
Nutritional influences on some major enteric 
bacterial diseases of pigs 

John R. Pluske*, David W. Pethick, Deborah E. Hopwood and 
David J. Hampson

Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, 
WA 6150, Australia

There are several enteric bacterial diseases and conditions of pigs that require
control to prevent overt disease, to reduce morbidity and mortality, and to
improve the efficiency of production. Traditionally, veterinarians, feed manu-
facturers and producers have relied upon antibiotics and minerals (for ex-
ample, ZnO, CuSO4) in diets for a large part of this control. However, recent
trends, particularly in Europe, are to reduce antimicrobial use and seek alter-
native or replacement strategies for controlling enteric bacterial diseases. The
majority of these strategies rely on ‘nutrition’, taken in its broadest sense, to
reduce the susceptibility of pigs to these diseases. Evidence to date suggests
that specific dietary interventions, for example feeding very highly-digestible
diets based on cooked white rice, can reduce the proliferation of a number of
specific enteric bacterial infections, such as post-weaning colibacillosis. No
simple and universal way to reduce susceptibility to pathogens in the gas-
trointestinal tract has been identified, and the underlying basis for many of
the reported positive effects of ‘nutrition’ on controlling enteric infections
lacks robust, scientific understanding. This makes it difficult to recommend
dietary guidelines to prevent or reduce enteric bacterial diseases.
Furthermore, some diseases, such as porcine intestinal spirochaetosis caused
by Brachyspira pilosicoli, are sometimes associated with other pathogens
(co-infections). In such cases, each pathogen might have different nutrient
requirements, ecological niches and patterns of metabolism for which a vari-
ety of dietary interventions are needed to ameliorate the disease. Greater
understanding of how ‘nutrition’ influences gut epithelial biology and
immunobiology, and their interactions with both commensal and pathogenic
bacteria, holds promise as a means of tackling enteric disease without antimi-
crobial agents. In addition, it is important to consider the overall system (i.e.
management, housing, welfare) of pig production in the context of control-
ling enteric bacterial diseases. 
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Introduction

A variety of commensal and pathogenic bacterial species colonise the gastrointestinal tract of
the pig. The pathogenic bacteria can cause clinical disease, morbidity and mortality, and are a
major source of economic loss to the pig industry worldwide. A number of distinct genera and
species of bacteria are involved, and each of these pathogens tends to inhabit a different region
of the gastrointestinal tract and is generally associated with a different age or class of pig. For
example, post-weaning colibacillosis (PWC) caused by Escherichia coli specifically affects the
small intestine in the first 3–10 d after weaning. The major form of control of these enteric
infections is antimicrobials, which are provided to treat overt disease, to provide prophylaxis in
situations where a disease (or diseases) is (are) liable to occur, and to improve growth rates in
the absence of disease (the ‘growth-promoting’ effect of antibiotics) (Hampson et al. 2001).

In some countries though, particularly in Europe, there have been widespread bans (both leg-
islative and voluntary) placed on the use of antimicrobials in pig diets for growth promotion. This is
largely because of rising fears regarding the implications for both animal and human health (i.e.
food safety) of continued use of antimicrobials in the intensive livestock industries, although other
influences such as the establishment and/or protection of export markets for pork also play a role.
The prolonged use of antimicrobials most likely selects for the survival of resistant bacterial species
or strains, and genes encoding this resistance can be transferred to other formerly susceptible bacte-
ria. A number of bacterial pathogens of pigs are showing resistance to a range of antimicrobial
drugs (Barton, 1999). Not only is this reducing the number of antimicrobials available to the indus-
try to control bacterial infections, but this resistance also poses risks to human health. For example,
the transfer of resistant zoonotic pathogens such as Salmonella typhimurium and Campylobacter
jejuni from pigs to man has been reported, and the direct or indirect transfer of resistance genes
from the porcine gastrointestinal microflora to human bacterial strains also poses considerable risks
(Barton, 2000; Hampson et al. 2001). Concerns about these issues are leading to reduced availabil-
ity of antimicrobial agents for use in the pig industry. Consequently, it is important to develop
means both of controlling bacterial infections and promoting growth in pigs without recourse to the
use of antimicrobials and certain minerals, such as ZnO and CuSO4. In this regard, ‘nutrition’, in its
broadest sense, has attracted enormous interest as a means of ameliorating enteric infections in pigs,
and the search for antimicrobial alternatives or replacements will continue as pressure for the com-
plete ban of growth-promoting antimicrobials in the pig industry continues to mount.

The purpose of the present review is to assimilate past and current knowledge pertaining to
the use of nutrition, in its broadest sense, and its roles in causing and modulating major enteric
bacterial diseases in pigs. The review will first describe the ecology of the gastrointestinal tract
in relation to the genera and species present and their interactions with the host. This is followed
by a discussion of the major enteric diseases in pigs that cause production and economic losses,
and how the use of nutrition is involved in both the aetiology of the disease and in its modula-
tion. Although important associations between gut immune function and disease are recognised,
the gut-associated lymphoid tissue and its development will not specifically be reviewed here.
The reader is directed towards several excellent recent reviews in this area by Kelly et al. (1994),
Deplancke & Gaskins (2001), Gaskins (2001), Kelly & King (2001) and Stokes et al. (2001).

The ecology of the gastrointestinal tract

What comprises the normal microflora?

The porcine intestinal microflora is established within 48 h after birth via ingestion of maternal
faeces, and involves complex successional changes until dense, stable populations colonise the
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gastrointestinal tract (Mackie et al. 1999). The microbiota is characterised by its high popula-
tion density, extensive diversity, and complexity of interactions throughout the gastrointestinal
tract. A distinction between indigenous (autochthonous) and non-indigenous (allochthonous)
bacteria is required for an ecological understanding of colonisation, succession and mecha-
nisms of host interactions. Autochthonous (indigenous) bacteria are those that have co-evolved
with the host and colonise all habitats and niches in the gastrointestinal tract, whereas
allochthonous (non-indigenous) bacteria may pass through specific microhabitats, being
derived from food, water or another gut habitat, and do not colonise the tract (Dubos et al.
1965). Colonisation describes the process by which a population of bacteria in the gastrointesti-
nal tract becomes stable in size over time without the need for periodic reintroduction (Gaskins,
2001). These bacteria colonise at a rate that equals or exceeds their rate of washout or elimina-
tion from an intestinal habitat. Pathogens can be autochthonous or allochthonous, and generally
cause disease when the gut ecosystem is disturbed in some manner.

The stomach and proximal small intestine (duodenum) contain relatively low numbers of
bacteria (103–105 bacteria/g or ml of contents) due to low pH and/or rapid digesta flow. Whilst
the piglet is still suckling, the dominant bacteria within the stomach and small intestine tend to
be Lactobacillus spp. and Streptococcus spp. (Jensen, 1998). In the proximal small intestine,
digesta flow rate and the rate of bacterial washout exceeds the maximal growth rates of most
bacterial species, and the bacteria that are present typically adhere to the mucus or epithelial
cell surface (Gaskins, 2001). In contrast, the distal small intestine harbours a more diverse and
numerically greater (108 bacteria/g or ml of contents) population of bacteria. The large intestine
is the major site of microbial colonisation because of the high residence time of the digesta. The
luminal contents of the colon support in excess of 400 different bacterial species with numbers
as high as 1010 and 1011 culturable bacteria/g (wet weight) of digesta (King & Kelly, 2001).
Characterisation of the intestinal microbiota has been conducted using anaerobe culturing tech-
niques, and numerous studies show that the major bacterial groups isolated from the pig intes-
tine are Streptococcus, Lactobacillus, Prevotella, Selenomona, Mitsuokella, Megasphera,
Clostridia, Eubacteria, Bacteroides, Fusobacteria, Acidodaminococci, and the Enterobacteria
(Salanitro et al. 1977; Allison et al. 1979; Russell, 1979; Robinson et al. 1981; Moore et al.
1987; Jensen, 2001) (Table 1). The hindgut flora is considered both diverse and stable, with the
many species and strains appearing to coexist without one or few ever becoming dominant.
Further information pertaining to the composition of the microbiota can be found in reviews by
Stewart (1997), Mackie et al. (1999), Gaskins (2001), Jensen (2001) and Leser et al. (2002).

In addition to a proximal to distal gradient in bacterial numbers in the gastrointestinal tract,
Gaskins (2001) described radial distributions of microbes within each segment of the gut. The
four microhabitats for the commensal flora include: the intestinal lumen; the unstirred mucus
layer, or layer that covers the mucosal epithelium; the deep mucus layer found in the crypts; the
surface of the intestinal epithelial cells. The diversity of the hindgut microflora and that of the
distal region of the small intestine reflects in part the types of nutrient substrates found in these
regions. The diversity of bacterial populations within a particular ecosystem is directly related to
the number and composition of limiting nutrients, since each limiting nutrient will support the one
bacterial species or strain that is most efficient in utilising it (Gaskins, 2001). Moreover, the
stability of these bacterial populations will also be influenced by the inhibitory actions of a number
of compounds such as volatile fatty acids, H2S, deconjugated bile salts, NH3 and bacteriocins
(Gaskins, 2001). In this regard, it is likely that certain nutrients and their associated physico-
chemical effects play a major role in maintaining the balance of the microflora in these parts of the
gastrointestinal tract, and subsequently in determining whether a pathogenic bacteria proliferates to
cause overt expression of disease. 
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Current studies in microbial ecology in the pig

Concerns associated with the loss of growth-promoting antibiotics and minerals such as ZnO
and CuSO4 in the pig industry have caused renewed interest in studying the microbial ecology
of the gastrointestinal tract. Not only has this area received little scientific attention in the pig,
but it has also raised many questions concerning the composition, structure and stability of
ecosystems in the gut as well as the activity and function of individual inhabitants. Increased
understanding of these associations is pivotal to determining both the efficacy of antimicrobial
‘alternatives’ or ‘replacements’, and developing new methods to control enteric diseases.
Nevertheless, current knowledge of microbial diversity and ecology is based largely on anaero-
bic culture techniques that, as stated by Gaskins (2001), are limited by three major factors: cul-
turing can only be performed on those organisms for which nutritional and growth requirements
are known; there is a lack of a phylogenetically based classification scheme; there is unavoid-
able bias introduced by culture-based enumeration and characterisation techniques because of
different survival rates in vitro.

Modern molecular techniques based on, for example, comparative sequence analysis of
small subunit ribosomal RNA (16S rRNA) molecules, can be used to provide molecular charac-
terisation (Simpson et al. 1999; Tannock, 1999), while at the same time providing a classifica-
tion system that predicts natural evolutionary relationships (Pace, 1997). A recent study of
microbial diversity in the mucosal layer of the pig colon with molecular analysis compared
with culture-based methods highlights the problems mentioned earlier. Pryde et al. (1999)
demonstrated that Streptococci spp. and Lactobacilli spp. comprised the majority of isolates
recovered (54 %) from the colon wall by culturing; however these groups accounted for only
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Table 1. The predominant bacteria cultivated from the small and large intestines of the pig 
(total isolates 1679) (from Jensen, 2001)

Proportion of isolates (%)

Isolate number Total SI* Caecum* Colon* Similarity to known bacterial species

1. Escherichia coli 22·0 49·0 9·6 5·5 E. coli (99·8 %)
2. Streptococcus alactolyticus 13·5 18·2 10·7 8·4 S. alactolyticus
3. Prevotella sp. 1 10·0 0·0 17·0 1·0 UB adhesin 94 (98·1 %)†
4. Streptococcus hyointestinalis 9·5 11·8 8·1 6·3 S. hyointestinalis
5. Prevotella sp. 1a 2·9 0·0 6·3 4·8 P. oulora (92·4 %)†
6. Lactobacillus acidophilus and jonsonii 2·2 0·0 3·2 3·6 L. jonsonii (99·7 %)
7. Lactobacillus sp. 2 2·0 0·3 1·5 2·2 L. vitulinus (93·9 %)†
8. Selenomonas sp. 1 1·9 0·0 2·3 3·6 S. ruminantum (94·7 %)†
9. Mitsuokella sp. 1·7 0·7 1·9 2·7 M. multiacidicus (97·8 %)

10. Megasphera sp. 1·7 0·0 1·3 3·9 M. elsdenii (93·7 %)†
11. Acidaminococcus fermentans 1·5 0·3 4·2 1·5 A. fermentans (99·4 %)
12. Clostridium perfringens 1·5 2·7 1·5 0·4 C. perfringens (99·7 %)
13. Eubacterium sp. 1·1 0·0 1·3 1·4 Butyrate-producing bacteria (96·6 %)†
14. Prevotella sp. 13 1·1 0·0 0·0 1·3 Not known (<97 %)†
15. Bacteroides sp. 1 1·0 0·2 2·7 0·0 B. vulgatus (99·5 %)
16. Megasphera elsdenii 1·0 0·0 2·5 0·4 Did not survive freezing
17. Fusobacterium mortiferum 1·0 2·9 0·0 0·0 F. mortiferum (99·9 %)
18. Eubacterium sp. B 0·4 0·0 1·0 0·9 UB adhesin 420 (95·6 %)†

SI, small intestine; UB, uncultured bacteria.
*In the small intestine there were 579 isolates, in the caecum 529 isolates and in the colon 571 isolates

recovered. Rows and columns do not add up to 100 % because here is shown only the predominant
isolates that have been identified; there are > 600 isolates at current estimations, hence the numbers do
not equal 100 %.

† Isolates could not be assigned to any known species.
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33 % of the sequence variation for the same sample from random cloning. In addition, 59 % of
randomly cloned sequences showed less than 95 % similarity to database entries or sequences
from cultivated organisms. Data presented in Table 1 by Jensen (2001) similarly demonstrate
the shortcomings of traditional culturing techniques, since numerous bacterial species present
in the intestines belong to unknown species. As suggested by Jensen (2001), despite the major-
ity of the larger bacterial populations being represented using culture techniques, it is likely that
small populations performing key ecological functions may escape detection. 

There is a dearth of studies investigating the bacterial ecology of the pig’s gastrointestinal
tract, especially using molecular techniques. Simpson et al. (1999) used denaturant gradient gel
electrophoresis to measure changes in bacterial populations in the gastrointestinal tract of the
pig between 18 d and 6 months of age. These workers detected differences in populations
between different gut compartments and specific locations within each compartment. Similarly,
Simpson et al. (2000) studied the diversity and stability of the faecal bacterial microbiota in
weanling pigs after introduction of an exogenous Lactobacillus reuteri strain (MM53). The use
of such techniques, in which individual bacterial species can be identified, is a potentially pow-
erful tool for monitoring changes in the microbiota of individual pigs in relation to nutritional
changes and disease. In this regard, Leser et al. (2002) have recently compiled a library of 4270
cloned 16S rDNA sequences representing 375 phylotypes from the ileum, caecum or the colon
of pigs aged 12–18 weeks. The design of specific oligonucleotide probes to characterise the
phylotypes will facilitate the analysis of many samples to characterise the responses of the
intestinal bacterial community to interventions such as antibiotic replacements, probiotics, diets
and so on. 

Interactions between the luminal bacteria and the gut epithelium

In conjunction with the renewed interest in identifying and quantifying the microbial ecology
of the pig’s gastrointestinal tract, a resurgence of interest has occurred in examining the mecha-
nisms of action and extent of ‘cross talk’ between the enteric bacteria and the host (for a recent
review, see King & Kelly, 2001). The chemistry and distribution of bacterial binding sites on
gut mucosal surfaces play important roles in determining host and tissue susceptibility and in
triggering host responses, especially in young animals (Kelly & King, 2001). Individual mucin
carbohydrates have the capacity either to repel or bind to microbial surface adhesins. Enteric
bacterial strains that cause diarrhoea, for example, are generally classified according to their
lectins (fimbria), which constitute proteinaceous appendages that protrude from the bacterial
surface and recognise sugar moieties of glycoproteins and/or glycolipids on epithelial surfaces.
The synthesis of these appendages (pili) and the production of enterotoxins are key virulence
factors that enable enteric pathogens to colonise the intestines (Kelly & King, 2001). Some evi-
dence suggests that dietary proteolytic treatment of the glycoprotein receptors can prevent
attachment of enterotoxigenic E. coli. For example, Mynott et al. (1996) and Chandler &
Mynott (1998) reported that feeding bromelain, a proteolytic extract from pineapple stems, sig-
nificantly reduced K88 (+) attachment in the small intestine commensurate with decreased diar-
rhoea and improved weight gain in piglets.

Protection of the epithelium against the microbes lies in the capacity of mucin carbohy-
drates, particularly in the small intestine, to either repel or bind microbial adhesins (Belley et
al. 1999). The ability to bind to mucin carbohydrates enables some bacterial groups, both com-
mensal and pathogenic, to colonise the mucus layer. Gaskins (2001) commented that bacteria
living in the mucus layer prevent the attachment of pathogenic microbes by occupying avail-
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able binding sites, although further evidence in vivo to support this claim is required. This is
likely to be an active area of future research as new techniques are developed to examine the
mucus layer without disrupting its integrity.

The nature of the diet, the microbial flora, and interactions between them influence the
composition and functional characteristics of intestinal mucins (Sharma et al. 1997). It is likely
that many enteric bacteria produce mucolytic or glycosidic enzymes that alter the chemical
nature of the mucins, and an ability to degrade mucus has been documented in both commensal
bacteria and pathogens (for example, see Deplancke & Gaskins, 2001; Kelly & King, 2001).
The process of mucolysis (Deplancke & Gaskins, 2001; Gaskins, 2001) would compromise
epithelial barrier function, leading to possible bacterial translocation into the lamina propria
and subsequent recruitment of inflammatory cells. This can be perceived as being a logical
defensive response by the host, but this response uses energy that would otherwise be directed
towards carcass gain and may also predispose to disease. A recent study showed that inclusion
of galactose in the diet of weanling pigs modified the mucin (glycoprotein) composition com-
pared with a control diet (Pestova et al. 2000), leading these authors to surmise that this dietary
change might have limited the microbial degradation of mucins.

The mucus-secreting goblet cells play a crucial role in intestinal homeostasis, especially
with regard to how enteric pathogens cause disease and what factors (for example, dietary,
environmental) trigger these events. Changes in both the number of goblet cells and the chemi-
cal composition of the mucus layer occur under conditions of intestinal ‘insults’, such as wean-
ing (Dunsford et al. 1991), dietary change (Brunsgaard, 1998), and total parenteral nutrition
(Ganessunker et al. 1999). For example, Ganessunker et al. (1999) compared goblet cell and
immune-related parameters in neonatal piglets fed a milk replacer intravenously via total par-
enteral nutrition with those fed the same diet enterally. Total goblet cell numbers in the jejunum
and ileum and sulfomucin-positive goblet cells within ileal villi were increased in total par-
enteral nutrition-fed pigs v. enterally-fed pigs. Furthermore, goblet cell and mucin subtype
alterations were correlated to local expansion of T-lymphocyte populations.

At present the taxonomy and distribution of bacterial groups, both commensal and patho-
genic, which preferentially reside within the intestinal mucus layer must be better defined to
ascertain the role of ‘normal’ gut bacteria in mucogenesis and mucolysis. It is generally thought
that a bacterial consortium comprising several genera provide the necessary enzymes for
mucolysis and perform mucin degradation in vivo. Deplancke & Gaskins (2001) commented
that microbial populations residing in mucus are poorly (if at all) characterised for the pig. As
goblet cells are a key component of epithelial defence, then a greater understanding of mecha-
nisms regulating mucin production and degradation by bacteria is necessary.

Major enteric bacterial diseases of the pig

In the future, increasing attention will be directed towards finding practical and cost-effective
solutions to replace growth-promoting antimicrobials in diets for pigs. One solution is to find
dietary means of ameliorating intestinal diseases. Some of these are already well established in
the pig industry, for example the routine inclusion of pharmacological levels of ZnO and/or
CuSO4 in diets. The following discussion reviews some of the major enteric bacterial diseases
of pigs in relation to aspects concerning nutrition. It will attempt to identify areas and opportu-
nities whereby nutrition may predispose pigs to enteric disease, and can be used prophylacti-
cally or therapeutically to ameliorate disease, in the absence of antimicrobial agents. 
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Post-weaning colibacillosis 

Pathogenesis of post-weaning colibacillosis. PWC is a disease of the small intestine. Although
digesta flows relatively quickly through the small intestine, the pathogenic E. coli that prolifer-
ate in the condition possess fimbriae, or pili, that attach to the enterocytes lining the small
intestinal villi or to the mucus covering the villi. Attachment prevents the bacteria from being
flushed through to the large intestine. After colonising the small intestine, enterotoxigenic E.
coli provoke hypersecretory diarrhoea through the release of specific enterotoxins. Secretion of
chloride ions, sodium ions, bicarbonate ions, and water into the lumen is induced by the actions
of a heat-labile toxin binding irreversibly to the mucosal cells and activating the adenyl
cyclase–cyclic AMP system (Argenzio, 1992). A second heat-stable toxin (ST), with subtypes
STa and STb, inhibits the absorption of sodium and chloride ions from the lumen into the
epithelial cell via the guanyl cyclase–cyclic GMP system. 

PWC is a major cause of mortality and morbidity worldwide. Immunity to one strain of
pathogenic E. coli does not necessarily protect from others, and successive strains can pass
through herds. Colonisation of the small intestine and diarrhoea usually last between 4 and
14 d, with the strains being spread between animals primarily by the faecal–oral route, and also
by aerosols (Bertschinger, 1999). Research has shown that most E. coli associated with PWC
are enterotoxin-producing, β-haemolytic strains. The presence of particular serotypes has also
been correlated with haemolytic E. coli causing clinical disease, in particular types O8, O138,
O139, O141, O147, O149, and O157 (Hampson, 1994). Numerous reviews of post-weaning E.
coli diarrhoea (or PWC) have been presented previously (Hampson, 1987, 1994; Bertschinger,
1999). It is common for haemolytic E. coli to appear in the faeces of pigs in increased numbers
in the first week after weaning in both healthy and diarrhoeic pigs, although the numbers of
E. coli in diarrhoeic pigs is higher (Kenworthy & Crabb, 1963; Hampson et al. 1985). Pigs dis-
playing PWC harbour massive numbers of haemolytic E. coli in the jejunum, whilst there is
minimal change in numbers of other bacteria (Smith & Jones, 1963).

Predisposing factors for post-weaning colibacillosis. Despite haemolytic enterotoxigenic 
E. coli being identified as the primary infectious agent in this disease, there is abundant evi-
dence to suggest that other factors are necessary for PWC to occur (for example, see Madec et
al. 1998, 2000; Jones et al. 2001). In the small intestine, E. coli fimbriae attach to glycoprotein
receptors expressed in the brush border of cells lining the intestinal villi. The most common
fimbriae associated with E. coli causing PWC is K88, renamed as F4. The receptor for F4 dis-
appears a few weeks after weaning, offering only a brief window of opportunity for this
pathogen to attach and proliferate. Some pigs do not possess the receptors for the E. coli, and
some have receptors that are only weakly adhesive (Hampson, 1994). 

The act of weaning is an essential precipitating factor for PWC, regardless of the age at
weaning. All of the factors involved with weaning create an environment suitable for the prolif-
eration of E. coli in the small intestine. Slower gut transit time and gut stasis immediately after
weaning allow bacteria the opportunity to attach and time to multiply. Numerous studies (for a
review, see Hampson, 1987) suggest that the form of the feed (for example, liquid v. dry) influ-
ences a pig’s susceptibility to PWC, with a liquid feed fed at regular intervals after weaning
being beneficial in reducing diarrhoea (Lecce et al. 1983). Consequently, it has been reported
that restricting the amount of feed given to pigs reduces the incidence of PWC (for example,
Rantzer et al. 1996), presumably because undigested food particles in the lumen of the small
intestine supply less substrate for bacterial growth. In contrast, Madec et al. (1998) reported
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that low feed intake (< 1000 g) in the first week after weaning placed piglets at a greater risk of
PWC than intake in excess of this amount. In addition, the change from sows’ milk to solid feed
results in the loss of any passive protection provided by the milk. 

An inability of piglets to adequately thermoregulate, combined with sub-standard weaning
accommodation, may result in cold stress. This alters intestinal motility and is thought to be an
important factor in the pathogenesis of PWC (Wathes et al. 1989). Social stresses from mixing,
fighting and crowding trigger cortisol release, most likely increasing transit time (via the sym-
pathetic nervous system) and depressing the immune response to bacterial infection. Moving to
a new pen environment causes increased antigenic exposure to microbes residing in fresh or dry
faecal matter. The presence of other pathogens such as rotavirus in the environment increases
the likelihood and severity of disease occurring (Lecce et al. 1983), and poorer hygiene will
result in a greater antigenic load delivered to the small intestine because of faecal–oral cycling
(Madec et al. 1998). 

Influence of carbohydrate (‘fibre’) sources on post-weaning colibacillosis. Numerous reports
dating back to the 1960s and 1970s showed that addition of insoluble fibre sources such as the
husks from cereals could reduce the excretion of haemolytic E. coli and the incidence of PWC.
For example, Smith & Halls (1968) found that barley hulls fed ad libitum, but not pearl-barley
meal, prevented disease in weaner pigs inoculated with E. coli. Those fed barley meal remained
susceptible to PWC. The barley fibre used in this trial was the outer hull of barley, collected in
the making of pearled barley. Barley hulls contain a considerable amount of insoluble NSP and
lower levels of soluble NSP (Bach Knudsen, 1997). Barley meal, on the other hand, would have
a higher proportion of soluble NSP. Diets used in trials by Bertschinger et al. (1978, 1979) that
were associated with reduced E. coli proliferation and diarrhoea were high in crude fibre
(10–17 %) and low in nutrients, particularly crude protein (CP). 

Relatively little subsequent research has been conducted in this area, although reports of
‘complex-’ v. ‘simple-’density diets (for example, Ball & Aherne, 1982) continued to show the
effects of diet on diarrhoea after weaning. However, concerns related to the use of antimicro-
bials in diets after weaning has caused a sharp refocus on alternative control strategies.
Research on PWC at Murdoch University has examined interrelationships between different
sources of NSP and proliferation of E. coli in weaner pigs. Increased proliferation of pathogenic
E. coli in both the small and large intestines has been seen with addition of either guar gum
(McDonald et al. 1999) or pearl barley (McDonald et al. 2001b) to the diet of 21 d old weaner
pigs. For example, McDonald et al. (2001b) assessed the effect of adding a soluble NSP source
(pearl barley) to a cooked white rice-based diet on the performance, gastrointestinal physiology
and intestinal proliferation of enterotoxigenic E. coli in weaned pigs experimentally inoculated
with E. coli O8; K87; K88. Pigs were infected at 48, 72 and 96 h after weaning, and were
allowed ad libitum access to their feed. Pigs were euthanased 7–9 d after weaning. Pigs fed the
rice-based diet grew faster, had a greater empty body-weight gain, and had a reduced large-
intestinal weight (expressed as a proportion of empty body weight) than pigs fed the rice-based
diet supplemented with pearl barley (Table 2). Lower concentrations of volatile fatty acids and
a lower pH of digesta in the large intestine indicated greater fermentative activity in pigs fed
the pearl barley-based diet. Pigs offered the rice-based diet showed a smaller reduction in
empty body-weight gain associated with E. coli infection, and showed significantly reduced
numbers of haemolytic E. coli in the jejunum and the colon than their counterparts fed the diet
containing cooked white rice plus pearl barley (Table 2). 

The addition of pearl barley to the rice-based diet altered the physicochemical properties in
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the intestines, increased the viscosity, and altered the site of microbial fermentation. The energy
expended in adapting the intestinal tract for digestion of NSP caused a depression in carcass
growth, and this was exacerbated by PWC. These data suggest that the presence of soluble NSP
in weaner diets is detrimental for piglet growth and stimulates proliferation of 
E. coli in the small intestine. It also indicates that there are benefits in feeding a highly-digestible
rice-based diet to weaners, although it is not at present known what mechanism(s) promote this
protection. Besides cooked rice reducing E. coli numbers, work by Mathews et al. (1999) sug-
gests that components in boiled rice also inhibit electrolyte secretions in the small intestine, and
hence reduce the magnitude of secretory diarrhoea. Further understanding is needed, because
highly-digestible rice-based diets may prove to be a viable alternative to the use of growth-pro-
moting antimicrobials currently used in the control of diarrhoea after weaning.

The two types of soluble NSP used by McDonald et al. (1999, 2001b) were highly fer-
mentable and viscous in nature, which raises the question as to what extent fermentability, vis-
cosity or combinations of both are likely to influence the small-intestinal microbiota. To
investigate further the potential detrimental effects of increased intestinal viscosity in weaner
pigs on proliferation of enterotoxigenic haemolytic E. coli, McDonald et al. (2001a) fed experi-
mental diets supplemented with two sources of carboxymethylcellulose (CMC) to 21-d old
weaned pigs for 10 d. CMC is a water-soluble synthetic viscous polysaccharide resistant to
microbial fermentation. The pigs were then euthanased and the effects of two types of CMC,
either low-viscosity (50–200 cP in vitro) or high-viscosity (400–800 cP in vitro), on gastroin-
testinal development, growth performance, faecal DM and proliferation of haemolytic E. coli
were monitored.

Dietary CMC increased the viscosity along the entire lumen of the small intestine and in
the caecum, and resulted in increased intestinal weights. Pigs fed the rice-based diet remained
healthy, whereas those fed either low- or high-viscosity CMC developed diarrhoea within 7 d of
weaning, and this continued until they were euthanased on day 10. Pigs fed the low- or high-
viscosity CMC diets shed more haemolytic E. coli (O141; K88) daily than pigs fed the rice-
only-based diet (Table 3).

The presence of CMC might provide a favourable luminal environment for the establish-
ment and growth of bacteria, especially E. coli. This bacterium possesses pili that allow it to
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Table 2. Performance, large-intestinal weights, volatile fatty acid (VFA) levels and ileal digesta 
viscosity in non-infected and infected pigs fed either a rice-based diet or one containing pearl barley 

(from McDonald et al. 2001b)

Non-infected pigs Infected pigs P value

Rice† Barley‡ Rice† Barley‡ SEM Diet Disease

Carcass gain (g/d) 74 26 �28 �56 36·3 * ***
Large intestine (% live weight) 2·7 3·8 2·6 3·2 0·62 ** NS
Distal colon VFA (mM) 84 114 60 78 20·4 ** **
Distal colon pH 6·8 6·1 6·8 6·5 0·37 ** NS
Escherichia coli in jejunum§ 0 0 0·9 4·2 2·44 *
E. coli in colon§ 0 0 3·2 6·2 1·89 **
Viscosity in ileum (cP) 2·1 2·8 1·6 2·3 1·13 * *

* P < 0·05, ** P < 0·01, *** P < 0·001.
† Rice-based diet (g/kg diet): cooked white rice, 702; dietary soluble NSP, 4; animal protein sources,

197.
‡ Pearl barley-based diet (g/kg diet): pearl barley, 500; dietary soluble NSP, 25; rice, 275; animal

protein sources, 200.
§ Expressed as log10 colony-forming units of haemolytic E. coli /g mucosal scraping.
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attach to the brush border of the small-intestinal villi, but also allow the bacteria to attach to the
mucus lining the intestinal tract (Conway, 1994). Of particular interest is the fact that CMC
adheres to and thickens porcine mucin (Rossi et al. 1996) and may also alter its composition.
These events may enhance the ability of haemolytic E. coli to bind to the mucus lining the
intestinal villi and cause diarrhoea.

Altered microbial activity has also been noted in other species in association with
increased viscosity of the small intestinal contents (for example, Choct et al. 1996; Smits et al.
1998; Langhout et al. 2000). For example, E. coli numbers and total anaerobic counts in the
ileum of chickens increased significantly with the addition of citrus pectin (Langhout, 1998),
whilst total microbial counts (aerobic and anaerobic) increased in the duodenum and jejunum
of chickens fed diets containing CMC (Smits et al. 1998). Wyatt et al. (1988) found that the
addition of CMC in diets for rats failed to increase the density of bacteria in the caecal or
colonic contents, but the bacterial populations changed significantly such that the aerobic bacte-
ria, in particular E. coli, were more numerous in the large intestine. 

Oligosaccharides and control of post-weaning colibacillosis. Some oligosaccharides, such as
inulin and oligofructose, have been proposed as ‘prebiotics’ because of their potential to selec-
tively stimulate growth of Bifidobacterium spp. within the human large intestine, suppress
proliferation of potential pathogens (Gibson & Roberfroid, 1995) and modulate a variety of
human enteric conditions and diseases (Steer et al. 2000). Prebiotics are defined as ‘non-
digestible food ingredients that beneficially affect the host by selectively stimulating the growth
and (or) activity of one or a limited number of bacteria in the colon, and hence improve host
health’ (Gibson & Roberfroid, 1995).

Arising from work conducted in human subjects, and coupled to the withdrawal of growth-
promoting antimicrobials, there has been interest in the use of selected oligosaccharides (non-
digestible oligosaccharides; NDO) as prebiotics in the weaner pig. Since 1990, a considerable
amount of work has been conducted in this field in the pig, but generally with equivocal results
(Chesson & Stewart, 2001). An exhaustive investigation into the effect of NDO in young pig
diets on the microflora, fermentation characteristics and digestibility of nutrients was conducted
in a doctoral thesis by Houdijk (1998). In essence, Houdijk (1998) reported no biologically sig-
nificant effects on any indices measured in response to the NDO used (fructo-oligosaccharides
and transgalacto-oligosaccharides). The effectiveness of prebiotics such as NDO will depend
largely on the environments (for example, dirty, clean) under which pigs are kept, and may be
masked by the pre-caecal digestion of such compounds. In addition, Mikkelsen & Jensen
(2001) reported that the populations of Bifidobacterium spp. in the gastrointestinal tract of pigs
aged 2–4 weeks constituted less than 1 % of the total bacterial population. It is difficult to
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Table 3. The effect of dietary carboxymethylcellulose (CMC; 40 g/kg) added to a cooked
rice-based diet on the presence of post-weaning colibacillosis in pigs after weaning (after

McDonald et al. 2001a) 
(Proportion of pigs in groups with diarrhoea)

Diet Day 7* Day 8 Day 9 Day 10

Rice 0/8a 1/8a 0/8a 0/8a

Rice + low viscosity CMC 5/8b 3/8b 4/8b 4/8b

Rice + high viscosity CMC 7/7b 7/7b 7/7b 5/7b

P value < 0·05 < 0·05 < 0·05 < 0·05

a,b Values within a column with unlike superscripts were significantly different (P < 0·05).
*Day number is the number of days after weaning (weaning is day 1).
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imagine how even a 100 % increase in numbers caused by feeding NDO could have a marked
effect on intestinal health. Nevertheless, McDonald (2001), using weaned piglets naturally
colonised by haemolytic E. coli, and Rossi et al. (2001), using isolated jejunal loops, both
reported decreased proliferation of E. coli in response to inulin added to the diet.

Dietary oligosaccharides might also be generated in the gastrointestinal tract itself from
polysaccharides that are more complex, and exert effects on gut function and bacterial dynam-
ics. As discussed earlier, however, observing beneficial effects on amelioration of bacterial dis-
eases might be compounded by the lack of any objective measure of microbial status of the
gastrointestinal tract, and so it is often difficult to predict the response of the host’s gut
microflora to any additive, such as an oligosaccharide. In this regard, Reid & Hillman (1999)
proposed that an assessment of a pig’s capacity to resist pathogens could be based on the faecal
ratio of lactobacilli : coliforms in the gut contents, since lactic-acid bacteria are known to
inhibit the growth of enterotoxigenic E. coli (Hillman et al. 1995). Although it could be argued
that faecal populations and numbers do not represent those present in the small intestine, where
E. coli attaches and causes disease, the lactobacilli:coliforms ratio suggests that a larger popu-
lation of lactic-acid bacteria relative to coliforms provides some indication that enhanced num-
bers of those strains that are capable of inhibiting coliforms, including pathogens, might be
present (Reid & Hillman, 1999).

Resistant starch and post-weaning colibacillosis. Some recent studies in pigs have investigated
the use of ‘resistant starch’ (RS; see below for definition) as a means of extending large-intesti-
nal fermentation, such that the microflora (for example, Bacteroides spp.) do not use proteins as
an energy source with the production of metabolites (for example, cadaverine, putrescine) that
have been associated with diarrhoea after weaning (Aumaitre et al. 1995). The hydrolysis of
starch granules by α-amylase in the small intestine is not always complete. Starch that enters
the caecum and colon is termed RS (Annison & Topping, 1994; Baghurst et al. 1996). There
are three main forms: (i) starch granules bound in the middle of a large food particle that are
not physically accessible to digestive enzymes (RS1); (ii) starch granules resistant to degrada-
tion due to the crystalline structure within starch, such as that found in potato (RS2); (iii) some
starches when heated and then cooled can reform (retrograde) in a type of crystalline structure
that inherently resists digestion (RS3). Once in the large intestine, RS is degraded by the
microflora, especially in the caecum (Pluske et al. 1998).

Reid & Hillman (1999) found that differences existed in both protein degradation and bac-
terial counts in the colon of weaner pigs when different starches were fed. In vitro studies con-
ducted previously by these authors (Reid et al. 1998) indicated that retrogradation of the
amylose in starch caused resistance to bacterial degradation, an effect suggested to be the result
of amylopectin ‘coating’ by the amylose. Reid et al. (1996) also showed that certain intestinal
bacteria from pigs, such as Clostridium butyricum, might prefer to ferment the amylopectin
fraction of starch rather than the amylose fraction, such that a starch lower in amylose would
leave the amylopectin more accessible to the microflora. In addition, the α-1,–4,1-6 structure of
amylopectin should reduce the rate of fermentation, and hence extend fermentation along the
intestinal tract. Reid & Hillman (1999) found that protein fermentation in the mid- to distal
colon was best reduced by inclusion of retrograded waxy maize, which also increased the lacto-
bacilli : coliform ratio in these segments. 

Liquid feeding and post-weaning colibacillosis. Considerable interest has arisen in the use of
liquid feeding of pigs in the past 10 years. Liquid feeding has been used as a way not only of
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enhancing feed intake and growth rate, but also as a means of manipulating the microflora, both
in the fermentation tank and the gastrointestinal tract, with the object of ameliorating enteric
diseases (Brooks et al. 1996, 2001; Jensen, 1998; Geary et al. 1999; Mikkelsen & Jensen,
2000). Fermented liquid feed (FLF) is characterised by high numbers of lactic acid bacteria,
high numbers of yeast, a low pH (< 4·0), and a high concentration of lactic acid (132–244 mM)
(only the undissociated form of lactic acid is bactericidal or bacteriostatic; Russell & Diez-
Gonzalez, 1998), and typically results in reduced numbers of coliform bacteria in the feed, pro-
vided fermentation conditions are correct. Lactic acid has antibacterial effects on E. coli and
Salmonella species (Nout et al. 1989), and lactobacilli can inhibit adhesion of E. coli to the
intestines (Hillman et al. 1994). For example, Beal et al. (2001) demonstrated that fermenting
liquid feed at 37°C was an effective way of eliminating potentially pathogenic species such as
E. coli, although at 20°C the antimicrobial effects of FLF were very much less apparent. This
was possibly due to the expression of heat-shock proteins that enabled E. coli to withstand the
antimicrobial effects of lactic acid (Phadtare et al. 1999). There were marked differences
between E. coli strains in their ability to withstand the antimicrobial effects of FLF, suggesting
that the effects of feeding FLF on pathogenic populations in the gastrointestinal tract might also
be variable.

Nevertheless, FLF has been shown to alter populations of the microbiota in the intestines
and influence volatile fatty acid (VFA) levels (Jensen, 1998; Jensen & Mikkelsen, 1998;
Mikkelsen & Jensen, 2000; Moran et al. 2001). For example, Moran et al. (2001) showed that
no coliform bacteria (< 3·0 log10 colony forming units/ml) were detectable in the terminal ileum
of pigs fed FLF, and reduced concentrations were found in the large intestine, in comparison to
pigs fed dry feed or non-fermented liquid feed (Table 4). Moreover, the use of pre-fermentation
(steeping) of the feed in water as a means of hydrolysing the soluble NSP before feeding is
likely to reduce the viscosity induced by intact soluble NSP in cereals. This is because
endogenous glycosidases in the grain have already begun the process of polysaccharide break-
down. 

Use of exogenous enzymes and post-weaning colibacillosis. The use of in-feed enzymes for
enhanced production and control of certain enteric conditions in chickens (for example, sticky
droppings) is commonplace. In contrast, the generalised use of enzymes in pig diets is less
common (Partridge, 2001), although they could offer potential for the amelioration of some
enteric conditions and diseases. Unfortunately, there are few studies investigating the influence
of supplementary enzymes on reducing enteric bacterial infections in pigs. It is difficult to
imagine a direct effect of an exogenous enzyme per se on the gastrointestinal microflora; how-
ever enzymes might act in other ways. 

There is recent interest in the use of supplementary enzymes to create oligosaccharides in
situ from the hydrolysis of branched-chain NSP, such as arabinoxylans and xyloglucans, which
might then influence the composition of the microbial flora. This has been coined the 
‘pre-pro-biosis’ concept (Partridge & Tucker, 2000). Certainly, Austin et al. (1999) reported the
presence of a number of oligosaccharide configurations when a single cloned endo-1,4-
xylanase was used with different UK wheat cultivars, although the effects of these oligosaccha-
rides in vivo were not investigated. Xylanase addition to broiler chicken diets resulted in a
relative increase in Bifidobacteria spp. and Bacteroides spp., a response that might be expected
due to an increase in xylo-oligosaccharides. The proportion of Lactobacillus spp., however,
which might also be expected to increase in response to more xylo-oligosaccharides present,
remained unchanged (Bedford & Apajalahti, 2001). More recently, Fernandez et al. (2000)
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reported that broiler chickens fed a wheat-based diet supplemented with xylanase (Avizyme
1300®; Danisco Animal Nutrition, Marlborough, Wiltshire, UK) showed reduced viscosity and
less Campylobacter jejuni in the caeca following experimental infection. Interestingly, this was
associated with an increased number of neutral and sulfated mucins in goblet cells. Furthermore,
Hampson et al. (2002) reported that 22-week-old laying hens experimentally infected with a
virulent strain of Brachyspira intermedia and fed Avizyme 1302® (Danisco Animal Nutrition) in
a wheat-based diet showed reduced proliferation of this spirochaete in the caeca.

In relation to PWC, Inborr & Ogle (1988) and Partridge & Tucker (2000) reported a reduc-
tion in the frequency and severity of diarrhoea in weaned piglets fed diets supplemented with
glycosidases. Chesson & Stewart (2001), however, cautioned about the precise cause of the
diarrhoea seen in such studies, and reinforced the need for microbiological assessment to exam-
ine the effect of, for example, oligosaccharides derived in situ. This is because the diarrhoea
seen after weaning can be osmotic in nature rather than being of bacterial origin. Future studies
in this area require alignment of dietary work and age of the pig with assessments of microbial
populations to truly study the effects of enzymes and oligosaccharides on enteric bacterial 
diseases. 

In addition, the response of the microflora to enzyme addition probably depends on the ini-
tial microbial status of the pigs, which in turn depends on the form and digestibility of the diet
and the extent of the microfloral challenge it evokes. Since enzymes are likely to change sub-
strate flow into the small and large intestines, the subsequent responses will vary according to
the populations present at time of administration and their reaction to such changes (Bedford &
Apajalahti, 2001). It is not surprising that given the huge range of microfloral conditions likely
to exist between studies, the responses to enzyme use, rather than being absolute, are a con-
tinuum or a population of responses varying from detrimental to highly positive. Nevertheless,
many of the factors governing the extent of enzyme responses are most likely similar to those
influencing responses to antimicrobials. For example, the response to antimicrobials in the diet
depends to a large degree on the conditions animals are kept under. It is likely that any positive
responses to enzymes will be dictated not only by the status of the microflora in the pig’s 
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Table 4. Microbial counts (log10 colony-forming units per ml) and pH of the
digesta in the terminal ileum, caecum and colon of pigs fed different diets

after weaning at 23 d of age (after Moran et al. 2001)

Diet type

Site along gastrointestinal tract FLF NFLF DF S

Ileum
pH 6·1 6·4 6·3 5·9
Lactobacilli 8·8 a 7·0 a < 3·0 7·3 a

Coliforms < 3·0 8·1 ab 8·5 a 6·0 b

Caecum
pH 6·0 6·0 5·8 6·1
Lactobacilli 8·5 a 8·1 a 5·5 b 7·3 a

Coliforms 5·5 a 7·4 ab 8·4 b 7·5 ab

Colon
pH 6·2 a 6·0 a 5·9 a 6·6 b

Lactobacilli 8·6 a 7·9 a 5·0 b 8·0 a

Coliforms 5·6 a 8·1 a 8·6 b 7·3 a

FLF, fermented liquid feed; NFLF, non-fermented liquid feed; DF, dry feed;
S, sows’ milk.

a,b Values within a row with unlike superscript letters were significantly differ-
ent (P < 0·05).
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gastrointestinal tract, but also by environmental, management and dietary factors such as cereal
type and quality, and processing (Bedford & Apajalahti, 2001). 

Influence of protein sources on post-weaning colibacillosis. Certain components of weanling pig
feeds, such as soyabean meal, have been implicated in causing intestinal mucosal damage and
intestinal fluid accumulation in weaner pigs. When fed in creep feeds, it has been suggested that
soya protein may act as a primer for hypersensitivity reactions after weaning that, in turn, predis-
pose pigs to PWC (Miller et al. 1984). Evidence to support this notion is equivocal (Hampson,
1994; Dréau & Lallès, 1999). The source of protein used has received some attention with regard
to PWC, although again the evidence is confusing. Hampson (1987) reviewed the literature at
the time, and reported research from several groups implicating the protein content and protein
composition of the diet in the aetiology of PWC. For example, Prohászka & Baron (1980)
reported increased numbers of haemolytic E. coli in the small intestines of pigs that were fed 210 g
CP/kg as opposed to 130 g CP/kg. Although a level of 130 g CP/kg would never be fed commer-
cially, these data suggest that it might be possible to limit the extent of PWC by formulating
diets with lower amino acid (protein) levels, or by using more digestible protein ingredients.
Changing from skimmed milk powder to soyabean and maize increased the severity of diarrhoea
and appearance of enterotoxigenic E. coli in 3-week-old pigs (Shimizu & Terashima, 1982),
although Pouteaux et al. (1982) found no difference in diarrhoea or bacterial populations when
comparing buttermilk powder, soyabean meal and pea protein concentrate. Interestingly, Kiers et
al. (2001) recently reported that processed soyabean products, including mould-fermented soy-
abean (tempe), reduced the fluid and electrolyte loss (particularly sodium and chloride) in jejunal
segments in the presence of enterotoxigenic E. coli. 

In the case of the newly-weaned pig, typical starter diets contain 220–250 g CP/kg, and
apparent digestibility of this protein at the terminal ileum is 75–85 %. This results in a consid-
erable amount of ‘escape’ (resistant) protein entering the large bowel. For instance, a 7 kg pig
eating 300 g/d of a 220 g CP/kg diet might be ‘losing’ 33–55 g protein daily to its hindgut.
Protein is fermented rapidly by the microbiota with the production of diamines (for example,
putrescine, cadaverine, tryptamine) and gases (for example, NH3) that have been implicated in
the clinical expression of PWC (Aumaitre et al. 1995). Little attention, however, has been given
to the digestion and metabolism of resistant protein by intestinal bacteria of pigs, and conse-
quently knowledge of the proteolytic activities of gut bacteria in the pig is lacking. It is recog-
nised, however, that a number of bacterial groups including Bacteroides, Clostridium,
Enterobacterium, Lactobacillus and Streptococcus possess the ability to produce diamines,
such as putrescine, cadaverine, histamine and tyramine, via decarboxylation of amino acids (for
example, tyrosine, tryptophan, lysine) and breakdown of polyamines (Gaskins, 2001).
Diamines have been implicated in the aetiology of PWC. In the 3-week-old weaned pig, for
example, Porter & Kenworthy (1969) observed that increased urinary heterocyclic amine excre-
tion was associated with diarrhoea after weaning, with putrescine and cadaverine levels being
particularly high. Porter & Kenworthy (1969) commented that it is not likely to be the absolute
amount of these amines produced, but their site of production, that might predispose to PWC.
These workers found that the small intestine was the main site of amine production in severely
diarrhoeic pigs, whereas in clinically unaffected pigs there was only a low level of amine pro-
duction in the small intestine. Nollet et al. (1999a,b) reported protective effects against neona-
tal and PWC in piglets by feeding bovine plasma powder; however when the powder was
included in the diet at 90 g/kg, diarrhoea attributable to biogenic amines was found.

Aumaitre et al. (1995) showed that the activity of major gut proteases (trypsin, chy-
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motrypsin) were stimulated after weaning by an increase in the level of CP in the weaning diet
of up to, but not exceeding, 200 g/kg. This partially helps to explain data showing a decrease in
the apparent ileal digestibility of N in pigs fed diets containing more than 225 g CP/kg (Li et al.
1993). If this occurred, then the undigested protein would move distally and may be decarboxy-
lated to amines that, in turn, could predispose the young pig to diarrhoea. In contrast to this
notion, other authors (for example, Armstrong & Cline, 1976; Pouteaux et al. 1982; Etheridge
et al. 1984) failed to find any association between dietary protein source and the incidence of
diarrhoea after weaning. Diets containing a large number of protein sources may increase the
severity of diarrhoea compared with diets with fewer sources of protein (Etheridge et al. 1984).
In addition, there are other possible reasons for these discrepancies between studies. Very few
(if any) studies have used controlled infections, and most of the research has confounded pro-
tein type with protein level. Further investigations using controlled infection studies and
defined protein sources are needed to separate these causative factors to assess their effects on
intestinal health.

The bacterial products of protein fermentation are more likely to be produced in response
to an acid environment, a process itself generated by rapid fermentation of soluble NSP (and
possibly starch). An interaction might exist, therefore, between resistant protein and NSP in the
aetiology of PWC. In this regard, Bolduan et al. (1988) and Aumaitre et al. (1995) commented
that the appropriate addition of insoluble NSP sources might ameliorate PWC. Bolduan et al.
(1988), for example, presented evidence showing that the production of diamines in the colon
reduced linearly with an increase in the crude fibre content of a weaner feed (Fig. 1). Based on
this work, it is possible that appropriate (slowly or moderately fermentable) NSP sources, such
as wheat bran or beet pulp, may reduce PWC at a given dietary protein concentration. These
substrates will also promote the physiological and functional development of the hindgut of the
young pig. In turn, a shift towards acid fermentation based on these NSP could decrease the for-
mation in the colon of diamines that have been implicated in the aetiology of PWC. This
notion, however, needs to be considered in relation to the work described earlier (see p. 340)
showing that feeding a very digestible diet based on cooked white rice is also protective against
PWC. This is because the levels of acid formed in the hindgut of rice-fed pigs are markedly
lower than those observed when sources of NSP are fed. Clearly, further research is required to
identify appropriate cereal, fibre and protein sources and their interaction(s) on the pathogenesis
of PWC, in addition to practices such as pre-fermentation and liquid feeding as have been dis-
cussed previously. Identification of such interactions and practices will assist in design of nutri-
tional programmes that will reduce reliance on the use of growth-promoting antimicrobials in
pig diets.

Swine dysentery

In many countries swine dysentery (SD) is one of the most economically important endemic
bacterial diseases of swine. The disease is a mucohaemorrhagic colitis in grower (and some-
times weaner) pigs affecting the caecum, colon and rectum. SD is caused by the anaerobic
spirochaete Brachyspira (Serpulina) hyodysenteriae (Harris et al. 1999). Clinical manifesta-
tions vary greatly, and include both mild and sub-clinical disease. In typical cases, infected pigs
initially show a slight depression and reduced feed intake. They develop diarrhoea, which is
grey to black and sometimes watery but is more often soft and porridge-like. This diarrhoea
progresses to consist of mucus plugs, fibrin, epithelial cell casts, and flecks of fresh blood.
Affected animals have faecal staining of the hindquarters, become dehydrated and appear
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gaunt, with a tucked-in abdomen and an arched back. If left untreated, around 10 % of affected
pigs can die within 5 d of first showing clinical signs (Hampson & Trott, 1995).

The precise pathogenesis of SD is not well understood, though it is recognised that the dis-
ease does not always express itself clinically in pig herds despite the presence of the bacterium
(Hampson et al. 1992). For example, a herd survey conducted in the state of Western Australia
showed that 33 % of herds were serologically positive for B. hyodysenteriae, yet little clinical
disease was present (Mhoma et al. 1992). Many factors have been implicated in the aetiology
of SD (for reviews, see Hampson & Trott, 1995; Harris et al. 1999), however it is evident that
nutrition may modulate the expression of the disease. The first report of such an influence was a
retrospective study by Prohászka & Lukács (1984), who found that a diet based on maize silage
that lowered pH and increased VFA concentrations in the large intestine was apparently bacteri-
cidal to B. hyodysenteriae and reduced clinical expression of the disease (Table 5). These
authors attributed the intensity of the antibacterial effect of the diet to the lower base value, and
hence greater acidity (lower pH) present in the large intestine.

Siba et al. (1996) attempted to replicate this work with pigs (25–30 kg live weight) that
were experimentally inoculated with a virulent strain of B. hyodysenteriae after being fed diets
designed to either promote or limit fermentation in the large intestine. In contrast to the expec-
tations based on the work of Prohászka & Lukács (1984), Siba et al. (1996) found that a diet
based on cooked white rice and (predominately) animal protein ingredients (for example,
bloodmeal, meat and bone meal) reduced the degree of hindgut fermentation and reduced both
the proliferation of B. hyodysenteriae and clinical expression of the disease. A diet based on
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Fig. 1. Relationship between the dietary crude fibre (CF) content of the diet
(achieved by adding wheat bran) fed to weaner pigs and the concentrations of
diamines (�, cadaverine, putrescine, histamine and tryptamine) and serum urea (�)
(from Bolduan et al. 1988).
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wheat, barley and Australian sweet lupins that promoted hindgut fermentation (as evidenced by
lower pH, increased VFA levels, heavier organ weights) caused the highest incidence of SD.

Subsequent experiments in our laboratory (Pluske et al. 1996, 1998) confirmed these find-
ings, and have demonstrated that a diet low in both soluble NSP and RS concentrations gener-
ally affords protection against B. hyodysenteriae following experimental infection. Diets using
rice, sorghum and maize as the sole cereal source appear to be more protective than diets based
on wheat, barley and dehulled oats (groats). However, the manner in which the grains have
been processed also appears to be important, especially with cereals inherently low in NSP
(< 1 g/100 g soluble NSP). Our data suggest that a reduction in RS levels (for example, via
extrusion, steam flaking) will only prove effective against SD if the grain in question has an
inherently low NSP level to begin with.

Whilst we have shown that the microbial digestion of fermentable carbohydrates in the
large intestine facilitates the expression of SD, our research has provided few insights into the
underlying mechanisms. It is evident that the varied expression of SD with different diets
extends beyond a simple effect of fermentation per se. For example, Pluske et al. (1996) failed
to show any relationships between fermentation indices (for example, pH, VFA levels) and the
incidence of SD. Furthermore, Pluske et al. (1998) showed no association between ATP levels
(an indicator of microbial activity) in the large intestine and expression of the disease. Pigs fed
a viscous NSP source (guar gum), for instance, showed the highest incidence of SD, low pH
levels and high VFA concentrations, yet the lowest ATP levels. 

Numerous hypotheses have been proposed in an attempt to explain these dietary effects on
SD. These include factors such as the DM content of colonic contents influencing the survival
of spirochaetes (Siba et al. 1996), factors affecting the mobility of the spirochaete in the
mucosal lining, diet-induced changes in chemotaxic-regulated motility (Kennedy et al. 1988),
factors affecting the ability of B. hyodysenteriae to express haemolysins and/or lipopolysaccha-
rides and cause inflammation of the epithelium, and the Zn content of the diet (Zhang et al.
1995). More recently, Durmic et al. (1998, 2000) reported changes in composition of the
hindgut microflora associated with feeding different diets in association with SD. It has long
been recognised that other bacterial species, such as Fusobacterium spp., Clostridium spp. and
Bacteroides spp. must be present for SD to occur (Meyer et al. 1975; Whipp et al. 1979).

Nutrition and bacterial infections in pigs 349

Table 5. A comparison of physiological variables between pigs free from swine dysentery (SD) and
pigs clinically affected with the spirochaete. A total of thirty clinically healthy pigs were sampled from

each group (from Prohászka & Lukács, 1984) 
(Mean values and standard deviations)

Pigs clinically
Pigs free of SD* affected with SD†

Mean SD Mean SD P value

Distal colon pH 6·0 0·3 6·8 0·4 < 0·001
Escherichia coli counts (log10/g) 5·2 1·0 7·8 1·4 < 0·001
Volatile fatty acids (mmol/kg) 120 15 138 18 NS
C2:C3:C4 62:29:9 65:25:10 NS

Base value in the feed‡ 190 25 520 40
Acid–base excretion in urine (mmol/l) �86 34 17 20 < 0·001

*Diet fed to pigs contained (g/kg diet): maize, 620; barley, 200; soyabean meal, 120; meatmeal, 30
(150 g/kg crude protein content in diet).

†Diet fed to pigs contained (g/kg diet): silage, 600; wheat, 250; soyabean meal, 120 (140–150 g/kg
crude protein content in diet).

‡Determined as the bicarbonate load resulting from consumption of 1 kg of feed.
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Durmic et al. (1998, 2000) showed differences between diets in the genera and species present
in the large intestine, with changes in bacterial populations consistent with those that occur in
the natural disease. However, Leser et al. (2000), using 16S ribosomal DNA sequence analysis,
did not detect the same synergistic bacteria in pigs infected with B. hyodysenteriae, although
they did report changes in bacterial populations when pigs were fed either a cooked rice diet or
a FLF following infection with the causative agent. Furthermore, and in contrast to our data,
Kirkwood et al. (2000) and Leser et al. (2000) did not find a protective effect of feeding a par-
boiled cooked rice–animal protein diet following experimental infection of pigs with B. hyo-
dysenteriae. Possible reasons for the disparate results between laboratories include differences
in B. hyodysenteriae strains or virulence factors, variation in diet ingredients and preparation of
the rice, and variation in the microflora composition of the hindgut in pigs in the different
countries.

An area of research not yet explored in relation to nutritional effects on SD is that of
dietary protein content and type. Given the postulated effects of excess protein entering the cae-
cum and colon on bacterial proliferation and production of bacterial metabolites, it is feasible
that this component of the diet might also influence the aetiology of SD. This has particular rel-
evance for some countries where many animal protein sources have been banned from diets fed
to grow and finish pigs, and only vegetable proteins are available to the feed manufacturer.
Studies, for example, to examine possible effects of processing (for example, extruded peas),
protein types (for example, soya protein isolate), and appropriate enzyme combinations (for
example, proteases plus glycosidases) appear to be warranted in relation to susceptibility to SD.

Enzymes and swine dysentery. Given the purported role of certain carbohydrates in the expres-
sion of SD, a logical progression of this work was to examine whether glycosidases added to
the diet could reduce the incidence of the disease. In an experimental model of SD, Durmic et
al. (2000) used an in-feed arabinoxylanase in an attempt to ameliorate the incidence of SD by
hydrolysing glycosidic linkages of soluble NSP before their passage into the large intestine.
The hypothesis that a reduced load of fermentable substrate entering the large intestine would
reduce the incidence of SD was tested in a study comprising a 2 × 2 factorial arrangement of
treatments. Wheat was fed to pigs either in extruded form (to reduce the contribution of RS to
the expression of SD) or hammer-milled form, and an exogenous arabinoxylanase was added or
not added to the diet. Pigs were infected with a virulent strain of B. hyodysenteriae at a body
weight of around 25 kg, and subsequently monitored for expression of the disease.

Both the extrusion of wheat and addition of arabinoxylanase increased pre-caecal starch
digestion, as judged by reduced starch levels in the large intestine (Table 6). Addition of arabi-
noxylanase to the diet did not reduce the incidence of SD. The failure of extrusion and the
enzyme to protect against SD might be related to the apparent increased fermentation in proxi-
mal areas of the hindgut, as judged by an increase in bacterial ATP concentrations (Table 6). A
significant main effect of enzyme addition on digesta pH was seen, but only in the distal part of
the colon, such that pigs fed arabinoxylanase in their diet had a higher pH than pigs not fed
enzyme (6·68 v. 6·35, P = 0·017). These data suggest that by the time the enzyme had cleaved
the arabinoxylan chains, and the digesta had reached the distal colon, there was little or no fer-
mentable carbohydrate remaining and protein fermentation was occurring. Passage of smaller
NSP molecules may have then allowed colonisation by B. hyodysenteriae in the anterior parts
of the hindgut by providing suitable types and levels of substrate, with subsequent expression
of SD. In this study, therefore, use of an enzyme targeting wheat NSP exacerbated the incidence
of SD.
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Porcine intestinal spirochaetosis

The terms porcine intestinal spirochaetosis (PIS) or spirochaetal diarrhoea have been used to
describe colitis of growing pigs associated with infection of the large intestine with the weakly
β-haemolytic intestinal spirochaete Brachyspira (Serpulina) pilosicoli (Trott et al. 1996).
Infection is characterised by the attachment of B. pilosicoli to the colonic epithelium, followed
by disruption of the microvilli and, in some cases, local invasion and necrosis of the epithelium.
This results in patchy colitis, excess mucus production and the passage of watery, mucoid, and
occasionally blood-flecked diarrhoea. Clinically, pigs lose body condition, appear ill-thrifty,
have perineal staining and a tucked-up appearance. Pigs initially pass loose, sticky faeces,
which develops into diarrhoea with a consistency of wet cement. In weaner or grower pigs the
diarrhoea is usually watery to mucoid, green or brown, and can contain tags of mucus and
flecks of blood (Hampson & Trott, 1995, 1999). Pigs do not often die of this infection, which
may occur as a primary or secondary invader of the large intestine.

Given the close similarity between B. pilosicoli and B. hyodysenteriae, their very similar
habitats in the hindgut, and reports from veterinarians in the field of dietary influences on PIS,
an investigation was made into whether the cooked rice diet that protected pigs from SD might
also protect from PIS (Hampson et al. 2000). Two groups of weaner pigs were fed either a stan-
dard commercial wheat–lupin weaner diet (n 8) or a highly digestible diet based on cooked
white rice and animal protein sources (n 6) for 3 weeks after weaning. All pigs were then chal-
lenged orally over 3 d with 1010 active mid-log phase cells of a field strain of B. pilosicoli
(strain 95/1000). The pigs were killed 3–4 weeks post inoculation. All animals became
colonised with B. pilosicoli strain 95/1000, but this occurred later (mean of 10 d compared with
3 d post inoculation, P < 0·001), and lasted for less time (mean of 5 d compared with 16 d, P <
0·001), in the pigs fed the cooked white rice–animal protein diet compared with those fed the
wheat–lupin-based diet. One pig fed the wheat–lupin diet developed an acute and severe ero-
sive colitis with severe watery diarrhoea within 3 d post inoculation, and was euthanased. All
the other pigs on both diets developed mild transient diarrhoea, lasting only 2–3 d. Small areas
of mild patchy colitis were observed at post mortem, but no spirochaete attachment to the
epithelium was detected. This study demonstrated that, as with B. hyodysenteriae in grower
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Table 6. Production data, large intestinal fermentation indices, and incidence of swine dysentery (SD) in pigs
fed wheat-based diets subject to different processing and addition of arabinoxylanase (after Durmic et al. 1998)

(Mean values and standard errors of the difference)

Diet type Significance

RW ExtW RW-Enz ExtW-Enz SED W Enz W � Enz

Growth rate (g/d) 427 430 489 423 33·8 NS NS *
Starch (mg/g)

Proximal colon 10·2 0·6 6·2 2·0 2·52 *** NS *
Distal colon 7·2 0·2 2·1 0·0 2·97 ** NS NS

pH
Proximal colon 5·7 6·1 5·7 6·0 0·34 NS NS NS
Distal colon 6·1 6·6 6·6 6·8 0·30 ** * NS

ATP (nmol/g)
Proximal colon 0·30 0·10 0·42 0·44 0·26 NS * NS
Distal colon 0·18 0·14 0·17 0·23 0·18 NS NS NS

Incidence of SD (%) 66·7 33·3 100 100 – – – –

RW, raw wheat; ExtW, extruded wheat; RW–Enz, raw wheat + enzyme; ExtW–Enz, extruded wheat plus
enzyme; W, wheat.

* P < 0·05, ** P < 0·01, *** P < 0·001.
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pigs, colonisation by B. pilosicoli could be influenced by diet. In this case, the rice-based diet
did not prevent colonisation but only retarded it. In contrast with regard to the type of diet fed,
but with a similar outcome, Stege et al. (2001) reported that the provision of straw in pens for
finishing pigs was associated with a reduced prevalence of weakly β-haemolytic spirochaetes.
In support, Pluske et al. (1998) reported a low incidence of SD when oaten chaff (a largely
insoluble source of NSP) was fed to experimentally infected pigs. 

DE McDonald, DW Pethick and DJ Hampson (unpublished results) showed that inclusion
of CMC in a diet based on cooked white rice for pigs aged 5–6 weeks of age increased digesta
viscosity and caused an increase in the duration of shedding of B. pilosicoli following experi-
mental infection with the organism. The CMC also increased the duration of diarrhoea. The
number of days that faecal swabs were positive for B. pilosicoli in pigs fed the rice-based diet
without CMC (1·5 out of 9 d tested) was identical to that described in rice-fed pigs by Hampson
et al. (2000), indicating consistency across experimental trials. In the same study by Hampson
et al. (2000), the number of positive faecal shedding days for pigs fed a standard commercial
diet based on wheat, barley and Australian sweet lupins was 5·3, a value not dissimilar from
that recorded in pigs fed rice plus CMC by DE McDonald, DW Pethick and DJ Hampson
(unpublished results) (4·2 d). The similarity between the duration of shedding of B. pilosicoli in
pigs in these two studies suggests that inclusion of CMC exerts physicochemical properties in
the gut similar to that seen when a commercially-based diet is fed, further reinforcing the role
of viscosity per se as a causative factor in the aetiology of PIS.

Non-specific colitis. Before the description of PIS and its association with B. pilosicoli, certain
cases of what were almost certainly PIS were described as ‘grower scour/non-specific colitis’
(Smith & Nelson, 1987). Such cases are still reported in the literature (for example, see
Thomson et al. 1998; Johnston et al. 2001). Connor (1992) reported that non-specific colitis
was influenced by diet, with pelleting of the diet and wheat-based diets believed to predispose
pigs to the condition. The incidence of ‘non-specific colitis’ can be reduced by using an in-feed
arabinoxylanase (Partridge, 1998), suggesting that NSP might play a role in this enteric condi-
tion. Processing of cereal grains at high temperature can change the structure of NSP, with
Pluske et al. (1996) showing chemically that extrusion increased the soluble:insoluble NSP
ratio in wheat, but decreased the RS content markedly. Working with barley-based diets but in
78 kg pigs, Fadel et al. (1988) showed that extrusion caused a shift from insoluble NSP to solu-
ble NSP, and insoluble β-glucans to soluble β-glucans. The shift from insoluble to soluble NSP
after extrusion cooking resulted in increased digestion of soluble NSP at the ileum (proportion-
ally 0·54 more) and increased fermentation of insoluble NSP in the lower tract (proportionally
0·56 more). Moreover, Robertson et al. (1997) reported similar changes in barley when it 
was cooked at various temperatures up to 100°C. Pelleting diets is known to solubilise some of
the NSP in cereals (Pluske et al. 2001), and may cause starch retrogradation upon drying and
cooling.

With extrusion and/or pelleting, it is possible that the major site of digestion in the gas-
trointestinal tract shifts from being predominately pre-ileal to post-ileal, in the caecum and
colon. An increased rate of fermentation of carbohydrates in the hindgut most likely creates a
favourable environment for the growth of B. pilosicoli and attachment to the colonic epithe-
lium, and contributes to this condition. Greater digestibility of carbohydrates before the caecum
is desirable, because entry of substrate into the hindgut might promote the proliferation of this
particular pathogen. Alteration of the site of digestion of grains, therefore, by judicious grain
selection and processing methodology may ameliorate the incidence of PIS. Even in the
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absence of the spirochaete, vigorous fermentation of undigested starch in the large intestine
might generate sufficient hydrogen ion concentrations to damage the epithelium and cause a
‘non-specific colitis’. In this regard, histological examination of the hindgut tissue might pro-
vide valuable evidence of inflammatory reactions that might predispose pigs to this condition.

Work in progress by the Meat and Livestock Commission (UK) (D Armstrong, personal
communication) reported that 38 % of farms surveyed had non-specific colitis, with 42 % of
farms reporting an infectious colitis. Of these, B. pilosicoli was isolated from 58 % of farms,
Lawsonia intracellularis (the agent of proliferative enteropathy) was isolated from 37 % of
farms, and Yersinia pseudotuberculosis and Yersinia enterocolitica (yersiniosis) were both iso-
lated from 21 % of farms. Earlier, Thomson et al. (1998) investigated the possible causes of
colitis and typhlocolitis on eighty-five pig units in the UK between 1992 and 1996, and
reported that B. pilosicoli was the primary agent on 25 % of farms. This bacterium also formed
part of mixed infections on another 27 % of farms, with the main co-infections being Y. pseudo-
tuberculosis, proliferative enteropathy (see pp. 354 and 355), Salmonella species or B. hyo-
dysenteriae. Pathogens were not detected on 7 % of farms despite colitis being present. The
high incidence of mixed infections on pig farms poses a problem for the nutritional control of
enteric pathogens, because it is unlikely that all pathogens will respond in the same way to
dietary interventions.

Salmonellosis

Salmonella infections are a concern for the pig industry for two major reasons: (1) clinical dis-
ease (salmonellosis); (2) infection of pigs with Salmonella spp. serotypes that can be a source
of infection on pork products. In contrast to the large number of serotypes isolated from car-
casses and pork products, disease in swine is almost always caused by either the H2S-producing
variant of S. choleraesuis var. Kunzendorf (manifest as septicaemia) or by S. enterica var.
Typhimurium (Schwartz, 1999). A variety of serotypes may be isolated from diarrhoeic piglets
immediately after weaning, but Schwartz (1999) remarked that most were associated with poor
hygiene, concurrent enteric pathogens, inappropriate diets and a poor environment. Salmonella
heidelberg has been associated with PWC, with lesions more typical of enterotoxigenic diar-
rhoeal disease than salmonellosis (Reed et al. 1985). 

Causes of salmonellosis appear to be many and, as with many diseases, infection of pigs is
more common than overt disease. A survey conducted recently in the USA (Harris et al. 1997)
reported that salmonellae were isolated from the feed or feed ingredients from fourteen out of
thirty farms and thirty-six out of 1228 samples, with isolation from pelleted feeds being more
frequent than that from ground (mash) feed. In addition, isolation of salmonellae from feed was
associated with the lack of bird-proofing, on-farm feed preparation, and with housing of pigs in
facilities other than total confinement (Harris et al. 1997). Currently the major form of control
and prevention of salmonellosis is the use of antimicrobial compounds, although Schwartz
(1999) commented that nutritional approaches to preventing or alleviating the disease included
feeding of propionic or other VFA (to lower gastric pH) and supply of mannose, heavy metals,
lactose and probiotics. Evidence to support these claims was not presented.

Of recent interest is a US study by Anderson et al. (2001), who reported that oral adminis-
tration of a sodium chlorate solution 8 h and 16 h after a Salmonella enterica var. Typhimurium
challenge in weaned pigs reduced caecal concentrations of the organism. Salmonella possess
respiratory nitrate reductase activity that also catalyses the intracellular reaction of chlorate, an
analogue of nitrate, to cytotoxic chlorite. Most other gastrointestinal anaerobes do not possess
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respiratory nitrate reductase. Anderson et al. (2001) proposed that such a nutritional treatment
could be used before transport to the abattoir or in the drinking water during lairage as a way to
reduce Salmonella carriage onto carcasses. Work by DJ Hampson and DW Pethick (unpub-
lished results) at Murdoch University showed that feeding 7 kg weaner pigs a cooked white
rice–animal protein diet in association with oral inoculation with Salmonella enterica var.
Typhimurium delayed the onset of faecal colonisation (as assessed by plate counts) compared
with pigs fed a wheat-based diet higher in NSP.

As discussed earlier (p. 344), FLF has been shown to influence the bacterial ecology of the
gastrointestinal tract of pigs (Mikkelsen & Jensen, 2000), particularly in relation to members of
the family Enterobacteriaceae, and including Salmonella spp. For example it has been reported
that units adopting liquid feeding of by-products or using FLF have a lower incidence of salmo-
nellosis than herds using dry feed (Stege et al. 1997; Van der Wolf et al. 1999). Van Winsen et
al. (2001) recently reported that the numbers of Enterobacteriaceae along the gastrointestinal
tract were lower in pigs fed FLF compared with dry feed. These authors also reported a signifi-
cant negative correlation between the concentration of undissociated lactic acid and
Enterobacteriaceae numbers. Nevertheless, because other issues apart from specific dietary
components may be contributing to the effects, information from such studies needs to be con-
firmed by careful experiments conducted under controlled conditions. For example, in the case
of salmonellosis, the relative hygiene of the various diets may be influencing the infectious
dose presented to the pigs, rather than the diet itself having protective effects in the gastro-
intestinal tract (Hampson et al. 2001). Consequently, numerous countries have now instigated
strict quality assurance schemes in their feed manufacturing industries to limit the contamina-
tion of animal feed with Salmonella.

Porcine proliferative enteropathies

Porcine proliferative enteropathies (PPE; also known as proliferative ileitis) are a group of
acute and chronic conditions of widely differing signs but with a common underlying patholog-
ical change visible at necropsy: a thickening of the mucosa of the small intestine and colon. The
affected tissues show a proliferation of immature epithelial cells of the crypts, forming a hyper-
plastic to adenoma-like mucosa. These proliferating cells invariably contain numerous intracy-
toplasmic Lawsonia intracellularis, a Gram-negative, obligate intracellular bacterium (McOrist
& Gebhart, 1999). In growing pigs with uncomplicated proliferation of the mucosa, the condi-
tion is chronic proliferative enteropathy (or porcine intestinal adenomatosis, or ileitis). A vari-
ety of Campylobacter species have been recovered from proliferative lesions, but these are
thought to be secondary agents in the condition (McOrist & Gebhart, 1999). The main clinical
signs of PPE include loose, watery stools with or without blood, puddled faeces with undi-
gested feed, gauntness, and lack of weight-gain uniformity. Clinical signs often appear after
stressful events (for example, moving, mixing, transport), with pigs aged 6–20 weeks more
commonly affected than pigs younger than 6–8 weeks of age (Knittel, 1999).

PPE is widespread throughout the world, with surveys indicating that the percentage of
herds infected varies between 3 and 94 % (for example, Chang et al. 1997; Kim et al. 1998;
Thomson et al. 1998; Pearce, 1999a,b; Stege et al. 2000). In Denmark, for example, Stege et al.
(2000) reported that the prevalence of L. intracellularis in 1580 faecal samples was 93·7%,
with 32 % of all farms surveyed having L. intracellularis as the only causative agent of infec-
tion. In contrast, a UK survey (Thomson et al. 1998) reported that L. intracellularis was the pri-
mary infective agent and cause of colitis on 3·5% of herds examined, although it was associated
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with a mixed infection where B. pilosicoli was the primary causative agent in 15 % of farms.
The use of antibiotics against L. intracellularis is the most common form of control, however
McOrist & Gebhart (1999) commented that acute and chronic PPE remains a major problem
even in high-health status, minimal-disease herds. 

A survey by Stege et al. (2001) aimed at identifying risk factors for infection with L. intra-
cellularis showed that home-mixed (and/or non-pelleted) feed was associated with a reduced
prevalence of the pathogen (as well as of weakly β-haemolytic spirochaetes). Pearce (1999b)
provided evidence that the prevalence of L. intracellularis in UK pig herds was strongly related
to infection with the endo-parasite Trichuris suis. In turn, herds that were fed relatively high
levels of NSP in their grower diets (i.e. in the top 25 % of levels in all herds studied) were
twenty-seven times more likely to be infected with this nematode. Similar observations with
regard to endo-parasites in pigs have been made in Denmark (Petkevicius et al. 1997). Pearce
(1999b) concluded that the control of NSP intake for growers was the most important factor
controlling parasite infection in grower–finisher pigs in the UK. Although not pertinent to
infection by L. intracellularis per se, these data support the work of Stege et al. (2001) that the
prevalence of L. intracellularis might be influenced by diet, although whether this is a direct
effect or by modulation of other gastrointestinal organisms remains in question. In this respect,
it is interesting to speculate on the possible role of dietary formation of butyrate and cell
turnover as a potential modulator of the time available for intracellular Lawsonia to proliferate.
Furthermore, Møller et al. (1998) commented that while the presence of L. intracellularis can
be predictive of the diarrhoeic status of a pig herd, it does not warrant the conclusion that L.
intracellularis is necessarily causing the diarrhoea.

Gastric ulcers

Ulceration of the pars oesophagea of the stomach of pigs is frequently detected at slaughter,
and these lesions are sometimes thought to cause reduced weight gain to slaughter (Ayles et al.
1996). Ulceration of the stomach is also a serious welfare issue. Ulcers may lead to perforation
of the stomach wall and to peritonitis, as well as haemorrhaging. Such problems are considered
a common cause of sudden death in grower pigs and sows (Friendship, 1999). A myriad of fac-
tors are implicated in the aetiology of gastric lesions, including low levels of dietary fibre,
transportation stress, feed restriction, pelleting of the diet, physical crowding, pig genetics, feed
particle size and so on. Recent studies from Brazil have shown a positive relationship between
the presence of the spiral bacterium Helicobacter heilmannii in the pig’s stomach and the
occurrence of gastric ulcers. This organism was present in 100 % of all slaughtered pigs show-
ing ulcers, but only in 35 % of macroscopically normal stomachs (Barbosa et al. 1995; Queiroz
et al. 1996). 

A considerable body of information exists in the literature describing the effects of cereal
type, processing method and particle size on the prevalence of gastric ulceration. A large num-
ber of these studies originate from the USA and so have used maize as the base cereal (for
example, Healy et al. 1994; Wondra et al. 1995a,b; Lawrence et al. 1998; Eisemann &
Argenzio, 1999; Regina et al. 1999). It is possible that the influence of particle size and pro-
cessing method in maize-based diets on the expression of gastric ulceration differs from what
might occur if wheat-, barley- and/or sorghum-based diets were fed to pigs, as would happen
under Australian and European conditions.

In contrast to studies using maize, there are fewer reports investigating the effects of other
cereals such as wheat, barley and sorghum on the prevalence of ulcers in pigs, although inter-
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est in this area has increased markedly in the last 5–10 years. Danish work reported by Nielsen
& Ingvartsen (2000a) found that pigs receiving rolled barley (50 % of particles > 1 mm) or
wheat in non-pelleted form had virtually no gastric lesions as opposed to pigs receiving
ground (3 mm screen size) barley or wheat. Interestingly, rolled barley could be pelleted with-
out causing gastric lesions whereas rolled, pelleted wheat resulted in the highest gastric lesion
score. Ground wheat in pelleted form resulted in the highest gastric lesion scores. In another
study, Nielsen & Ingvartsen (2000b) found that pigs receiving either straw bedding (that they
could consume) or rolled barley had a lower incidence of gastric ulceration in comparison
with pigs receiving straw bedding where the cereal was finely (3 mm screen) ground. In all
instances, groups of pigs having few ulcers had a higher stomach DM content. Ange et al.
(2000) compared a maize–soyabean-based diet fed as a finely ground and pelleted diet v. a
coarsely-ground and mash diet, and reported that the average daily water : feed ratio was
higher for pigs on the pelleted diet (4·21 litres/d v. 3·04 litres/d, P = 0·02). Ange et al. (2000)
suggested that the higher ratio for the pelleted diet might be the cause of a more fluid digesta
allowing reflux of irritants (for example, H+, bile acids) from the distal stomach to damage the
pars oesophagea. Lang et al. (1998) and Ange et al. (2000) associated decreased pH in the
proximal stomach with increased prevalence of ulcers. In another US study, Mavromichalis
et al. (2000) reported that wheat ground to an average particle size of 400 µm supported
improved gain:feed and faecal digestibilities of nutrients (ileal digestibilities were not
reported) compared with a particle size of 600 µm, but also increased the incidence of stom-
ach keratinisation and lesions in finishing pigs (Table 7).

A possible reason for differences seen between wheat and barley in the Danish work of
Nielsen & Ingvartsen (2000a) might be the degree of gelatinisation and retrogradation of starch
(i.e. RS) that occurred after pelleting and drying and cooling. These interactions could be
examined by comparing grains that differ in their amylose:amylopectin ratio, and that behave
differently in vivo after processing. In addition, we are unaware of any reports investigating the
extent of cell-wall rupture that occurs when grain is rolled, and how this compares with grain
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Table 7. The influence of enzyme supplementation and particle size on the extent of keratinisation and
ulceration in pigs fed wheat-based diets between 63 and 115 kg live weight (after Mavromichalis et al. 2000)

No enzyme Enzyme

Particle size . . . 600 µm 400 µm 600 µm 400 µm Statistical contrast*

Stomach keratinisation
No. of observations 38 35 33 36
Normal 26 4 24 2
Mild 6 12 7 18
Moderate 6 8 2 7
Severe 0 11 0 9
Mean score† 0·47 1·74 0·33 1·64 P < 0·01

Stomach ulceration
No. of observations 38 35 33 36
Normal 37 21 33 30
Erosion 1 10 0 2
Ulcer 0 2 0 4
Severe ulcer 0 2 0 0
Mean score‡ 0·03 0·57 0 0·28 P < 0·01

* Contrast between particle sizes of 600 µm v. 400 µm.
† Scoring system: 0, normal; 1, mild; 2, moderate; 3, severe keratosis.
‡ Scoring system: 0, normal; 1, erosion; 2, ulcer; 3, severe ulcer.
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that has been hammer-milled. Microscopic examination of grains comminuted by these two
methods might provide insights into the extent of starch availability, and how this impacts upon
the prevalence of gastric ulcers.

Regina et al. (1999) postulated that compounds secreted in the distal stomach and that
return to the proximal stomach in finely ground diets may play a role in initiating damage to the
stratified squamous epithelium of this region. Eisemann & Argenzio (1999) reported that the
generation of hydroperoxidases and stimulation of the antioxidant and prostaglandin defence
systems were greater in growing pigs fed a finely ground, maize–soyabean meal diet. Studies in
our laboratory have looked for a possible link between diet and bacterial activity in the aetiol-
ogy of ulceration in the pars oesophagea. A weaner model of stomach ulceration was devel-
oped in which weaner pigs fed finely ground wheat developed quite severe ulceration after 2–3
weeks, whilst pigs fed the same wheat that had been subjected to high pressure and temperature
extrusion did not develop lesions (Accioly et al. 1998). Protection was associated with the
absence of the urease-producing H. heilmannii in the stomach. It is possible that interactions
with dietary components that lead to gastric ulcers extend beyond factors such as particle size
and processing, although these appear to be definite risk factors. These interactions might
include, for example, the interplay between the degree of starch disappearance before the duo-
denum, the products of fermentation and the commensal stomach flora. We are aware of no
studies that have attempted to quantify starch fermentation in the stomach. In this regard,
Krakowka et al. (1998) postulated that production of organic acids from certain carbohydrates
by Lactobacillus spp. and Bacillus spp. in the stomach was a risk factor for gastric ulceration.
This possibility would appear to warrant further research.

Other nutritional perspectives related to enteric bacterial diseases

Our review to date has focused on specific relationships between nutrition and some major
enteric bacterial diseases of pigs. The following discussions expand on these general nutritional
strategies and concepts and alert the reader to other nutritional approaches to controlling enteric
disease.

Minerals and polymers to control enteric diseases

Zinc. Zn is a component of many metalloenzymes, including DNA and RNA synthetases and
transferases, many digestive enzymes, and is associated with insulin; as such, it plays a crucial
role in lipid, protein and carbohydrate metabolism in the pig. Zn is an essential element for
pigs, and the National Research Council (1998) recommended intake for weaner pigs is 100
mg/kg feed DM. The National Research Council (1998) remarked that the bioavailabilities
(defined as a percentage of a recognised standard, for example, ZnSO4.7 H2O = 100 %, rather
than the actual percentage absorbed or retained) of different Zn compounds is generally less
than 50 %, with the bioavailability of ZnO ranging from 40 to 95 % (National Research
Council, 1998; Mavromichalis et al. 1999). Zn from organic complexes appears to be more
available than that from ZnO, and equivalent to Zn from ZnSO4 (Schell & Kornegay, 1996;
Swinkels et al. 1996).

Interest in the growth-promoting properties of ZnO came to light after a report by Poulsen
(1989; cited by National Research Council, 1998), who showed increased weight gain and
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reduced post-weaning scours in pigs when the weaner diet was supplemented with a pharmaco-
logical level (3000 parts per million (ppm)) of ZnO for 14 d after weaning. Numerous studies
(reviewed by National Research Council, 1998; also Bertol & Debrito, 1998; Carlson et al.
1999; Mavromichalis et al. 1999) have confirmed this earlier work, and now it is relatively
commonplace to include ZnO, at levels ranging anywhere between 2000 and 6000 ppm, in
weanling pig diets. However, some other studies (see National Research Council, 1998;
Windisch et al. 1998) have failed to show an improvement in performance with the use of ZnO.

The growth-promotion attributes of ZnO might in part be due to its effectiveness in control-
ling PWC (for example, Holm, 1988; Poulsen, 1989; Bertol & Debrito, 1998). With a ban on
growth-promoting antibiotics in some countries, the reliance on pharmacological levels of ZnO
in weaner diets to control enteric disease, particularly PWC, has increased. Despite its wide-
spread use after weaning, the precise mechanism(s) whereby ZnO exerts its effects is uncertain.
Huang et al. (1999) offered some insight into this question since pigs fed high doses of ZnO
showed reduced bacterial translocation from the small intestine to ileal mesenteric lymph nodes.
Other workers (for example, Carlson et al. 1999) suggested that high levels of ZnO induced met-
allothionein in gut enterocytes that, in turn, was involved in up regulation of RNA and DNA cell
proliferation. Mavromichalis et al. (1999) found no improvement in gut structure due to addition
of different sources of ZnO. Other workers have not observed differences in diarrhoea, although
changes in the microbial ecology appeared to occur with the use of ZnO. 

Jensen-Waern et al. (1997) reported that supplementation of a weaner diet with 2500 ppm
ZnO improved performance in pigs over a 28 d period following weaning, with no pigs show-
ing any clinical signs of illness. However, this also occurred in the control group that did not
receive 2500 ppm ZnO. Use of ZnO had no effects on numbers of excreted E. coli or
Enterococci spp./g of faeces, although these authors suggested that ZnO at growth-promoting
levels in the diet might reduce the diversity within the gut microflora that, in turn, promotes a
more stable ecology. In turn, Katouli et al. (1999) reported that addition of 2500 ppm ZnO to a
weaner diet did not reduce total coliform numbers in the faeces, but control pigs showed an
increase in both the variety and diversity of coliforms compared with pigs fed ZnO. These
authors recommended that ZnO be fed not longer than the first 14 d after weaning.

A major concern with the increasing use of pharmacological (growth-promoting) levels of
ZnO is excretion of this mineral into the environment, with possible antibacterial effects on
beneficial soil and water bacteria. Some countries, such as Denmark, are restricting ZnO levels
in diets to reduce the amount of Zn leaving the pig and entering the environment. Although
other forms of Zn such as zinc chelates and organic complexes have higher bioavailabilities
than ZnO, it is not known whether they are as effective in preventing enteric disease after
weaning as ZnO. Evidence in the literature to support their use is lacking, and they tend to be
more expensive. The extent of diarrhoea after weaning obviously depends on a multitude of
factors and conditions, and these will influence the effectiveness of any Zn compound relative
to ZnO. However, it would appear necessary to investigate alternative forms of Zn (or ZnO)
that not only have higher bioavailabilities (leading to reduced faecal excretion), but also have
growth-promoting properties and ameliorate or prevent diarrhoea. Mavromichalis et al. (1999)
compared two sources of ZnO that differed in their relative bioavailability (39 v. 93 %) in
weanling pigs, and reported no major differences between the two sources in their growth-pro-
moting properties. No data were reported on the incidence of diarrhoea.

Copper. The pig needs Cu for the synthesis of haemoglobin and for the synthesis and activa-
tion of several oxidative enzymes necessary for normal metabolism. The National Research
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Council (1998) recommends a level of 6 mg/kg feed DM for weanling pigs. Cu salts with high
biological availabilities include the sulfate, carbonate and chloride salts (Cromwell et al. 1998).
Organic complexes of Cu appear to have equal bioavailability to CuSO4 (see National Research
Council, 1998), although Coffey et al. (1994) reported that pigs fed a copper-lysine compound
had a faster growth rate than pigs fed CuSO4, suggesting a difference in bioavailability and/or
systemic effects. Coffey et al. (1994) also reported that 100 ppm Cu was as efficacious in stim-
ulating growth as 200 ppm Cu. 

Braude (1945) was the first to show a growth response to high dietary Cu concentrations fed
to growing–finishing pigs. When fed at 100–250 ppm, Cu (as CuSO4) has a growth-promoting
effect in weanling pigs that appears to be independent of, but in addition to, the growth response
elicited by antimicrobial compounds (National Research Council, 1998). In addition, the growth
response to high levels of CuSO4 is increased by added fat, an effect attributed to enhanced
lipase and phospholipase A activities (for example, Luo & Dove, 1996). As with pharmacologi-
cal levels of ZnO, the precise mechanism(s) whereby CuSO4 exerts growth-promoting properties
is (are) unknown, although some evidence suggests that it may have a systemic component
(Zhou et al. 1994), in addition to any direct effect(s) in the gastrointestinal tract. 

Interactions between other minerals, such as growth-promoting inclusion levels of ZnO in
weanling pig diets, also require consideration. Recently, Hill et al. (2000) reported the results
from twelve experimental stations in the USA investigating the effects of Zn and Cu supplemen-
tation above National Research Council (1998) requirements for weanling pigs (6·55 kg, weaned
at 22 d of age). All diets contained chlortetracycline (220 ppm) and were fed for 28 d.
Treatments were as follows: (a) control; (b) 3000 ppm ZnO; (c) 250 ppm CuSO4; (d) 3000 ppm
ZnO plus 250 ppm CuSO4. Pharmacological levels of ZnO and CuSO4 enhanced growth rate and
feed intake, and improved feed efficiency, beyond levels of Zn and Cu intake that met nutrient
requirements. The combination of Zn and Cu did not cause an additive growth response. In
another study, Hill et al. (2001) reported that supplemental ZnO at 1500–2000 ppm plus an
antibacterial agent (carbadox) improved post-weaning performance in an additive fashion.

Similar environmental pollution concerns to those expressed with regard to feeding high
levels of ZnO have been raised with addition of growth-promoting levels of CuSO4 in diets, but
CuSO4 may be more of an issue because it is often included in diets through the growing and
finishing periods. Investigations into ‘alternatives’ to CuSO4, and ZnO require a focus on
sources of minerals that are cost-effective, provide similar levels of control of enteric disease,
and reduce the amount of mineral entering the environment.

Polymers. Work by Hampson et al. (2000) demonstrated that the use of a polymer (2-propenal,
2-propenoic acid, which is based on the polymerisation of 2-propenal) was effective in reduc-
ing colonisation and the incidence of diarrhoea of weaner piglets following both experimental
challenge with E. coli and an on-farm trial. This product is thought to inactivate surface pro-
teins on micro-organisms, thereby destroying them in a non-selective way.

Influence of diet processing on enteric diseases

A key influence on the physicochemical properties in vivo of ingested feed, especially cereals,
is the type and extent of processing that the grain component undergoes before feeding. A mul-
titude of changes occur in the chemistry of cereals (and perhaps oilseeds and legumes) during
the various processing procedures, and these are relatively poorly understood. This is especially
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the case when trying to unravel factors responsible for maintenance of intestinal health, because
it is likely that mechanical events occurring even before the pig eats its diet will have an impact
on its capacity to digest and absorb the feed. Furthermore, these effects will also influence the
microbial ecology of the gastrointestinal tract. The interactions that might exist between grain
type and growing region, grain handling and processing, and the subsequent effects on the
intestinal health of the pig require further investigation, particularly in relation to diseases such
as salmonellosis and gastric ulceration.

Processing of grains breaks cell walls and reduces particle size. This is important because
it determines the surface area that is exposed to the digestive and microbial enzymes, and influ-
ences the number of starch granules released from the protein-fibre matrix of the endosperm
(Rowe et al. 1999). It has generally been considered that a ‘fine’ particle size is desirable
because the surface area available for digestion will be increased. For example, Owsley et al.
(1981) reported that ileal digestibility of starch in sorghum increased from 72 % for dry rolled
sorghum (1·3 mm particle size) to 86 % for hammer-milled sorghum passed through a 3·2 mm
screen (500 µm particle size). However, comminuting grain too ‘fine’ may have adverse conse-
quences for the prevalence of enteric diseases such as gastric ulceration, especially in wheat-
based diets (pp. 355–356). Particle size is also important because, again depending on the
cereal and even the cultivar within a cereal, it will largely determine the rate, extent and sites of
digestion of starch within the gastrointestinal tract of the pig. 

While the combination of enzymic activity in the small intestine and a (relatively) high fer-
mentative activity in the hindgut results in a consistently high value for digestible energy con-
tent of grains, the pattern of digestion along the gastrointestinal tract may not necessarily be
optimum with regard to nutrient absorption and utilisation, and hence the net energy content of
a grain. The literature indicates that while there are well-established methods of processing
grains to reduce particle size and achieve efficient digestion across the entire gastrointestinal
tract (Rowe et al. 1999), information pertaining to the effects of processing and grain type on
the rate, extent and site of digestion within specific regions of the gastrointestinal tract of the
pig is less common. Furthermore, an undesirable pattern of digestion in the gastrointestinal
tract might have dire consequences for the proliferation of certain bacteria that cause disease in
pigs, such as in PIS and possibly PWC.

Acid-binding capacity of feedstuffs and post-weaning colibacillosis

Aumaitre et al. (1995) suggested that the activities of endogenous proteases are reduced in the
post-weaning period by the presence of certain protein-containing feedstuffs, but not others.
These included fishmeal or fish protein concentrate, by-products of the slaughter industry (for
example, meat and bone meal), and the presence of ‘high’ amounts of soyabean meal in the
diet. Animal protein products such as fishmeal and dried milk powders have high acid-binding
capacity values (Bolduan et al. 1988). These feedstuffs bind more HCl in the stomach than
cereals resulting in a higher pH (reduced acidity) and reduced pepsinogen production. As a con-
sequence, proteolysis in the stomach might be diminished and the presence of ‘extra’ protein in
the small intestine might overwhelm the digestive capacity of pancreatic and brush-border pro-
teases in the upper regions of the small intestine, themselves relatively immature in the imme-
diate post-weaning period. More protein would then move distally and be available for
fermentation that, in turn, might predispose the young weaned pig to PWC. In addition, acid-
binding capacity in the stomach might allow increased survival of pathogenic E. coli that is
subject to faecal–oral recycling. In this regard there is considerable (re)interest in the use of
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organic acids as a means of lowering gastric pH that, in turn, might be associated with reduced
proliferation of E. coli in the upper small intestine. 

Organic acids

For a number of years organic acids have been used with varying success for amelioration of
enteric infections. The withdrawal of growth-promoting antimicrobials has forced them back
into focus as an alternative or replacement to antimicrobials in pig production. Several recent
reviews (Partanen & Mroz, 1999; Partanen, 2001) describe the rationale behind the use of
organic acids and present results on digestibility of nutrients and their effects on some bacterial
diseases (see Partanen, 2001). In the review by Partanen (2001), a meta-analysis of published
data in weaned pigs revealed that improvements in production attributable to organic acids
were observed due to an increase in voluntary food intake, although the exact mechanism(s)
causing this effect are somewhat difficult to ascribe. This is no surprise given the multitude of
factors affecting feed intake after weaning. The situation becomes complicated because differ-
ent acids cause different effects, and studies have used different diets and conditions of hygiene
that might also contribute to the differences observed. Furthermore, data associating the use of
organic acids with reductions in diarrhoea are equivocal and data in vivo demonstrating that
organic acids exert their effects by lowering gastric pH are lacking (Gabert & Sauer, 1994;
Partanen & Mroz, 1999). Findings are also equivocal as to whether organic acids exert their
effects by influencing dietary buffering capacity (Roth & Kirchgessner, 1989).

In addition, Partanen (2001) commented that: ‘It seems that the growth promoting effect of
organic acids is primarily associated with effects on gastrointestinal microflora’. There are few
data to support this notion, although some studies in both weaner and growing–finishing pigs
(Øverland et al. 1999; 2000a,b; Canibe et al. 2001) have reported decreases in measurements
such as total coliform counts and total anaerobic bacteria counts with the use of some acids
(potassium diformate in this case). Partanen (2001) commented that organic acids not only act
on pathogenic bacteria, but also modify beneficial flora, and considered that reduced microbial
fermentation allows the pig increased access to the carbohydrates, which in turn improves per-
formance. Considerable work is still needed in this area, particularly in the field of microbio-
logical changes that occur in response to organic acids. It is possible also that other alternatives
to in-feed antibiotics, such as enzymes (Partridge & Tucker, 2000), might work in conjunction
with organic acids to enhance performance after weaning. Regardless, work from the field in
countries such as Sweden and Denmark suggests that certain organic acids have a positive
effect on reducing the incidence of diseases such as PWC and salmonellosis, and hence are
used widely in commercial practice.

Nutraceuticals, botanicals and fatty acids

There has been considerable interest in the use of these compounds to replace growth-promoting
antimicrobials in diets for pigs. Although the scientific rationale and mechanisms behind the
antimicrobial properties of these compounds to control enteric infections are not new, and in
principle are sound, there are very few scientific data in vivo to support their efficacy in con-
trolling enteric bacterial diseases.

A number of papers show marked in vitro effects of essential plant oils and extracts on a
number of bacterial genera and species (for example, Hammer et al. 1999). Duncan et al.
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(1998) identified several specific metabolites isolated from plants, such as the coumarins
esculetin, umbelliferone and scopoletin, which created inhibitory conditions in vitro for
pathogens such as E. coli O157. These authors could not ascertain the exact mechanism(s)
whereby the coumarins exerted their effects, though the results appear promising. Nevertheless,
the majority of studies investigating nutraceuticals or botanicals have been conducted in vitro,
and hence validation of these findings in vivo is still required. 

It is recognised that compounds such as these possess potent anti-inflammatory and
immunological actions. Recently, Bassaganya-Riera et al. (2001a,b) showed that conjugated
linoleic acid enhanced cellular immunity in pigs by modulating phenotype and effector func-
tions of CD8(+) cells involved in both adaptive and innate immunity. This occurred irrespective
of whether pigs were in a ‘clean’ or ‘dirty’ environment. Development of cell-mediated immu-
nity against pathogens in both the gut and the circulation are key defence mechanisms, and it
might be possible to influence the development and duration of some enteric diseases by the
addition of compounds such as conjugated linoleic acid.

Exclusion products and probiosis 

Many of the successful enteric organisms have developed strategies to resist displacement from
the epithelium via the development of anchoring adhesive fimbriae (pili). Approaches to mask-
ing these attachment sites from pathogenic bacteria include the feeding of certain lectins or
competing carbohydrates (oligosaccharides) that inhibit attachment of certain bacteria to the
epithelium (Kelly et al. 1994), to the provision of (avian) egg immunoglobulin G immunised
against enterotoxigenic strains of E. coli (Mroz et al. 1999). For example, addition of 2·5% 
D-mannose to broiler diets reduced the excretion and colonisation of Salmonella enterica var.
Typhimurium (Oyofo et al. 1988), while the use of a mannan oligosaccharide has been reported
to reduce the concentration of caecal coliforms and Salmonella enterica var. Typhimurium and
Salmonella Dublin in chicks (Spring et al. 2000). Similar studies in pigs have not been pub-
lished in peer-reviewed journals.

McCracken & Gaskins (1999) commented that dietary supplementation of human subjects
and animals with probiotics has been shown to provide protection against intestinal, diarrhoea-
producing pathogens under certain situations, for example in ‘dirty’ facilities. Simpson et al.
(2000) reported that the introduction of Lactobacillus reuteri strain MM53 to 21 d old piglets
caused bacterial changes in the faeces that could be reliably assessed using denaturant gradient
gel electrophoresis methodology. In ‘clean’ conditions though, the use of probiotics based on
Lactobacillus spp. and Enterococcus spp. may in fact cause growth depression and deteriora-
tion in gut health because of the production of toxic metabolites (Gaskins, 2001). It would
appear that the growth-promoting effects of probiotics in pigs are less consistent and quantifi-
ably less evident than the use of antimicrobial compounds, although the recent technical devel-
opments in molecular microbiology have identified other probiotic strains that might have
greater potential for enhancing disease resistance (Kelly, 1998).

Conclusions

This purpose of the present review was to describe the major enteric bacterial diseases of pigs
in relation to where nutrition, in its broadest sense, has or might be used to prevent or modulate
the incidence of disease. The restricted use and, in some parts of the world, the total ban on the
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use of antimicrobial agents, such as growth-promoting antibiotics and minerals, has resulted in
a search for alternatives or replacements for these compounds in pig diets. This is particularly
pertinent to the period following weaning, where diets have traditionally been fortified with
antimicrobial agents to control the proliferation of diseases such as PWC. Data from countries
such as Denmark (Hansen, 2000) and Sweden (Commission on Antimicrobial Feed Additives,
1997) suggest that banning and/or restricting the use of antimicrobial agents increases the inci-
dence of clinical disease, increases mortality, reduces growth rates and increases the overall
cost of production to slaughter weight. In these instances the use of ‘nutrition’ to compensate, at
least in part, for the loss of antimicrobial agents has been adopted. Unfortunately, the underly-
ing basis for many of the reported positive effects of nutrition on controlling enteric infections
is poorly understood, so firm dietary recommendations to prevent or reduce clinical enteric dis-
ease cannot be made with full confidence. A greater understanding of how nutrition influences
the intestinal environment, gut epithelial biology and immunobiology, and their interactions
with both commensal and pathogenic bacteria, holds promise as a means of tackling enteric dis-
ease without antimicrobial agents. An important first step in defining the bacterial diversity of
the gut was achieved recently by Leser et al. (2002), who compiled a library of 4270 cloned
16S rDNA sequences representing 375 phylotypes from the ileum, caecum or the colon of pigs
aged 12–18 weeks. In addition, it is important to consider the overall system of pig production
in the context of controlling enteric bacterial diseases. In this regard, Penny (2000) commented
that the pig industry, especially in Europe, needed to consider new management techniques plus
a re-evaluation of existing production systems (for example, weaning age, bedding systems, all-
in, all-out management) to tackle this issue. In this regard, a postal survey by Pearce (1999a)
found a negative association between the use of wet feeding systems and colitis in finishing
pigs in a sample of UK pig herds. Although the statistical association between units adopting
wet feeding and increased colitis does not necessarily indicate a causal relationship, it does
highlight the overall complexity when faced with responding to enteric diseases. It is envisaged
that this challenge will become greater if there is a total ban placed on all antimicrobial agents.
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