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A REMARK ON LITTLEWOOD-PALEY g-FUNCTION

LixiN YAN

We prove LP-estimates for the Littlewood-Paley g-function associated with a com-
plex elliptic operator L = —div AV with bounded measurable coefficients in R".
1. INTRODUCTION

Let A = A(z) be an n X n matrix of complex, L coefficients, defined on R",
and satisfying the ellipticity (or “accretivity”) condition

(1.1) A€ < Re(Ag,€) and (A€, Q)| < AEIC],

for £,¢ € C™ and for some A, A such that 0 < A < A < co. Here (A, () = ¥ ai(z)&:C;
4

denotes the usual inner product in C". We define a divergence form operator
(1.2) Lf =-div(AVf),

which we interpret in the usual weak sense via a sesquilinear form.
By the holomorphic functional calculus theory ({10]), ¥(L) is well-defined for any
function ¥ € ¥(S,) (see (2.1) below). We consider the Littlewood—Paley g-function

o) s 1/2
(13) gL<f>(z)=g¢,L(f>(z)=( [ "‘d—) ,

§

where ¥s(2) = ¥(sz).
Note that if L = —A is the Laplacian on R™ and ¢(z) = 21/2¢=2""% then g1(f)(z)
is the classical Littlewood—Paley g-function g;(f)(z), which is also given by

an@ = [[2 s nef )

where Py(z) = coy(y® + |:1:|2)_(n+1)/2 is the Poisson kernel. It is well-known that
91(f)(z) is bounded on LP(R™) for all 1 < p < co. See [11, Chapter 4].

The main result of this paper is the following theorem.
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THEOREM 1.1. Let L be as in (1.2). We assume that n > 3 and (2n/n + 2)
<p< (2n/(n-2)). If f € LP(R™), then

(1.4) cllfll, < lloll, < e NIfN,

where ¢ = c(%)) is a positive constant independent of f.

We remark that when A has real entries, or when n =1, 2 in the case of complex

t

entries, the analytic semigroup e’ generated by L has a kernel p,(z,y) which satisfies

Gaussian upper bounds, that is,

Bz - y|?

n ) for some B >0,

(15) (2, y)| < Ct"/2 eXp(—

and for all t-> 0, and all z, y € R™ (see [4, pp. 30-31]). By [2, Theorem 4], the estimate
(1.4) is true for all 1 < p < oo. Unfortunately, in the case of complex entries, (1.5) is
no longer true if n > 3. It was proved in [1] that there is a complex elliptic operator
L = —div AV which does not have Gaussian upper bounds (1.5) in dimensions n > 5.
And then we can not follow the technique in [2] to obtain Theorem 1.1. Instead, we
need to use some weighted norm estimates for the semigroup e *L (Lemma 2.2 below).
See [3, 5,8, 9].

The paper is organised as follows. In Section 2, we state some known results to be
used throughout this paper. In Section 3, we prove a lemma, which plays a key role in
the proof of Theorem 1.1. The proof of Theorem 1.1 will be given in Section 4 by using
the technique already employed in (7] and [5].

2. PRELIMINARIES

For v € (0, 7], we denote by S, the open sector S, = {z € C: |argz| < v} and
by Hoo(S.) the set of all bounded holomorphic functions on S,. If p € (7/2,n), we
define

: - : : e’
(2.1) U(S,) = {g € Hoo(Sy) 138> 0,32 0: [g(2)| < 12 EE }

We are given an elliptic operator as in (1.2) with ellipticity constants A and A in
(1.1). By the holomorphic functional calculus theory, for any g € ¥(S,), g(L) can be
computed by the absolutely convergent Cauchy integral

(2.2 o) =~ [ (= 1) gt} dn,

where p € (7/2,n) and the path ~ consists of two rays re**® r > 0 and 7/2 < 0 < p,
described counter-clockwise. We refer to [10] for the details.

https://doi.org/10.1017/50004972700020657 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700020657

(3] A Littlewood-Paley g-function 35

Now, we denote by B(z,r) balls in R", let A(x, V%, k) be the following annulus
in R?: =

A(z, Vi, k) = B(z, (k + 1)Vt)\B(z, kVt).

Moreover, we write Pg for the projection obtained by multiplying by the characteris- -
tic function of a set E. We consider the Hardy-Littlewood p-maximal operator M,
defined by M, f(z) = sup Ny, f(z), where

r>0

Nprf(z) = (|B(z,)| ™ /B F)fay) .

T,r

If n > 3, we denote
Pmin =2n/(n+2) and Ppmax =2n/(n —2).

First, Theorem 1.1 is true for p = 2 (see [10]).

LEMMA 2.1. Let L be as in (1.2) and n > 3. Then, there exists a positive
constant ¢ = ¢(1) independent of f such that

C”f“z < IlgL(f)||2 <ct ”f”2

LEMMA 2.2. Let L be as in (1.2). Then for all p and q such that pmi, < p
< q < pmax there exist positive constants b and C such that

1/q9-1/p

— B2
(2:3) ”PB(z,\/E)e tLPA(z,\/E,k)“LP—)Lq < C‘B(z, \/Z)’ e
forall z € R*, t >0, and k € N.
PrOOF: We refer to [8, Section 2] and [5, Remark 2.2]. 1]

LEMMA 2.3. Suppose that pmin < p < ¢ < Pmax. Then we have
(i) for all r,s,t >0 and z,z € R™, there exists p > n+ 1 such that

1/p
Nq,\/t-(PB(z,r)e_tLPB(z,a)cf) (.'I:) < C( Z kn_l_pr,k\/Ef(z)p) )
k>(s—r)(\/f)_1

(i) forallr,t >0, f € LP(R™),z € R*,z € B(z,/t/2), there exist 0 <y < f3
such that

_ r\—B \/z Y
Noar (Pags e Pogs anyef) (2) < C(1+ W) (1+ ) M, £ (2).
Proor: For any fixed b > 0 as in Lemma 2.2, there exists a constant p > n
+1+ (np/q) such that |e=b*=D? _ =8| < Ck=#=1 for some positive constant C.
Let 8 =(p—n)/p, and v =n/q. By [5, Lemma 3.3], Lemma 2.3 is proved. 0
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REMARK.

(i) The paper [8] shows the optimality of the interval (pmin,Pmax) of the
semigroup e~ in Lemma 2.2 when L is defined as in (1.2);

(ii) when (p,q) = (1,00), the weighted norm estimate (2.3) characterises the
fact that the operators et have integral kernels p;(z, y) satisfies certain
Poisson upper bounds ([5, Proposition 3.7]):

PROPOSITION 2.4. Let g : Rt — RY be a decreasing function. Then the
following are equivalent:

(a) Forall z,y € R*,t >0 we have
-1
|pe(z,9)| < C’B(x, \/f)l 9(lz - 9l/t).
(b) -Forall z € R*,t > 0,k € Rt we have
-1
<C|B( Vo) o(k?)

—tL
P2 eveye™ Patein)|

LloLoe

3. A KEY LEMMA
Denote Sp = I and S; = e"*L'. Forany m € N, we let D™S, = (I - S,)™
= i Ck(=1)*Sy,. Let 6 > 28 = 2(p — n)/p > 0. We define
k=0

31)  C¥,= /07000 (1 + %)_w(l + g)he-”""min(l, ()% s (v) | dv dps.

In order to prove Theorem 1.1, we need the following lemma.

LEMMA 3.1. Suppose that pmin < p < 2 < ¢ < Pmax and m > 23. Then, for all
t>0, f € LP(R"), z € R*, and z € B(z,V1/2),

Nq,ﬁ(PB(z,ﬂ/z) (‘/’S(L)Dmst)PB(z,wE)cf) (=) < CCT5, Mpf(@).

PROOF: Let f(L) = t,(L)D™S; where f(A) = 9s(A)(1 — e™**)™. We first repre-
sent the operator f(L) by using the semigroup e #L. As in (2.2), we have

1) = 5 [ (=207 10

where the contour v = v4 U~_ is given by 7, (s) = se*” for s > 0 and y_(s) = —se™*
for s €0, and v>w/2.
For A € v, substitute:

(L=AD"'= /0 eMe .
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Changing the order of integration gives
o0
f@= [ ern(wda,
0

where

n) = 5 / P F(A) dA.

Consequently, by (ii) of Lemma 2.3 we have

‘1\/'( B(= \/'/2)(1/’3( )D™54) B(z4f°f)
/ qu (2.v22) € T B(z4f)°f)(r)|n(u)|dﬂ

< C/ / Ie/\“zps(/\)(l - e_t/\)mlN ,\/t'(PB(z,\/E/z)e_“LPB(ZA\/E)Cf)(I)dl’\!du
SC 763 Pf( )

which completes the proof of Lemma 3.1. 1]

COROLLARY 3.2. Let C,ty‘gs be as in (3.1). Then, there exists a constant C

independent of t, 8,7 and & such that

[ (e4.)% cocon

ProOOF: We denote

00 poo -28 2
t.8 _ 1 E E v —brp s 4
Cls /0/0 ( + ”) (1+ t) e min(1, (tv)°)dvdp.

d
([ wor%) " <o<o,
the Minkowski inequality implies that
o0 2ds 2
B B
| (e38.)" S <o(ess)”

Noting that 0 < 2y < 28 < §, we have C < oo for any ¢ > 0 (see [5, Lemma 3.6] or
[7, page 259] where the case v = 0). So, the proof of Corollary 3.2 is complete.

Since
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4. PROOF OF THEOREM 1.1

We first state a Calderén-Zygmund decomposition. For its proof, (see [6, Theorem
1.1, Chapter 8]).

LEMMA 4.1. Let A > 0. Then for any f(z) € LP(R"),p > 1, there exist a
constant C independent of f and A, and a decomposition

f=h+b=h+>_ b,
7

so that

(i) |h(z)] < CA for all almost z € R™;
(ii). there exists a sequence of balls Q; so that the support of each b; is
contained in Q; and

Rn|bj(a:)|pd:c < CX|Q5;

(i)  25;1Q;1 < CA™P fzn |f|Pdz;
(iv) each point of R™ is contained in at most a finite number N of the balls

Qi

PROOF OF THEOREM 1.1: We first consider the second inequality of (1.4) us-
ing an idea of [7, Theorem 1] (or [5, Theorem 1.1}). For any p such that pmin
= 2n/(n+2) < p < 2, we shall prove that g (f) satisfies weak type (p,p) estimate.
And then the boundedness of g.(f) from LP(R™) (pmin < p < 2) to itself follows from
the Marcinkiewicz interpolation theorem. Using a standard duality argument, g, (f) is
proved to be a bounded operator on L?(R™) for all 2 < p < pmax = 2n/(n — 2).

For any A > 0, there exist a decomposition f = h+b=h+)_ ; b, and a sequence
of balls @; as in Lemma 4.1. Denote Q; = Qj(z;,r;) and t; = (2'rj)2. Choosing
m > 28 as in Lemma 3.1, we then decompose Zj bj = hy + ho, where

h,= Zj(l - DmStj)b:i’ and hp = Z (Dmstj)bj'

J

We have,

I{z: lgLf(z)| > /\}| < |{:1:: lgL(h)(=)| > /\/3}| +22:|{$: |9z (hi)(z)| > /\/3}|,
k=1

and we shall estimate the three terms separately, where we write A instead of A/3.
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We start with the first term. Using Lemma 2.1, we obtain
e locw@)] >N <27 [ Joutwia)f iz
<CA? [ |h(z)|*dz
Rﬂ

<oy

We estimate the second term, that is, the term involving hy = 37, (I- D"‘Stj)b]-.
We claim that

T Do R bop |

2
Since ” 25 XQ; ,

< C(Ifll, /A)? by iv) of Lemma 4.1, we obtain

l{:c: lgz(h1)(z)| > A}| <A /RnlgL(hl)(x)Vdr

< cﬂ/ \ha|? dz
Rn

co(lsky

We now prove the claim (4.1). Recall that t; = (2rj)2, and let 1/p'+1/p=1. Note
that for any ¢ € L%(R"™),

(8. (1 = D™5,)b5)| = (I - D™5,;)"8,85)| < |[xe, (1 - D™5,,) "8
< CATYQ4INy 1, (1 ~ Dmstj)‘¢(z,-)

<OX~ / - D™S,,) pdz.

I,

Obéerving that So =1, and I - D™S; = — Z Ck (-1)*Sy, for all ¢ > 0. Applying (i)
of Lemma 2.3 (¢ =p’ and p = p), we obtam

Ny il = D™S,)" f(z) < CMy f(@).
So, for any ¢ € L?(R™) we have IMp¢ll, < Cll¢ll,, and then

(, > - D™S,;)b;)| < ,\—1":& 1 / (M) Y xo,(z)d

<CA! “2, XQ;
s C’\_lllzj X@ill,

sup
lIllz <1

sup ||Myoll,
2 ||gllp<1
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which completes the proof of the claim (4.1).
We now turn to estimate the third term, that is, the term which involves hs.
Denoting QF = Q;(z;, 8r;) we have

[+ lostra)@)] > 2} < 3, 1051+ 4° /(Q] S92 (ha) @) do
£l \P -
<o(57) +2 2/(U.Q..)c|u<hz><r>|2dw-

I%j

Denote G s = X/, \eWs(L)(D™Se, )x@.b;j . Observe that
7 (93) 3/ AR5

_/(U‘Q,)clgL(hz)(IE)Izdz=/ - c/wlzjz/;s([, DmStJ b' dxds
] i
/ /" c"/fs(L)(D StJ XQ;bj ‘ dz_
s/o ”Z]_G,,sb,- |2?

We shall estimate

2ds 2
. b, = <on |
(12) LI, 6], 2 < x| xa

and can then argue as with the term hi{z) to obtain

'{:z:: IgL(h2)(I)I > ’\}1 < C(%)p'

Now we prove (4.2). Choosing r such that pymin < 7 < 2. Using (ii) of Lemma 2.3
(g=p' and p=r), we have

(¢, G.0:)| < |Ix@; G709l 1bsll, < CAHQ5INy (G;3¢)(xj)
<CA- / s (G}00) () do

<CA™ IC’NS/ M, ¢dz.
Lz

Noting that ||M.¢|, < C||4||,, by Corollary 3.2 we obtain -
2ds /°° ( | )2ds
= su , G sb; | —
LI emlif = (amle3,0m) S
<O xo)l s sl [ (c4,)7%
i 92 g, o 7.8s5) g

2
< C/\—zllzj XQ; 9
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which completes the proof of (4.2), and then the second inequality in (1.4) when
Pmin < P < Pmax-

The first inequality of (1.4), that is, the reverse square function estimates when

Pmin <P < 2 and 2 €< p < Pmax are consequences of the second inequality (that is, the

square function estimates) when 2 < p < pmax and pmin < p < 2, respectively.
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