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Abstract. Magnetohydrodynamic (MHD) turbulence is a critical component of the current
paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and
evolution of the ISM. In order to gain understanding of how MHD turbulence regulates pro-
cesses in the Galaxy, a confluence of numerics, observations and theory must be imployed. In
these proceedings we review recent progress that has been made on the connections between
theoretical, numerical, and observational understanding of MHD turbulence as it applies to both
the neutral and ionized interstellar medium.
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1. Introduction
It is now generally accepted that turbulence is one of the major processes that gov-

erns the structure formation and evolution of different phases of the interstellar medium
(Elmegreen & Scalo 2004) and is critically important for many astrophysical processes
such as magnetic reconnection, cosmic ray acceleration, and heat transport. The evidence
for the role of turbulence in the diffuse and molecular ISM is overwhelming. Some of the
most famous studies include: the “big power law” of the electron density fluctuations
(Armstrong et al. 1995; Chepurnov & Lazarian 2010), fractal structure in the molecular
media (Stutzki et al. 1998), and intensity fluctuations contributed by both density and
turbulent velocity in channel maps (Crovisier & Dickey 1983).

In addition to being turbulent, astrophysical plasmas are magnetized. The magneti-
zation of astrophysical fluids most frequently arises from the dynamo action to which
turbulence is an essential component (see Schekochihin et al. 2007). In fact, it has been
shown that turbulence converts (in weakly magnetized conducting fluid) from five to ten
percent of the energy of the cascade into the magnetic field energy (see Cho et al. 2009).
This fraction does not depend on the original magnetization† and therefore magnetic
fields will come to equipartition‡ with the turbulent motions within a few eddy turnover
times.

Despite the importance of MHD turbulence for the solar wind, ISM and IGM, finding
ways to quantify and study it still vexes researchers. This is because astrophysical MHD
turbulence is a complex nonlinear phenomena that can occur in a multiphase media
with many energy injection sources. Due to this complexity, numerical simulations have
become increasingly vital to the study of the ISM. Although numerical simulations have
made gains in terms of both resolution and ability to simulate the wide range of physics
found in the ISM such as shocks, two phase fluids, instabilities, magnetic fields, and core

† This makes the problem of the initial or seed magnetic field, that for a long time has worried
researchers, rather trivial. Very weak magnetic fields, e.g. generated by Bierman battery (see
Lazarian 1992) can be amplified fast in a turbulent plasmas.

‡ In supersonic flows compressibility effects induce deviations from the equipartition.
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Figure 1. The synergetic approach for studying turbulence in the ISM. Theoretical studies
(as outlined in Section 3) provide predictions for scaling laws which can be tested in a low
resolution setting with numerical simulations. Numerical simulations can then be made into
synthetic observations and compared with the real observations of the ISM (as outlined in
Section 4). At this stage, theory again provides information on the expected behavior of the
turbulence.

collapse, simulations still are not able to reach the Reynolds numbers (i.e. the ratio of
the viscous time scale to eddy turn over time scale) and dynamical range that is seen in
the ISM. This is because the number of floating-point operations required scales as R3

e .
The Reynolds numbers are typically very large in astrophysical flows as the scales are
large. As magnetic fields decrease the viscosity for the plasma motion perpendicular to
their direction, Re numbers become astronomically large. For instance, Re numbers of
1010 are very common for astrophysical flows.

Despite their limitations, numerical simulations of turbulence still provide one of the
best avenues for researchers of the ISM to understand the nature of magnetized tur-
bulence. The combined efforts of predictive theory and numerical tests have greatly in-
creased our knowledge of MHD turbulence, including its anisotropy, intermittency, and
imbalanced nature (see Cho & Lazarian 2003; Kowal et al. 2007; Beresnyak & Lazarian
2010). One of the main approaches for characterizing ISM turbulence in both numerical
simulations and from observations is based on using statistical techniques and descrip-
tions. The most common “go-to” tool for both observers and theorists alike is the spatial
power spectrum. This is because the power spectrum provides valuable information on the
nature of the turbulent cascade including information about the injection scale, inertial
range, and dissipation range of turbulence. While the power spectrum gives information
about the energy per wavenumber (or frequency), it only contains the Fourier amplitudes
and completely ignores the phases. Furthermore, the power-spectrum is fairly insensitive
to the influence of the magnetic field, while other statistics (such as higher order spectra
and structure functions) show large dependencies on the magnetic pressure. These issues
provide motivation for the development of techniques that can be complementary to the
power spectrum for studies of turbulence.

In these proceedings we briefly summarize what we feel is the most constructive
methodology for studying MHD Turbulence in astrophysical settings. We advocate for a
synergetic use of statistical tools applied to both observations and synthetic numerical
simulations which take into account the appropriate physics necessary for comparison.
We organize these proceedings as follows: In §2 we describe our approach for the conflu-
ence of observations and numerical simulations regarding studies of MHD turbulence. In
§3 we review the current theoretical description of MHD turbulence that is appropriate
for the ISM. In §4 we discuss progress that has been made in regards to studying turbu-
lence in the neutral and ionized phases of the ISM along with statistics for studying the
magnetic field. In §5 we make our concluding remarks and summarize.
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Figure 2. Illustration highlighting different statistical tools capable of providing information
about the sonic and Alfvénic Mach numbers and the injection scale. These are the critical
parameters to explore when discussing MHD turbulence in the interstellar medium.

2. How to Study MHD Turbulence in the ISM
In general, the best strategy for studying a difficult subject like interstellar turbulence

is to use a synergetic approach, combining theoretical knowledge, numerical simulations,
and observational data via statistical studies. In this way one can obtain the most com-
plete and reliable picture of the physics of turbulence.

There has been substantial progress in the development of techniques to study turbu-
lence in the last decade. Techniques for the study of turbulence can be tested empirically
using parameter studies of numerical simulations or with the aid of analytical predictions.
The parameters to be varied (see Burkhart & Lazarian 2011) include the Reynolds num-
ber, sonic and Alfvénic Mach number, injection scale, equation of state, and, for studies of
molecular clouds, should include radiative transfer and self-gravity (see Ossenkopf 2002;
Padoan et al. 2003; Goodman et al. 2009). The sonic Mach number is the dimensionless
ratio of the flow velocity to the sound speed, i.e. Ms ≡ 〈VL/cs〉. The Alfvén number is the
dimensionless ratio of the flow velocity to the Alfvén speed, i.e. MA ≡ 〈VL/vA 〉, where
VL = vrms is the turbulent velocity at the injection scale. As the Alfvén speed depends
on the magnetic field, this ratio can provide information on the strength of the magnetic
field relative to the velocity and density.

As we will show in Section 3, the minimal information needed in order to obtain a
picture of the local cascade of MHD turbulence is the compressibility (sonic Mach num-
ber), magnetization (Alfénic Mach number) and cascade rate (given by the spectrum).
Some recently developed techniques that probe these parameters include the applica-
tion of probability distribution functions (PDFs), wavelets, spectral correlation function
(SCF), delta-variance, the principal component analysis, higher order moments, Genus,
Tsallis statistics, spectrum and bispectrum (Gill & Henriksen 1990; Stutzki et al. 1998;
Rosolowsky et al. 1999; Brunt & Heyer 2002; Kowal, Lazarian & Beresnyak 2007; Chep-
urnov et al. 2008; Burkhart et al. 2009; Esquivel & Lazarian 2010; Toffelmire et al. 2011).
Additionally, these techniques are being tested and applied to different wavelengths and
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types of data. We outline some of these techniques and their dependency on the sonic
and Alfvénic Mach numbers and the turbulent cascade in Figure 2.

3. Theoretical Description of MHD Turbulence
The drivers of turbulence, e.g. supernovae explosions in the interstellar medium, inject

energy at large scales and then the energy cascades down to small scales through the
hierarchy of eddies. The famous Kolmogorov picture (Kolmogorov 1941) corresponds to
hydrodynamic turbulence, but as we discuss further, a qualitatively similar picture of
turbulence also develops in magnetized fluids/plasmas.

3.1. Kolmogorov 1941
The hydrodynamic counterpart of the MHD turbulence theory is the famous Kolmogorov
(1941) theory of turbulence. Here energy is injected at large scales, creating large eddies
which correspond to large Re numbers and therefore do not dissipate energy through
viscosity† but transfer energy to smaller eddies. The process continues until the cascade
reaches the eddies that are small enough to dissipate energy over eddy turnover time.
In the absence of compressibility the hydrodynamic cascade of energy is ∼ v2

l /τcasc,l =
const, where vl is the velocity at the scale l and the cascading time for the eddies of size
l is τcask,l ≈ l/vl . From this the well known relation vl ∼ l1/3 follows.

3.2. Strong and Weak Alfvénic turbulence
The ISM is both turbulent and magnetized, and therefore Alfvénic perturbations are
vital. Numerical studies in Cho & Lazarian (2002, 2003) showed that Alfvénic turbulence
develops an independent cascade which is marginally affected by the fluid compressibility.
This observation corresponds to theoretical expectations of the Goldreich & Sridhar
(1995, henceforth GS95) theory that we briefly describe below.

A frequent mental picture that astrophysicists have of the Alfvénic turbulence is based
on Alfvén waves with wavevectors along the magnetic field. This is not true for the strong
Alfvénic turbulence which, similar to its hydrodynamic counterpart, can be described
in terms of eddies‡. However, contrary to Kolmogorov turbulence, in the presence of
dynamically important magnetic field eddies become anisotropic. At the same time, one
can imagine eddies mixing magnetic field lines perpendicular to the direction of magnetic
field. For the latter eddies the original Kolmogorov treatment is applicable resulting
in perpendicular motions scaling as vl ∼ l

1/3
⊥ , where l⊥ denotes eddy scales measured

perpendicular to magnetic field. These mixing motions induce Alfvénic perturbations
that determine the parallel size of the magnetized eddy. The key stone of the GS95
theory is critical balance, i.e. the equality of the eddy turnover time l⊥/vl and the period
of the corresponding Alfvén wave ∼ l‖/VA , where l‖ is the parallel eddy scale and VA

is the Alfvén velocity. Making use of the earlier expression for vl one can easily obtain
l‖ ∼ l

2/3
⊥ , which reflects the tendency of eddies to become more and more elongated as

the energy cascades to smaller scales (see Beresnyak, Lazarian & Cho 2005).

† Reynolds number Re ≡ Lf V/ν = (V/Lf )/(ν/L2
f ) which is the ratio of an eddy turnover

rate τ−1
eddy = V/Lf and the viscous dissipation rate τ−1

dis = η/L2
f . Therefore large Re correspond

to negligible viscous dissipation of large eddies over the cascading time τcasc which is equal to
τeddy in Kolmogorov turbulence.

‡ The description in terms of interacting wavepackets or modes is also possible with the
corresponding wavevectors tending to get more and more perpendicular to the magnetic field as
the cascade develops.
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Table 1
Regimes and ranges of MHD turbulence

Type Injection Range Motion Ways
of MHD turbulence velocity of scales type of study

Weak VL < VA [L, ltr an s ] wave-like analytical

Strong
subAlfvenic VL < VA [ltr an s , lm in ] eddy-like numerical

Strong
superAlfvenic VL > VA [lA , lm in ] eddy-like numerical

L and lm in are injection and dissipation scales
ltr an s and lA are given by Eq. (3.2) and Eq. (3.1), respectively.

It is important to stress that the scales l⊥ and l‖ are measured in respect to the system
of reference related to the direction of the local magnetic field “seen” by the eddy. In
terms of mixing motions, it is rather obvious that the free Kolmogorov-type mixing is
possible only in respect to the local magnetic field of the eddy rather than the mean
magnetic field of the flow.

GS95 theory assumes the isotropic injection of energy at scale L and the injection
velocity equal to the Alfvén velocity in the fluid VA , i.e. the Alfvén Mach number MA ≡
(VL/VA ) = 1, where VL is the injection velocity. Thus it provides the description of trans-
Alfvénic turbulence. This model was later generalized for both sub-Alfvénic, i.e. MA < 1,
and super-Alfvénic, i.e. MA > 1, cases (see Lazarian & Vishniac 1999 and Lazarian 2006,
respectively; see also Table 1). Indeed, if MA > 1, instead of the driving scale L for one
can use another scale, namely lA :

lA = L(VA/VL )3 = LM−3
A (3.1)

which is the scale at which the turbulent velocity equals to VA . For MA � 1 magnetic
fields are not dynamically important at the largest scales and the turbulence at those
scales follows the isotropic Kolmogorov cascade vl ∼ l1/3 over the range of scales [L, lA ].
At the same time, if MA < 1, the turbulence obeys GS95 scaling (also called “strong”
MHD turbulence) not from the scale L, but from a smaller scale ltrans given by:

ltrans ∼ L(VL/VA )2 ≡ LM 2
A (3.2)

While in the range [L, ltrans ] the turbulence is “weak”.
One also should keep in mind that the notion “strong” should not be associated with

the amplitude of turbulent motions but only with the strength of the non-linear inter-
action. As the weak turbulence evolves, the interactions of wave packets get stronger
making the turbulence strong. In this case, the amplitude of the perturbations can be
very small.

4. Comparison with Observations
4.1. Diagnostics of Neutral Phase Turbulence: Velocity and Density Spectrum

There have been many works over the last ten years which study the density/velocity
power spectrum in radio PPV cubes of neutral hydrogen in both the Galaxy and Mag-
ellanic clouds in the context of turbulence (see Crovisier & Dickey 1983; Stanimirovic
et al. 1999; Stanimirovic & Lazarian 2001; Burkhart et al. 2010 and references therein).
The slope of the power spectrum not only gives information on the cascading rate but
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it is known to depend on the sonic Mach number (see Figure 2). Here we briefly outline
application of the spatial column density power spectrum to the Small Magellanic Cloud
(SMC, see Burkhart et al. 2010) and the application of the velocity coordinate spectrum
technique (VCS) to high latitude HI emission from the GALFA survey (see Chepurnov
et al. 2010). Both of these studies are particularly interesting in the context of these
proceedings as they connect the observations with numerical simulations and theoretical
predictions, rather then just blindingly applying the power spectrum to the data.

4.1.1. The Small Magellanic Cloud
Stanimirovic & Lazarian (2001) estimated the power-law slope of -3.3 for the spatial

power spectrum of the HI column density image of the SMC. Burkhart et al. 2010 mea-
sure the power spectrum slope for simulated column density maps with varying sonic
and Alfvénic Mach numbers and compared the resulting power law slopes with the SMC
slope. Figure 3 shows how the power spectral slope changes with the sonic Mach number
in the simulations, while the straight line denoting the results for the SMC. The slope
is increasingly shallow for supersonic models and levels off for very high Mach num-
ber turbulence. This is expected as higher Mach number turbulence has more density
irregularities and more power on small scales.

Figure 3. Power spectral slope vs. sonic Mach number for a sub-Alfvénic (MA = 2.0, dotted
line) and a super-Alfvénic (MA = 0.7, dashed line) simulation. The spectral slope of the SMC
(−3.3) is shown as a straight line.

Burkhart et al. 2010 found via the analysis of the column density power spectrum
that the SMC was supersonic with Mach numbers ranging from Ms ≈ 2.0 −Ms ≈ 4.0.
They then compared these Mach numbers with those derived from a purely observational
method which utilizes information on spin temperature (derived from absorption lines)
and the kinetic temperature (derived from the FWHM of HI emission). The resulting
cold gas Mach number histogram peaked at Ms = 3.5 − 4, which is in agreement with
the range found from the spectral slope analysis derived from numerical simulations.

4.1.2. Galactic High Latitude HI
The spatial column density spectrum is limited for studies of the turbulence spectra,

as it does not contain any information on velocity. Fortunately, several statistics have
been developed to study the power spectrum of velocity from the observations. These
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Figure 4. Fitting of turbulent models and observational data for different resolutions. Applica-
tion of the VCS high latitude HI Arecibo data. The spatial resolution of the maps was decreased
to illustrate the VCS in both high and low resolution regimes. ε here is the power spectrum
index, which for the Kolmogorov turbulence is 11/3. The measured ε is in the range [3.52; 3.57].
The energy injection scale is 94 pc.

include the Velocity Coordinate Spectrum (VCS, see Lazarian & Pogosyan 2006), Velocity
Channel Analysis (VCA, Lazarian & Pogosyan 2004), and velocity centroids (Esquivel
& Lazarian 2005, only for subsonic turbulence).

Chepurnov et al. 2010 presented a first taste of the power of the VCS technique on high
latitude HI data via the GALFA survey (see Peek et al. 2011). Figure 4 shows the results
of their VCS-analysis of galactic high latitude data. Rather than first correcting for the
gas thermal broadening, then fitting the power law into the VCS spectrum as discussed
in Lazarian & Pogosyan (2006), they used analytical expressions to find the model (which
depends on the gas temperature, injection scale of the turbulence and turbulent energy)
that fits the data set corresponding to VCS for data at different spatial resolutions. The
resolutions play for the VCS a similar† role as the thickness of slices Δv for the VCA
and therefore PPV data cubes at different resolutions are non-trivially related, as far as
the VCS analysis is concerned.

Fitting data to the models opens ways of studying non-power law turbulence, e.g.
turbulence at the injection or dissipation scales. It also allows for studies of turbulence
when thermal broadening is important. The results in Figure 4 show that the model of
turbulence with spectrum steeper than Kolmogorov, i.e. with Ev ∼ k−1.9 , the temper-
ature of the cold gas around 130K and a single injection scale of 100pc (corresponding
to the scale of supernova). The fact that the temperature of the gas, the injection scale
and turbulent energy can be recovered via the VCS is very encouraging for studies of
turbulence, as these parameters are critical to many astrophysical motivated issues such
as the star formation rate, heating in the ISM, and the galactic fountain.

† The important difference is that with VCS, we can restore the velocity spectrum for any
resolution.
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Figure 5. Top: Observational P (left) and |∇P| (right) from the SGPS data used in Gaensler
et al. 2011. Bottom: Subsonic MHD simulation with P (left) and |∇P| (right).

4.2. Diagnostics of Ionized Phase Turbulence: Polarization Gradients
4.2.1. Polarization Gradients

Several authors have discussed the prospects of using radio polarization maps to study
turbulence (see Gaensler et al. 2011, Burkhart, Lazarian & Gaensler 2012, and references
therein). Faraday rotation maps of linearly polarized radio signals are especially promis-
ing as they provide very sensitive probes of fluctuations in magnetic field and ionized gas
density. In these proceedings we highlight the use of polarization gradients to study ISM
turbulence in the ionized phase of the ISM, although we would like to also draw attention
to many other studies that employ PDFs of the emission measure to study turbulence in
this phase (see Hill et al. 2008; Berkhuijsen & Fletcher 2008).

The use of spatial gradients to highlight small fluctuations seen in polarization maps
was first discussed by Gaensler et al. (2011). When the spatial gradient is applied to
maps of vector P = (Q,U) a complex web of filamentary structures is revealed. These
filaments (see right column of Figure 5 for an example) were interpreted by Gaensler
et al. (2011) and Burkhart, Lazarian, & Gaensler 2012 as rapid fluctuations in ne and B
along the LOS due to turbulence.

Maps of |∇P| change morphology and intensity as turbulence transitions from subsonic
to supersonic. Burkhart, Lazarian, & Gaensler (2012) analyzed |∇P| maps from both
observations and simulations using PDFs and a topology tool known as the Genus (see
Figure 2). They found that one could quantify the sonic Mach number using a statistical
analysis of the maps of |∇P| .

4.2.2. Extending the “Big Power Law” of Electron Density Fluctuations
Perhaps one of the most famous early pieces of evidence for the turbulent ionized ISM

was in the analysis of the spectrum of electron scintillation and scattering as provided
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Figure 6. Turbulence in the interstellar gas as revealed by electron density fluctuations: “Big
Power Law in the Sky” in Armstrong et al. (1995) extended using WHAM data. Modified from
Chepurnov & Lazarian (2010).

by Armstrong et al. 1995. These results have recently been expanded upon using the
Wisconsin Hα Mapper (WHAM) data on electron density fluctuations (Chepurnov &
Lazarian 2010). Figure 6 shows the turbulent power density plotted against the inverse
of the scale length, with data at large scales, i.e. at small wavenumbers q. The power law
extends from pc scales down to AU scales.

4.3. Diagnostics of the Magnetic Field

One important point of GS95 (reviewed in Section 3) is that the mixing motions associ-
ated with Alfvénic turbulence induce scale-dependent anisotropy, which increase as the
cascade progresses. The observed anisotropy is seen strongly in motions perpendicular to
the field and increases with increasing magnetic field. This effect can be seen via analysis
of structure functions of velocity centroid maps, which are available from radio obser-
vations and synthetic observations. Esquivel & Lazarian (2011, henceforth EL11) and
Leão et al. (2012, in prep., henceforth LBLM12) applied structure functions to velocity
centroid maps of synthetic observations and found that the observed anisotropy could be
used to determine the strength of the perpendicular component of the magnetic field.
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Figure 7. Degree of anisotropy in all the models averaged over scales from 10 grid points to
1/5 of the computational box. The left panel is for the unaltered PPV Centroid map and the
right panel is for the PPV centroid map with Gaussian white noise added. The horizontal axis
corresponds to the sonic Mach number, and the Alfvénic Mach number is indicated by the
various symbols: x symbols for cases with MA = 0.2, squares represent cases with MA = 0.3,
triangles for MA = 0.7, and asterix for MA = 7.5 . In all panels the results are obtained by
averaging the two cases where the LOS is perpendicular to the mean field. The error bars show
the maximum variation of the averaging procedure (including variation across scales).

The method outlined in EL11 and LBLM12 is as follows: the structure function
(SF (r) = 〈[f(x)− f(x+ r)]2〉) of the velocity centroid maps is calculated and the degree
of anisotropy is quantified by taking the ratio of the structure functions in two perpendic-
ular directions to the LOS, usually intersecting the distribution center, as for example,
SFC,z (x, 0)/SFC,z (0, y). The structure function is a two dimensional distribution that
can be approximately circular for isotropic turbulence and elliptical for anisotropic tur-
bulence (see EL11 and LBLM12 for details). When looking parallel to the mean magnetic
field the degree of isotropy is nearly 100% while when looking perpendicular to the mean
magnetic field the structures become increasingly anisotropic, as is expected from the
predictions of the GS95 theory.

Fig. 7 shows a comparison of the isotropy degree as a function of Ms for synthetic
observations with four different magnetic field strengths using velocity centroid maps
created with both the original 3D density (left panel) and for density with Gaussian
white noise added to further mimic the telescope resolution (right panel). It is clear
that the degree of anisotropy depends mostly on the Alfvénic Mach number: as values
of the magnetic field increase, the level of anisotropy increases. Centroid anisotropy also
shows a weak dependence on Ms , but only for moderate to low magnetizations. One
can attribute such dependence to the original density field (i.e., arising from shocks in
supersonic turbulence).

The dependence on the Alfvénic Mach number and a weak dependence on Ms shown
in EL11 and LBLM12 are encouraging. While the sonic Mach number can be obtained
by a variety of techniques (Kowal et al. 2007; Burkhart et al. 2009), the Alfvénic Mach
number is not so straightforwardly obtained. With the use of the technique outlined here,
along with others such as the Chandrasekhar-Fermi technique, (see, for instance, Falceta-
Gonçalves et al. 2008) the Alfvénic Mach number can be quantified in the observational
data.
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5. Concluding Remarks
Observational studies of ISM turbulence are extremely important. The wealth of ob-

servational data currently available and coming to online due to the surveys, such as
LOFAR, calls for techniques that can make use of this data in order to study turbu-
lence that critically affects most astrophysical processes. From the observational data
one would like to obtain the characteristics of turbulence, e.g. intensity of its driving, im-
portance of magnetic eld in the dynamics of the media. In these proceedings we stressed
that an observational understanding of MHD turbulence is best guided by the advances in
numerical simulations (via the creation of synthetic observations) and theoretical predic-
tions. We briefly reviewed the GS95 theory of MHD turbulence to show that the primary
quantities needed to understand turbulence are the cascade rate, the sonic Mach number,
and Alfvénic Mach number. Then we reviewed several works that derive these quanti-
ties via the use of newly developed statistic techniques that can be applied to both the
neutral and ionized ISM.

The goal of such studies to to present a consistent picture of the turbulent ISM. That
is, not to use just one statistical tool to obtain the desired parameters, but rather to use
multiple tools simultaneously. Additional ways of studying turbulence are very valuable as
the ISM is very complex. Furthermore, different measures are more sensitive to different
phases of the ISM. This consistency of observations with numerical simulations and
theory provides further evidence of the overwhelming importance of MHD turbulence in
the ISM.
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Burkhart, B., Falceta-Gonçalves, D., Kowal, G., & Lazarian, A. 2009, ApJ, 693, 250
Burkhart, B., Stanimirovic, S., Lazarian, A., & Grzegorz, K., 2010, ApJ, 708, 1204
Burkhart, B. & Lazarian, A., 2011, ASPC, 44,9
Burkhart, B., Lazarian, A., & Gaensler, B., 2012, ApJ, 708, 1204
Burkhart, B. & Lazarian, A., 2012, ApJ, 755, 19
Chepurnov, A., Lazarian, A., Gordon, J., & Stanimirovic, S., 2008, ApJ, 688, 1021
Chepurnov, A. & Lazarian, A. 2010, ApJ, 710, 853
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