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Abstract. The standard mixing length model of convection is ill behaved at the centre of a star
since the pressure scale height H, = P/(pg) — oo as r — 0, and the convective flux remains
non zero at r = 0. We propose a modifcation of this model of convection that has the correct
behaviour in the central regions of a star and smoothly changes to the standard MLT away from
the centre.
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1. The standard mixing length model

For simplicity we neglect radiative cooling and take viscous drag to be half the buoy-
ancy term, in which case the equations governing the mixing length model are (cf. Bohm-
Vitense 1958)
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Downwards moving eddies have §T < 0,v < 0 and so contribute a positive (upwards)
energy flux. Upwards moving eddies have §7 > 0,v > 0 and likewise contribute a positive

energy flux.
Multiplying the first two equations in (1) by P/(dP/dr) = —H, = —P/(pg) gives
d(éT) AV dv? P dlogT dlogT
dlog P T dlogP pT where v dlog P dlogP ) , 2)

Eddies are considered on average to have come from a distance £/2 away, where ¢ is the
mixing length, so integrating from ro = r + ¢/2 to r, and from r — £/2 to r, gives

Fup = ;cppT\/i (Av)*? [log (M)T 3)

Taking the mixing length ¢ = aH,, gives the standard result

_1 P 3/2 2
F = 4cppT R (AV) 7 a”. (4)

98

https://doi.org/10.1017/51743921307000233 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921307000233

Mixing length model of stellar cores 99

2. Solution near the centre

In the central regions this analysis is no longer valid since dP/dr — 0, H, — oo as
r — 0, and the total flux must anyway go to zero whereas the expression in equation (4)
remains non zero.

Consider a point X at small r: a downward moving eddy starting at rg = r + £/2 has
a negative 07" and negative v and so contributes a positive outward energy flux the same
as Fyown in Eq. (3). However the upwards eddy at X started a distance £/2 below X and
hence at r1 = (¢/2 — r) on the other side of the origin. It then accelerated downwards to
the origin with negative 0T and v then decelerated upwards to arrive at X with negative
6T but now a positive v, and so contributes a negative upwards flux. Since the motion
of the eddy is taken to be adiabatic, the magnitude of [6T| and |v| are given by taking
an eddy starting at /2 — r and moving downwards to r. The two fluxes are then

Fiown = ;cppT\/g(AV)?’/Q [log (P(;;é%ﬂ 2 ,
Fup=—3 M@ (a9)"" g (13(1%1))} (5)

In the neighbourhood of r = 0 the pressure P has the series expansion

r2 P 3P,
P=P.(1——5+... H=-———— =2rH,= —".
” ( H? * ) ’ ¢ dP/dr? "o 2w Gp? (©)
Substituting for P(r), P(¢/2 4+ r), P(£/2 — r), taking the limit for small r and setting
{ = «aH, gives
1 P 32 T 3
F=—c,pTy|— (A —
2Cpp 2p ( v) Hc « (7)3
which goes to zero o r, as it should since the radiative flux F,,q; and total flux F' go to
Zero o r.
The results for » >> ¢ and for » << £ can be combined in the approximate expression
1 P 2
F = chppT1 / % (AV)3/2 a?, where f = min (;CT, 1) . (8)
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