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On the Pontrjagin classes of spray
manifolds
Zhongmin Shen and Runzhong Zhao

Abstract. The characterization of projectively flat Finsler metrics on an open subset in Rn is the
Hilbert’s fourth problem in the regular case. Locally projectively flat Finsler manifolds form an
important class of Finsler manifolds. Every Finsler metric induces a spray on the manifold via
geodesics. Therefore, it is a natural problem to investigate the geometric and topological properties of
manifolds equipped with a spray. In this paper, we study the Pontrjagin classes of a manifold equipped
with a locally projectively flat spray and show that such manifold must have zero Pontrjagin classes.

1 Introduction

The notion of projectively flat metrics in Finsler geometry originated from the famous
Hilbert’s fourth problem, that is, to characterize Finsler metrics on an open subset
of Rn whose geodesics are straight lines as sets of points. By Beltrami’s theorem,
a Riemannian metric is locally projectively flat if and only if it is of constant sec-
tional curvature. However, things are much more complicated in Finsler geometry.
Although every locally projectively flat Finsler metric is of scalar flag curvature,
many are not of constant flag curvature [5, 12]. There are also Finsler metrics of
scalar flag curvature but are not locally projectively flat. Therefore, the study of
locally projectively flat metrics is of its own interest. The characterization of locally
projectively flat Finsler metrics dates back to Hamel’s work [4] at the beginning of
20th century. In recent years, many more explicit constructions have been found for
special types of Finsler metrics. For example, a Randers metric F = α + β is locally
projectively flat if and only if α is a locally projectively flat Riemannian metric and
β is a closed one-form [1]. Locally projectively flat (α, β) metrics [10] and general
(α, β)metrics are also studied intensively. In [14], Yu and Zhu constructed a class of
locally projectively flat general (α, β)metrics. In [6], the first author and Li gave the
equivalent conditions for a general (α, β) metrics to be locally projectively flat, and
constructed some interesting local examples.

Every Finsler metric induces a spray via geodesics. The study of sprays on a man-
ifold will lead to a better understanding on Finsler metrics. The notion of projective
flatness can be extended naturally to sprays. We would like to know any topological
obstruction to the existence of locally projectively flat sprays on a manifold.

Received by the editors April 24, 2023; revised October 26, 2023; accepted November 4, 2023.
Published online on Cambridge Core December 11, 2023.
AMS subject classification: 53C60, 53B40.
Keywords: spray geometry, Pontrjagin class, projectively flat sprays, Douglas sprays.

https://doi.org/10.4153/S0008439523000954 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439523000954
https://orcid.org/0000-0001-5328-2513
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439523000954&domain=pdf
https://doi.org/10.4153/S0008439523000954


On the Pontrjagin classes of spray manifolds 545

Theorem 1.1 Let G be a locally projectively flat spray on a n-manifold M. Then the
Pontrjagin classes pk of M with rational coefficients are all zero for k ≠ 0.

This gives a topological obstruction to the existence of locally projectively flat
sprays on a manifold.

Example 1.2 It is well known that spheres have trivial Pontrjagin classes. The
standard Riemannian metric gSn on an n-dimensional unit sphere has constant
sectional curvature 1, hence is locally projectively flat. Let G0 be the spray of this
metric, a family of locally projectively flat sprays can be constructed using positively
homogeneous functions P on the slit tangent bundle TSn /0. See Section 5 for more
detailed constructions.

Example 1.3 The cohomology of the complex projective space CPn with coefficient
G is

H l(CPn , G) =
⎧⎪⎪⎨⎪⎪⎩

G , if l is even and 0 ≤ l ≤ n,
0, otherwise,

and the total Pontrjagin class of CPn is p = (1 + c2)n+1, where c is the image of
the generator of H2(CPn , Z) under the natural map H2(CPn , Z) → H2(CPn , G). In
particular, the Pontrjagin classes of CPn(n ≥ 2) are not zero, hence CPn(n ≥ 2) does
not admit a locally projectively flat spray.

2 Preliminaries

A spray G on a manifold M is a smooth vector field on the slit tangent bundle TM /0
expressed in a standard local coordinate system (x i , y i) on TM as

G = y i ∂
∂x i − 2G i(x , y) ∂

∂y i ,(1)

where G i(y) are local functions on TM satisfying

G i(x , λy) = λ2G i(x , y)

for all λ > 0. The G i s are also called the spray coefficients.
Let γ̃ be an integral curve of G on TM /0, and γ = π ○ γ̃ be its projection on M,

where π ∶ TM /0→ M is the canonical projection. γ satisfies the equation

γ̈ i + 2G i(γ, γ̇) = 0

and it is called a geodesic of G. We say that two sprays G and G̃ are (pointwise)
projectively related if their geodesics are the same as sets of points on the manifold.
Equivalently, this is characterized by the condition

G̃ i = G i + P y i ,

where P = P(x , y) satisfies the homogeneity property

P(x , λy) = λP(x , y)
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for λ > 0. A spray G is said to be flat if at every point, there is a local coordinate system
in which

G = y i ∂
∂x i .

It is said to be locally projectively flat if it is projectively related to a flat spray. A quantity
is said to be projectively invariant if it is the same for projectively related sprays.

In order to study the Pontrjagin classes of π∗TM and TM, we shall use the Berwald
connection on the pullback bundle π∗TM. Let

N i
j ∶=

∂G i

∂y j , �i
jk ∶=

∂2G i

∂y j∂yk ,

the local connection one-forms of the Berwald connection are given by
ω i

j = �i
jk dxk ,(2)

and its curvature forms are
Ω i

j ∶= dω i
j − ω k

j ∧ ω i
k .(3)

Put ω i ∶= dx i and ωn+i ∶= d y i + N i
j dx j , we have

dω i = ω j ∧ ω i
j

and

Ω i
j =

1
2

R i
j k l ω

k ∧ ω l − B i
j k l ω

k ∧ ωn+l ,(4)

where R is the Riemann curvature and B is the Berwald curvature. In local coordinates,
they are given by

R i
j k l =

δ�i
j l

δxk −
δ�i

jk

δx l + �i
km�m

jl − �i
l m�m

jk ,

B i
j k l =

∂3G i

∂y j∂yk ∂y l ,

where δ
δx i = ∂

∂x i − N j
i

∂
∂ y j is the horizontal covariant derivative. For the simplicity of

notation, we will denote A∗∗∣ j =
δ

δx j A∗∗ and A∗∗⋅ j = ∂
∂ y j A∗∗.

The two-index Riemannian curvature tensor is then given by R i
k = R i

j k l y j y l . We
have

R i
j k l =

1
3
(R i

k⋅l ⋅ j − R i
l ⋅k⋅ j)(5)

so the two-index Riemann curvature tensor and the four-index Riemann curvature
tensor basically contain the same geometric data. The Riemann curvature can be
computed directly using the spray coefficients as

R i
k = 2 ∂G i

∂xk − y j ∂2G i

∂x j∂yk + 2G j ∂2G i

∂y j∂yk −
∂G i

∂y j
∂G j

∂yk .(6)

We will also use R = 1
n−1 Rm

m .
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In the case when G is a Berwald spray, where B i
j k l = 0, the spray coefficients G i s are

quadratic in y i s, and so are the Riemann curvature R i
k . In particular, �i

jk and R i
j k l

are independent of y i s. Therefore, the differential forms ω i
j and Ω i

j can be viewed
as differential forms on M, and the connection can be viewed as a connection of the
tangent bundle TM. In fact, we have

Ω i
j =

1
2

R i
j k l dxk ∧ dx l .

In dimension n ≥ 3, locally projectively flat sprays are characterized by two pro-
jectively invariant quantities. The Douglas curvature is constructed from the Berwald
curvature:

D i
j k l = B i

j k l −
2

n + 1
[E jk δ i

l + E j l δ i
k + Ek l δ i

j +
∂E jk

∂y l y i],(7)

where E i j = 1
2 B m

m i j is called the mean Berwald curvature.
The Weyl tensor is the spray analog of the projective curvature tensor in Rieman-

nian geometry. It is defined by

W i
k = Ai

k −
1

n + 1
∂Am

k
∂ym y i ,(8)

where Ai
k = R i

k − Rδ i
k . The followings are well-known [8].

Lemma 2.1 A spray G is of scalar curvature, in the sense that

R i
k = Rδ i

k − τk y i

for some one-form τ on TM /0 with τk yk = R, if and only if W = 0.

Lemma 2.2 A spray G on a manifold M of dimension ≥ 3 is locally projectively flat if
and only if W = 0 and D = 0.

For convenience in discussing the projective change by the S-curvature, we will
also use another formula for the Weyl tensor. Let dV = σ(x)dx 1 ∧⋯∧ dxn be a
volume form on M, the quantity

τ(x , y) ∶= ln
√

det g i j(x , y)
σ(x)

is called the distortion and its rate of change along geodesics is measured by
S-curvature. Namely, let γ(t) be a geodesic with γ(0) = x and γ̇(0) = y ∈ Tx M /0,
we have

S(x , y) ∶= d
dt
∣ t=0 [τ(γ(t), γ̇(t))].(9)

The S-curvature can be expressed as

S(x , y) = ∂Gm

∂ym (x , y) − ym ∂
∂xm [ln σ](x)
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and satisfies the homogeneity property

S(x , λy) = λS(x , y)

for λ > 0. The non-Riemannian quantity χ-curvature

χk ∶= −
1
6
(2Rm

k⋅m + Rm
m⋅k).

relates the S-curvature and the Weyl tensor. Indeed, it can be computed using the
S-curvature by

χk =
1
2
(S⋅k∣m ym − S∣k),

and the Weyl tensor can be expressed as

W i
k = R i

k − (Rδ i
k −

1
2

R⋅k y i) + 3
n + 1

χk y i .

Thus, for a spray (G , dV) whose S-curvature is vanishing, we have χk = 0 and

W i
k = R i

k − (Rδ i
k −

1
2

R⋅k y i).(10)

3 Pontrjagin classes

The Pontrjagin classes were originally introduced by Lev Pontrjagin in 1940s in the
study of the Grassmannian manifolds. In modern texts, it is most often described
using the Chern class of a complexified bundle. Let ξ be a real vector bundle, and let
ξC ∶= ξ ⊗R C be its complexification, then the ith Pontrjagin class of ξ is given by

p i = (−1)i c2i(ξC),

where c j(ξC) is the jth Chern class of the complex vector bundle ξC.
Using a connection D on the vector bundle ξ, we can express the Pontrjagin classes

of ξ as a differential form representing a de Rham cohomology class. Let U ⊂ M be
an open subset on which there is trivialization ψ ∶ ξ∣U ≅ U ×Rn of the bundle ξ, and
e i = ψ−1∂ i . The connection D, viewed as a covariant derivative, can be described by

DX η ∶= [dη i(X) + η jω i
j (X)] e i ,

where X is a vector field on U, η is a section of ξ given by η = η i e i on U, and the ω i
j s

are n2 local one-forms on U. The curvature of D is hence described by an n × n matrix
of (real-valued) two-forms

Ω = (Ω i
j ),

where Ω i
j s are given as in (3). The differential forms ω i

j s and Ω i
j s, viewed as complex-

valued forms, define a connection on the complexified bundle ξC and its curvature,
which we will still denote by D and Ω, respectively.

Given an n × n complex matrix T, we have

det(I + tT) = 1 + tσ1(T) +⋯ + tn σn(T),(11)
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where σi(T) is the ith elementary symmetric polynomial evaluated on the n eigenval-
ues of T. The following can be found on most textbooks covering characteristic classes
(see, for example, [7]).

Theorem 3.1 Let ξ be a complex vector bundle of rank n with connection D. Then
the cohomology class [σr(Ω)] ∈ H2r(X; C) is equal to (2πi)r cr(ξ), for all r = 1, . . . , n,
where cr(ξ) is the rth Chern class with coefficient C.

In the study of Riemannian manifolds of constant curvature, Chern obtained a
consequence of this theorem [3, 7].

Corollary 3.2 Let ξ be a real vector bundle of rank n with connection D. Then the
de Rham cocycle σ2k(Ω) represents the cohomology class (2π)2k pk(ξ) ∈ H4k(M; R),
while [σ2k+1(Ω)] = 0 in H4k+2(M; R), where pk(ξ) is the kth Pontrjagin class of ξ with
coefficient R.

Chern proved the following.

Theorem 3.3 Suppose that for a Riemannian manifold M, the sectional curvature
K(Vx , Wx) of the plane span{Vx , Wx} ⊂ Tx M depends on the point x ∈ M only. Then
all its Pontrjagin classes with rational coefficients are zero.

We shall remark that such manifolds are said to have isotropic curvature in Finsler
geometry.

In terms of the local curvature forms Ω i
j s defined in some neighborhood of x ∈ M,

a direct computation using (11) gives

σ2k(Ω)(x) = ∑
i1<⋯<i2k ,σ∈S2k

sign σ ⋅Ω iσ(1)
i1
(x) ∧⋯ ∧Ω iσ(2k)

i2k
(x)

= 1
(2k)! ∑

i1 , . . . , i2k ,σ∈S2k

sign σ ⋅Ω iσ(1)
i1
(x) ∧⋯ ∧Ω iσ(2k)

i2k
(x),

where S2k is the symmetric group on 2k elements.

4 Pontrjagin classes of Douglas sprays

In this section, we study the Pontrjagin classes of Douglas sprays. The main tool will
be a projective change by the S-curvature.

Let G be a spray, and let dV be a volume form on an n-dimensional manifold M.
We define another spray Ĝ by

Ĝ i = G i − S
n + 1

y i ,(12)

where S is the S-curvature of (G , dV). In the sequel, a letter with a hat over it will
always represent a quantity of the spray Ĝ. We have the following.
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Lemma 4.1 [11]

B̂ i
j k l =D i

j k l ,

Ŝ =0.(13)

Thus, if G is Douglas, then Ĝ is a Berwald spray. As an immediate consequence,
we have the following lemma.

Lemma 4.2 Let G be a Douglas spray on a manifold M. The Pontrjagin classes of M
with coefficient R are represented by the forms

1
(4π)2k(2k)! ∑

i1 , . . . , i2k ,σ∈S2k

sign σ ⋅
2k
∏
s=1

R̂ iσ(s)
is ms l l

2k
⋀
s=1

dxms ∧ dx ls ,

where R̂ is the Riemann curvature of the associated spray Ĝ.

Proof of Theorem 1.1 We will assume that the dimension of the manifold is n ≥ 4,
for otherwise, there is nothing to prove. We already have that Ĝ is a Berwald spray.
On the other hand, Ŝ = 0 implies that χ̂k = 0 for the spray Ĝ. The expression for the
Weyl tensor (10) now becomes

Ŵ i
k = R̂ i

k − (R̂δ i
k −

1
2

R̂⋅k y i) = 0,

hence

R̂ i
k = (R̂δ i

k −
1
2

R̂⋅k y i).

A straightforward calculation yields

R̂ i
j k l =

1
3
(R̂ i

k⋅l ⋅ j − R̂ i
l ⋅k⋅ j) =

1
2
(R̂⋅l ⋅ jδ i

k − R̂⋅k⋅ jδ i
l).

It follows that the curvature forms of the Berwald connection of Ĝ is given by

Ω̂ i
j =

1
4
(R̂⋅l ⋅ jδ i

k − R̂⋅k⋅ jδ i
l) dxk ∧ dx l = 1

2
R̂⋅l ⋅ j dx i ∧ dx l .

Then

σ2k(Ω̂) =
1
(2k!)

∑
i1 , . . . , i2k ,σ∈S2k

sign σ ⋅ Ω̂ iσ(1)
i1
∧⋯ ∧ Ω̂ iσ(2k)

i2k

=
1

22k(2k)!
∑

i1 , . . . , i2k ,σ∈S2k

sign σ ⋅ R̂⋅l1 ⋅i1 . . . R̂⋅l2k ⋅i2k dx iσ(1) ∧ dx l1 . . . dx iσ(2k) ∧ dx l2k

=
(−1)k

22k(2k)!
∑

i1 , . . . , i2k ,σ∈S2k

sign σ ⋅ R̂⋅l1 ⋅i1 . . . R̂⋅l2k ⋅i2k dx iσ(1) ∧⋯ ∧ dx iσ(2k) ∧ dx l1 ∧⋯ ∧ dx l2k

=
(−1)k

22k ∑
i1 , . . . , i2k

R̂⋅l1 ⋅i1 . . . R̂⋅l2k ⋅i2k dx i1 ∧⋯ ∧ dx i2k ∧ dx l1 ∧⋯ ∧ dx l2k .
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Since R̂⋅i⋅ j = R̂⋅ j⋅i , we obtain 0 after summing over i1 and l1. We conclude that

σ2k(Ω̂) = 0.

Since Ĝ is Berwald, these curvature forms can be viewed as curvature forms on TM.
Therefore, the Pontrjagin classes of M with real coefficients are identically zero. It
follows from naturality of cohomology in coefficients that the Pontrjagin classes of M
with rational coefficients are zero. ∎

5 Locally projectively flat sprays on the sphere

In this section, we describe in more detail, some known locally projectively flat sprays
on the unit sphere.

Example 5.1 Let G0 be the spray of the standard Riemannian metric on the unit
sphere, and let P ∶ TSn /0→ R be a smooth function satisfying

P(x , λy) = λP(x , y)

for all x ∈ Sn , y ∈ Tx Sn / {0}, and λ > 0. Then the spray GP = G0 − 2PY is locally
projectively flat, where Y is the vector field expressed as y i ∂

∂x i in local coordinates
(x i , y i) for the slit tangent bundle TSn /0.

Among this family are a collection of sprays induced by Randers metrics F(y) =√
gSn(y, y) + d f (y), where f is a smooth function on Sn and y ∈ TSn /0. In this case,

we have

P(y) = Hess f (y, y)
2F(y) .

Example 5.2 According to the characterizations of locally projectively flat general
(α, β) metrics studied in [6, 14], a general (α, β) metric F = αϕ (b2 , β

α ) is locally
projectively flat if α is locally projectively flat, β is closed and conformal with respect
to α, and ϕ = ϕ(b2 , s) satisfies

ϕ22 = 2(ϕ1 − sϕ12).(14)

On the sphere Sn , let α be the standard Riemannian metric of constant sectional
curvature 1, written as

α2 = dr2 + sin2 rds2
n−1 ,

where r ∈ [0, π] and ds2
n−1 is the standard Riemannian metric on the (n − 1)-

dimensional sphere Sn−1. It is well known that the one-form β = sin rdr is closed
and conformal with

b i ; j = cos ra i j .

Using the example constructed in [14], namely

ϕ = (
√

1 + b2 + s)2 ,
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which satisfies the equation (14), we see that the general (α, β)metric

F(y) = α(y)(
√

1 + sin2 r + sin rdr(y)
α(y) )

2

is locally projective flat with the projective factor

P(y) = 2α(y) cos r√
1 + sin2 r

.

Example 5.3 Another interesting class of locally projectively flat Finsler metrics on
the sphere are the Bryant metrics [2, 9]. In gnomonic coordinates, it is given by

F(y) =

*
,,-
√

A+ B
2D

+ (C
D
)

2
+ C

D
,

where

A =(cos(2α)∣y∣2 + (∣x∣2∣y∣2 − ⟨x , y⟩2))
2
+ (sin(2α)∣y∣2)

2
,

B = cos(2α)∣y∣2 + (∣x∣2∣y∣2 − ⟨x , y⟩2) ,

C = sin(2α)⟨x , y⟩,
D =∣x∣4 + 2 cos(2α)∣x∣2 + 1,

with ⟨⋅, ⋅⟩ being the standard inner product in the Euclidean space Rn and ∣⋅∣ being the
induced norm. The spray induced by a Bryant metric can also be written in the form
G0 − 2PY , with the function P satisfying

[(P + d p(y))2 + (dq(y)2)] [(F(y) − dq(y))2 − dq(y)2] = (Hess r(y, y) + s(x)gSn(y, y))2 ,

where y ∈ TSn /0 and the functions p, q, s can be expressed in the gnomonic coordi-
nates as

p(x) = 1
4

ln 1 + 2 cos(2α)∣x∣2 + ∣x∣4

1 + 2∣x∣2 + ∣x∣4
,

q(x) = 1
2

tan−1 ∣x∣
2 + cos(2α)
sin(2α) ,

s(x) = s(∣x∣2) = 4(1 + ∣x∣2)2r′′(∣x∣2) + 4(1 + ∣x∣2)r′(∣x∣2),

and r = r(∣x∣2) satisfies the differential equation

4r′′(∣x∣2)(1 + ∣x∣2) + 6r′(∣x∣2) = sin(2α)
2(1 + 2 cos(2α)∣x∣2 + ∣x∣4)

.(15)

One may check that these functions are indeed smooth on the whole sphere as follows.
Let φ be the inclination angle in the spherical coordinate. Since the Bryant metrics are
invariant under vertical reflection φ ↦ π − φ, it suffices to check that these functions
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extend to even smooth functions in u = 1/ tan φ = 1/∣x∣. For p and q, this is clear. For
s, we have

s(u) = u2(1 + u2)2 d2r
du2 + (3u3 + 5u)(u2 + 1) dr

du
,

so s is even and smooth as long as r is. Finally, the differential equation (15) reads

(1 + u2) d2r
du2 + 3u dr

du
= sin(2α)

2(1 + 2 cos(2α)u2 + u4) .

Note that it can be written as

d
du
(ṙr) = f (u, r, ṙ) ∶=

⎛
⎝

3u
1 + u2 ṙ

ṙ

⎞
⎠
+
⎛
⎜
⎝

sin(2α)
2(1 + 2 cos(2α)u2 + u4)(1 + u2)

0

⎞
⎟
⎠

.

Since f is uniformly Lipschitz in (r, ṙ) for all u ∈ R, an improved Picard–Lindelöf
theorem (see, e.g., [13]) implies the existence of an even solution for all u ∈ R. The
solution is smooth since f is smooth. Another application of the theorem to the
original equation (15) shows that this solution extends smoothly to the north and
south poles of the sphere.
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