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THE BISECTION WIDTH OF CUBIC GRAPHS

L.H. CLARK AND R.C. ENTRINGER

For a graph G, define the bisection width bw(G) of G as min { eo{A, B) : {A, B} par-
titions V(G) with \\A\ - \B\\ :£ 1 } where eG(A,B) denotes the number of edges iii G
with one end in A and one end in B. We show almost every cubic graph G of order n
has bw(G) > n/11 while every such graph has bw(G) ^ (n + 138)/3. We also show that
almost every r -regular graph G of order n has bw(G) ^ cTn where cp —» r/4 as r —> oo.
Our last result is asymtotically correct.

1. INTRODUCTION

For a graph G, define the bisection width biv(G) of G by

bw(G) = min{eG(A,B) : {A,B} partitions V{G) with | \A\ - \B\ | ^ 1}

where eo{A, B) denotes the number of edges in G with one end in A and one end in
B.

The problem of finding the bisection width of a graph is of fundamental importance
in many divide-and-conquer stratagems and, as such, is the subject of an extensive
literature. (See [4, 9, 10, 13, 15, 18] for general results and [6, 11] for results regarding
VLSI design.)

Unfortunately, the bisection problem for graphs, in general, is NP-complete [12]
and remains so for r-regular graphs [9]. Polynomial-time algorithms which give ex-
act solutions are known only for trees and bounded-width planar graphs [9] while
polynomial-time algorithms which give approximate solutions may give solutions which
are far from exact [18]. Consequently, heuristic algorithms which hopefully give nearly
exact solutions most of the time have been developed in [9, 13, 14, 16, 18].

In [9] a method was given for transforming a regular graph G of order n into a
cubic graph G* of order 0(n6) so that any minimum bisection of G* uses only edges
of G. As a result, we content ourselves mainly with an examination of cubic graphs.
As usual, we say that almost every graph has a property Q provided the probability
that a graph of order n has property Q tends to 1 as n —* oo.

We show that almost every cubic graph G of order n has bw(G) ^ n/11 while
every such graph has bw(G) < (n + 138)/3. We also show that almost every r-regular
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graph G of order n has bw(G) ^ crn where cr —> r /4 as r —> oo. (Note that absolute
lower bounds for the bisection width of a graph are not particularly informative, since
they must be nearly zero.)

Our notation and terminology follows Bollobas [7].

2. A N U P P E R BOUND FOR THE BISECTION W I D T H OF A CUBIC GRAPH

We give now an upper bound for the bisection width of a cubic graph.

THEOREM 1. Every cubic graph G of order n has bw(G) s£ (n + 138)/3.

PROOF: Let {A, B} be an equisized partition of V(G) with bw(G) = eG{A,B).
Set Ai = {v £ A : eo(v,B) = i} for 0 < i < 3 and An = {v £ Ai : eo(v,A - Ai) = i}
for 0 ^ i ^ 2. (Define B{ and Bu similarly.)

Suppose x 6 A3 and y 6 B\ U B2 U -B3 with xy £ -£?((?); exchanging x with
y shows {A,B} is not an optimal partition, which is a contradiction. Consequently,
1-Bj U B2 U B3\ < 3 and 6w(G) < 9 < (n + 138)/3. We assume \A3\ = \Bz\ = 0.

Suppose |1?2| ^ 4. When jj421 ^ 0, there exists x £ A2 and y £ B2 with zy 0
; exchanging a; with y shows {A,B} is not an optimal partition. Consequently,

= 0. When G[A10 U An] is empty, we have |i4i0 U Au\ < 1. Then

so that

and
bw(G) < (3n + 4)/10 < (n + 138)/3 .

When G'[Ai0UAn] is nonempty, there exist an edge x^2 in GfAioUAn] and ^,3/2 €
.62 with eG({a:i,X2},{i/i,3/2}) = 0; exchanging {xi,x2} with {3/1,2/2} shows {A,B}
is not an optimal partition. We assume |J4.2 U 1-̂21 ^ 3.

Denote a path (cycle) of order n by Pn{Cn). Let

a = m a x \{Ej,..., Et}\ whe re {E1}... , Et} is a set of

vertex-disjoint subgraphs of G[A] and each

Ei^P3C G{A10 U An] or

= C3 C G[A.o U An] with precisely one vertex in Ao or

S C 4 C G[Ao U A10 U An] with precisely one vertex in

Ao and precisely one vertex in A10 or

= Ps C G[A0 U A10 U A n ] with only the centre vertex

in Ao and
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let A) = \J{V(Ei) n Aj : 1 < i < a} for 0 ^ j < 1. (Define b, {Fu... ,Ft}, B)
for 0 < j ' ^ 1 similarly.)

Claim. min{a, 6} ^ 5.

Suppose a, 6 ^ 6. Choose ea{Ei,Fj) = 0 with | \Ei\ — \Fj\ | as large as possible,
say \E{\ > \Fj\. When \Ei\ = \Fj\; exchanging E{ with Fj shows {A,B} is not an
optimal partition. When \Ei\ = \Fj\ + 1; exchanging E{ with Fj, where Et is the
subgraph of E{ contained in G[.Ai], shows {A, B} is not an optimal partition. When
\Ei\ = \Fj\ + 2 then \Et\ = 5 and \Fj\ = 3. Since 6 ^ 6 , there exist Fk ^ Fj with
eG{Ei,Fk) = 0. By the above, |Ffc| = 3; exchanging Ei with Fj U F^ , where F£ is a
subpath of order 2 contained in G[i?i], shows {A, 5 } is not an optimal partition. |

We assume a ^ 5 so that |AJ| ^ 5 and \A^\ ^ 20.

Claim. I A J O K 25.

Note that G[Ajo U An] is a vertex-disjoint set of paths and cycles when \A^ U

An | ^ 0, since S(G[A10 U A n ] ) = 1 and A(G[A10 U An]) = 2. Consequently, |A10| «S

25 since a ^ 5 (after breaking paths and cycles apart if necessary). |

Let A\ = {w G Ax - A\ : vw E E(G) for some v £ AJ} . Clearly, |Ai| ^ 2-5 = 10.

Set |A12| = c|Ai| where c G [0,1].

Then

| A n | + |A 1 2 |> | A i | - 2 5

so that

| i 4 1 1 | > ( l - c ) | i 4 , | - 2 5 .

Now

3|A0| ^ ea{A0,Ai) > | A n | + 2|A12| - 3

so that

Then

»/2 ^ |A0| + |A,| > [(4 + c)|Ai| - 28]/3

so that

and

bw{G) < 6 + |Ai| < 6 + (3n + 56)/2(4 + c) .

Also

|A, , | - |AJ| - \A[\ - 5 < | A n - {A\ U A\)\ - 5
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by the maximality of a, so that

\A0\ > | A n | - 35 4,| - 60

Then

so that

and

n/2 > \A0\ + |i4,| ^ (2 - c)|Ai| - 60

1^1 < (n+120)/2(2-c)

bw{G) «S 6 + |^i | ^ 6 + (n + 120)/2(2 - c) .

Consequently,

fou(G) < min{6 + (3n + 56)/2(4 + c),6 + (n + 120)/2(2 - c)}

< (n + 138)/3 ,

since the above minimum is at most (n + 138)/3 for n
(3n + 56)/8 ^ (n + 138)/3 for n < 182.

184 and at most 6

Remark. In general, if {A, B} is a partition of the vertices of an r-regular graph G
of order n with bw(G) = ea(A,B), one would hope that either G[A] or G[B] contains
a small number of forbidden subgraphs (see definition of a,b in Theorem 1) which,
in turn, impose structure on G[A] or G[B] and give bw(G) ^ crn + 0(1) for some
cr < r /4 . At present we have only the result of Goldberg and Gardner [13] that, for
any such graph G, bw(G) ^ r(n + en)/A where en = 1 for odd n and en — n/(n — 1)
for even n. There are, however, limitations on how small the ratio bw(G)/n can be
made for r -regular graphs G of order n.

An r -regular graph G of order n is an (n,r,c) -expander if \N(X) — X\ > c\X\ for
all X C V(G) with |X| ^ n/2. (These and similar graphs have an extensive literature;
see the references in [1].) Clearly, any (n,r,c)-expander G has bw(G) ^ c[n/2J.

Let A](G) denote the second largest eigenvalue of the adjacency matrix of G in
absolute value. Note that 0 < Ai(<3) < r when G is connected. Alon and Milman
[3] have shown that any r -regular graph G of order n is an (n,r,(r — Aj(G))/2r)-
expander while Alon and Boppana [2] (see also [17]) have shown that lim Ai(Gn) ^

n—>oo

2\Jr — 1 for any sequence {(?„} of such graphs. Lubotzky, Phillips and Sarnak [17]
have shown this last result asymptotically correct by constructing infinite families of
r-regular graphs G with Aj(G) < 2y/r — 1 for all primes r — 1 = l(mod 4).

The above results imply that any r-regular graph G of large order n has bw(G) >
en where c, unfortunately, is rather small. We improve this by showing that almost
every r-regular graph G of order n has bw(G) ^ crn where cr —+ r/4 as r - t o o .
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3. A LOWER BOUND FOR THE BISECTION W I D T H OF

ALMOST EVERY CUBIC G R A P H

Bender and Canfield [5] gave the first formula for the asymptotic number of labelled
r-regular graphs of order n . Bollobas [8] gave a simpler proof of the same formula that,
more importantly, contained a model for the set of regular graphs which can be used to
study labelled random regular graphs. We describe now this model.

Let rn be even and q — rn/2. Let V = V1 U • • • U Vn be a disjoint union of rn

labelled vertices where |Vj| = r for 1 ^ i < n. A configuration is a 1-regular graph
with vertex set V. Denote the set of configurations by $ = $(n,r). Clearly,

| $ | = (rn)!/2«g! .

A configuration is good if when we shrink each set Vi to a vertex vi we obtain a simple

graph. Denote the set of good configurations by ft = $l(n,r) and the set of simple

r-regular graphs with vertex set {vi,... ,vn} by (/„ . Clearly,

Now regard $ as a probability space where P(F) = | $ | - 1 for any configuration F.

Bollobas [8] showed that

P(configuration F is good) -> e ( 1 ~ r 2 ) / 4 (n -> oo)

and, hence,

l^l-eC1-1)'4!*!^.-!)- (n-oo) .

Finally regard Qn' as a probability space where P(G) = \Gn\~1 for any r-regular
graph G with vertex set { v j , . . . , vn} . An immediate consequence of the preceding is
that if the probability that a configuration has a certain property tends to 1 as n —> oo
then the probability that an r -regular graph has the corresponding property also tends
to 1 as n - » o o .

For r ^ 3 , let c — cr be the unique real number in (0,r/4) with 2^2~rVr =

(2c) c(r — 2c) . (The constant exists since xx(r — x)r~x monotonically decreases

on [0,r/2].) Note that c3 = .0922357 ••• G (1/11,1/10). We denote <(* — 1) •••

(t-k + 1) by(t)k.
We give now

THEOREM 2. Almost every cubic graph G of order n has bw(G) J? n / 1 1 .

PROOF: Let n = 2m. Fix a partition {A,B} of { 1 , . . . , n } with |A| = \B\ — m.
Let VA = (j{Vi : i € A) (Define VB similarly). Note that the event eF(VA, VB) = j

https://doi.org/10.1017/S0004972700003300 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003300


394 L.H. Clark and R.C. Entringer [6]

is a nonempty subset of $ if and only if 3m and j have the same parity. Put pj =
(3m-j)/2. Then

( 1 ) _ [(3m)!]32>
j\[Pj!}>(rny. '

where the left factor of (1) is the number of ways of labelling the ends of the j edges
between VA and Vg and the middle factor of (1) is the number of ways of completing
the 1-factor in both VA and Vg .

For j ^ 2, we have

i(i-i)
(3m - j + 2f

P(eF(VA,VB)=j-2) = -2V—>P(eF(VA,VB)=j)

where j(j — l ) / (3m — j> + 2) increases with j . For even 3m and 2k < [c3nJ > w e n a v e

P(eF(VA, VB) < 2A) =
even j

^ P(eF{VA, VB) = 2fc)(l + a + • • • + a*) ,

where a = 2Jfc(2fc - l)/(3m - 2k + 2)2 . Since a < (2c3/3 - 2c3)
2 s$ 1/2, we have

P(eF(VA,VB) < 2k) < 2P(eF(VA,VB) = 2ft) .

Then

P(bw(F) ^ 2k) = P{eF(VA,VB) ^ 2k for some {A,B})

{A,B}
n

From (^) = O(2nm-1/2) and Stirling's Formula, we obtain

2-m33 mm3 m + 1/2

P(bw(F) < 2ib) = O

Now write 2k = 2cm ^ [c3nj and we have

P(bw(F) ^ en) = Oin,-1) .
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For odd 3m, a similar calculation with 2k replaced by 2k + 1 gives the same result.

Then

P(btu(F) ^ [c3n]) - . 0 (TI-KX>)

and, consequently,

P(bw (C G G(
n
3)) > c ^ -> 1 (n - oo) .

I
Remark. In general, a similar calculation shows that

P(bw (G G Gn
r)) > crn) -» 1 (n -> oo) .

Since (2rf)2d(l - 2d){1~2d) monotonoically decreases to 1/2 on [0,1/4], we have

(2dfd{l - 2d){1~2d) > 22 / r /2 for fixed d £ (0,1/4) and all sufficiently large r. Conse-

quently, cr ^ rd so that cr —> r /4 as r —> oo. We summarize this now.

THEOREM 3. Almost every r-regular graph G of order n has bw(G) ^ crn.

Moreover, cr —> r /4 as r —> oo .

In view of the upper bound for the bisection width given by Goldberg and Gardner

[13], this last result is asymptotically correct.
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