supergranulation exhibit a periodic structure, it is to 
be expected that the one-mode approximation would yield fairly accurate 
results. The fully compressible single mode equations which take into 
account the variation with depth of the degree of ionization, thermal 
diffusivity, eddy kinematic viscosity and buoyancy have been derived 
but space prevents us from giving them in this paper. With such 
equations the characteristics of a particular model can be fully taken 
into account and the resultant thermal convection can be studied in 
detail without the need of ad-hoc assumptions, except for the value and 
depth dependence of the turbulent kinematic viscosity. 

Trial integrations of this complicated system of differential 
equations have been carried out and the results are very encouraging. 
They confirm earlier results based on the polytropic approximation 
(Van der Borght and Fox 1983) and show how sensitive the results are to 
the value adopted for the Prandtl number. The adoption of a more 
accurate variation with depth of the buoyancy leads to more realistic 
distributions of the velocity and the temperature perturbation. It 
seems likely that work of this kind will not only be useful in comparing 
models of convective regions but will help in our understanding of the 
turbulent processes in such regions. 
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DISCUSSION 

R. Cayrel: Do your computations allow you to estimate the amount of 
overshooting above the granulation layer? 

Van der Borght: Yes, the upper boundary for the numerical integrations 
can be set well above the unstable region. 
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