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(Received 8 April 2008)

Abstract

In this paper we find all finite rings with a nilpotent group of units. It was thought that the answer to this
was already given by McDonald in 1974, but as was shown by Groza in 1989, the conclusions that had
been reached there do not hold. Here, we improve some results of Groza and describe the structure of an
arbitrary finite ring with a nilpotent group of units, thus solving McDonald’s problem.
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1. Introduction

In this paper let R denote a ring with identity 1 6= 0 and for an arbitrary finite set X let
|X | denote the number of elements in X . We denote the group of units of R by G or
G(R) and the Jacobson radical of R by J or J (R). The ring of n × n matrices over a
ring R is denoted by Mn(R) and the ring of integers modulo m is denoted by Zm . Let
Z(I ) denote the centre of an arbitrary ideal I in R.

In [5, Corollary XXI.10], McDonald states that the group of units of a finite ring
R is nilpotent if and only if R/J (R) is a direct sum of finite fields. Groza showed
in [3] that this is not true because, in the case of the ring R of n × n upper triangular
matrices with entries from an absolute field, not of order two, the group G(R) is not
nilpotent, even though R/J (R) is a direct sum of fields. He showed that for finite
rings, such that at most one simple component of the semisimple ring R/J (R) is a
field of order two, G(R) is a nilpotent group if and only if R is a direct sum of rings
that are homomorphic images of group rings C P , where C is a homomorphic local
image of the ring Zpr [X ]/(X ps

−1
− 1) and P is a finite p-group for some prime p.

In the first section we study the Galois coefficient ring of a finite local ring.
If R is a finite local ring, then by [5, Theorem XIX.1] there exists a Galois
subring S such that R is the ring homomorphic image of the skew-polynomial ring
S{x1, . . . , xt ; σ1, . . . , σt }, where xi are noncommuting variables and, for each i , σi
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is an automorphism of S satisfying sxi = xiσi (s) for all s ∈ S. We show that the
nilpotency of the group of units of the local ring R is equivalent to the fact that the
Galois coefficient ring is a subring of the centre of R, and prove that every finite local
ring R such that R/J (R) is isomorphic to the field Zp, has a nilpotent group of units.

In the next section we improve the first result of [3]. By studying basic rings, we
prove that for an arbitrary finite ring R, the group G(R) is nilpotent if and only if R
is a direct sum of polynomial rings in noncommuting variables over Galois rings, and
basic rings S, such that S/J (S) is a direct sum of fields with two elements, and we also
describe the structure of such basic rings. Finally, we describe the connection between
the nilpotency of the group G(R) and the action of G(R) on the set of primitive
idempotents of R, which yields a decomposition of R, where the only noncommutative
factors are exactly the upper triangular matrices with entries from the field Z2 and a
vector space V over Z2.

2. Local rings with a nilpotent group of units

In this section we find all finite local rings with a nilpotent group of units. So,
let R be an arbitrary finite local ring with maximal ideal J and residue field k.
By [5, Theorem XIX.6], there exists a Galois coefficient ring S of R such that
R = S[a1, . . . , at ; σ1, . . . , σt ], where t = dimk(J/J 2) for suitable automorphisms σi
of S, and a1 + J 2, . . . , at + J 2 determine a k-basis of J/J 2.

LEMMA 2.1. Let R be a finite local ring and let S and t be as above. Also, let
x = g + p(a1, . . . , at ) and y = h + q(a1, . . . , at ) be two arbitrary units, where p
and q are polynomials with coefficients in S and zero constant term, and g and h are
units in S. (Note that every unit in R is of such form by the above remark.) If S is a
subring of the centre of R, then [x, y] = 1+ [p′, q ′] + [p′, q ′](p′ + q ′)+ · · · , where
p′ = g−1 p and q ′ = h−1q.

PROOF. Since J is nilpotent and p′ = g−1 p, q ′ = h−1q ∈ J , we can write
x−1
= (1− p′ + p′2 − · · · )g−1 and y−1

= (1− q ′ + q ′2 − · · · )h−1. Since S is
central, we can write [x, y] = (1+ p′)(1+ q ′)(1− p′ + p′2 − · · · )(1− q ′ + q ′2 −
· · · ) and now a simple calculation yields the result. 2

THEOREM 2.2. Let R be a finite local ring. Let nH denote the order of nilpotency of
an arbitrary nilpotent subgroup H ≤ G(R) and let m denote the order of nilpotency
of the Jacobson radical J (R). Then the following two statements are equivalent:

(1) the Galois coefficient ring of R is a subring of the centre of R;
(2) G(R) is nilpotent.

In this case, nG(R) = n1+J (R) ≤ m − 1 and nG(R) ≤min{k; J (R)k ⊆ Z(J (R)}.
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PROOF. Let S denote the Galois coefficient ring of R.
If G(R) is nilpotent, then S is a subring of the centre of R by [3, Theorem 1.8].
On the other hand, let us assume that S is a subring of R and take arbitrary elements

x = g + p(a1, . . . , at ) and y = h + q(a1, . . . , at ) in G(R). (Thus, g, h ∈ G(R) and
p, q ∈ J (R).) We know, by Lemma 2.1, that

[x, y] = 1+ [g−1 p, h−1q] + [g−1 p, h−1q](g−1 p + h−1q)+ · · · ).

However, since [g−1 p, h−1q] = 0 if and only if [p, q] = 0 and since 1+ J (R) is a
p-group and therefore nilpotent, we can conclude that G(R) is also nilpotent and the
order of its nilpotency is equal to the order of nilpotency of 1+ J (R). Now, all of the
above inequalities follow immediately. 2

COROLLARY 2.3. Let R be a finite local ring such that R/J (R) is isomorphic to the
field Zp, then G(R) is nilpotent.

PROOF. By the above theorem, we only need to prove that the Galois coefficient ring S
is contained in the centre of R. This is true, because we know from [5, Theorem XIX.4]
that S equals Zpk (up to an inner automorphism of R). 2

The proof of the following lemma can be extracted from the first paragraph of the
proof of Proposition 1.4 in [3], but we include it here for the sake of completeness.

LEMMA 2.4. Let R be a ring such that at least one factor of the semisimple ring
R/J (R) is a proper matrix ring over a field, then G(R) is not nilpotent.

PROOF. If G(R) is nilpotent, then it is solvable. The ring R/J (R) is a direct sum
of simple rings and each factor is isomorphic to Mn(D) for some skew field D.
Therefore, G(D) is solvable, so D is a field by the result of Hua in [4]. The solvability
of GLn(D) now implies that either n = 1 or n = 2 and D = G F(2) or D = G F(3)
(see, for instance, [2]). However, GL2(D) is not nilpotent, so each direct summand
has to be a field. 2

3. Basic rings with a nilpotent group of units

Recall that the ring R is called basic if R/J (R) is a direct sum of fields. First, we
examine all such rings R, that at most one field of those present in the decomposition
of R/J (R) is isomorphic to Z2.

THEOREM 3.1. Let R be a basic ring such that at most one factor of the semisimple
ring R/J (R) is the field Z2. If the group of units of R is nilpotent, then R
is a direct sum of local rings that are homomorphic images of polynomial rings
G R(pn, r){x1, . . . , xt } in noncommuting variables.

PROOF. The ring R is a direct sum of local rings by [3, Theorem 2.2] and by
[3, Theorem 1.8] each direct summand is a homomorphic image of a polynomial ring,
as described above. 2
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COROLLARY 3.2. Let R be a basic ring such that R/J (R) is Zp1 ⊕ · · · ⊕ Zpk , and
at most one of the factors is Z2. Then G(R) is nilpotent if and only if R is a direct sum
of local rings.

PROOF. We have one implication by the above theorem. The other follows from
Corollary 2.3 since a direct sum of nilpotent groups is nilpotent. 2

Now, let us examine rings R, such that R/J (R) is isomorphic to the ring
⊕n

k=1 Z2.

THEOREM 3.3. Let R be a basic ring such that R/J (R) is a direct sum of n ≥ 2 fields
with two elements, then G(R) is nilpotent. Furthermore, every element of R is a sum
of an idempotent and an element from the group

((e1 + e1 J (R)e1)n ((1− e1)J (R)e1)) . . . ((en + en J (R)en)n ((1− en)J (R)en)),

where {e1, . . . , en} is a set of primitive orthogonal idempotents. Also, each subring
ei Rei is a homomorphic image of a polynomial ring in noncommuting variables.

PROOF. We note that G(R)= 1+ J (R), because the group of units of R/J (R) is
trivial. We can assume that R is indecomposable, since otherwise we can deal
separately with each of the factors. So, R is a p-ring and therefore G(R) is a p-group,
hence nilpotent. Now, [1, Theorem 9] tells us that the ring R satisfies idempotent
1-stable range and therefore every element in R is a sum of a unit and an idempotent.
We can see this if we take an arbitrary element x ∈ R and write x R + (−1)R = R,
thus by the definition of idempotent 1-stable range, there exists an idempotent e
such that x + (−1)e ∈ G(R). So, in our case, we have for an arbitrary x ∈ R that
x = 1+ e + j for an idempotent e and some j ∈ J (R). Now, let {e1, . . . , en} be a
set of orthogonal primitive idempotents in R. From [6, Corollary 1.8], we have that
1+ J (R)= (1+ e1 J (R)) . . . (1+ en J (R)) and by [6, Proposition 1.10] we know
that every group 1+ ei J (R) is a semidirect product of the group ei (1+ ei J (R))ei
= ei + ei J (R)ei with an abelian group

{(1− ei )(1+ j)ei ; j ∈ J (R), (1− ei )(1+ j)(1− ei )= 1− ei }

= {(1− ei ) jei ; j ∈ J (R), (1− ei ) j (1− ei )= 0}.

This latter group has to be viewed as an additive subgroup of R, and the action of
ei + ei J (R)ei is induced by left multiplication. Now, let us examine the ring eRe for
some primitive idempotent e. By [5, Theorem VII.4], we see that J (eRe)= eJ (R)e,
thus eRe/J (eRe) is a field with two elements. By [6, Lemma 1.4] and the fact that
every idempotent preserves the group 1+ Q for every quasi-invertible ideal Q in R,
we know that eG(R)e ⊆ G(eRe), but since eRe is a local ring and its group of units
is equal to e + J (eRe)= e(1+ J (R))e, we can conclude that G(eRe)= eG(R)e =
e + eJ (R)e. Since eJ (R)e is an additive subgroup of J (R), we see that G(eRe) is
also a p-group and therefore, by Theorem 3.1, the ring eRe is a homomorphic image
of the polynomial ring G R(pn, r){x1, . . . , xt } in noncommuting variables. 2

Let us now combine all of our findings into the following theorem.
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THEOREM 3.4. Let R be an arbitrary finite ring. Then G(R) is nilpotent if and only
if R is a direct sum of either local rings that are homomorphic images of polynomial
rings G R(pn, r){x1, . . . , xt } in noncommuting variables and their centre contains the
Galois coefficient ring, or rings, described in Theorem 3.3.

PROOF. If R is a direct sum of rings, described above, then G(R) is nilpotent, because
the group of units of every direct summand is nilpotent by Theorems 3.3 and 2.2. Now,
assume that G(R) is nilpotent. We know that R is a basic ring by Corollary 2.4. Let n
denote the number of fields in the decomposition of the ring R/J (R) into a direct sum
of fields. Let n2 denote the number of those fields, that are isomorphic to Z2. If n2 ≤ 1
or n2 = n, then the theorem holds as a direct consequence of Theorems 3.1 and 3.3.
Now, let us assume that R is indecomposable (otherwise we take an indecomposable
component of R). Therefore, R is a p-ring, so R/J (R) is a direct sum of p-fields.
If p > 2, then the theorem holds by Theorem 3.1. So, let us assume that p = 2 and
1< n2 < n. If we can find a nontrivial idempotent e ∈ R/J (R) such that e is a sum of
units in R/J (R), then we can proceed as in the proof of [3, Proposition 1.4]. However,
such a nontrivial idempotent exists in all cases when n2 < n, since we can take 0 in
a one fixed (say, last) component (that is not Z2) and 1 in every other component.
Such an element can be written as a sum of units of the form (1, 1, . . . , x), where
x runs over every nonzero element of the last component, since there is an odd
number of such elements and their sum equals zero in every field with more than
two elements. So, we can find a nontrivial idempotent e in R that commutes with
all units. Since the units generate all elements of R, except those whose cosets in
R/J (R) have a nontrivial element in the part that falls into the sum of fields with two
elements, we only have to examine these sorts of elements. Namely, every element
of R, taken modulo J (R), is a sum of a unit and a (possibly trivial) idempotent f
that only has possible nonzero elements in the components belonging to the fields
Z2. So, let us take such an idempotent f and lift it to the idempotent f ∈ R. Let
us prove that e f (1− e)= 0. By the definition of e, the element f (1− e) belongs to
J (R) (because 1− e modulo J (R) has zeros at those places that belong to the sum
of fields Z2). Therefore e f (1− e)= f (1− e)e = 0, since e centralizes G(R) and
1+ J (R) is a subgroup of G(R). We have proved that eR(1− e)= 0 and similarly
we see that (1− e)Re = 0. This now yields the following decomposition of R,
R = eRe ⊕ (1− e)R(1− e), which contradicts the assumption that R is indecompos-
able. Therefore, we either have n2 = n or n2 ≤ 1 and thus the theorem is proved. 2

COROLLARY 3.5. Let R be a finite ring with a nilpotent group of units and a commu-
tative Jacobson radical such that for every pair of orthogonal idempotents e, f ∈ R
either eJ (R) f = 0 or |eJ (R) f |> |[e]|, where by [e] we denote the orbit of the conju-
gate action of the group G(R) on the set of all idempotents of R. Then R decomposes
as a direct sum of commutative local rings and rings isomorphic to the ring{[

a c
0 b

] ∣∣∣∣ a, b ∈ Z2, c ∈ V

}
for some vector space V over Z2.
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PROOF. By the previous theorem, we know that we can decompose R into a direct
sum of local rings. Now, all of those direct summands are commutative rings by
[3, Corollary 1.10]. So, we can assume that R is a ring, as described in Theorem 3.3.
Let e and f denote orthogonal idempotents in R that were lifted from two orthogonal
idempotents in R/J (R). Take an arbitrary x ∈ R. Then e + ex f = aea−1 for some
a ∈ G(R) because of [5, Theorem VII.13] and the fact that this equation holds
modulo J (R). So, ex f = aea−1 f and since a = 1+ j and a−1

= 1+ j ′ for some
j, j ′ ∈ J (R) and the fact that J (R) is commutative,

ex f = ea−1 f + jej ′ f = ea−1 f + j ′ f ae = ea−1 f,

since f ae = 0. If a 6= 1, then by assumption f Re = 0. If a = 1 for some
x 6= 0, then by assumption eR f = 0. Now, if eR f = f Re = 0, then R is directly
indecomposable and eRe is a local ring for a primitive idempotent e, therefore
commutative by [3, Corollary 1.10]. Otherwise, we see that there are at most two
nontrivial idempotents e, f in R such that eJ (R) f = J (R) and therefore R is a 2× 2
matrix ring {[

a c
0 b

] ∣∣∣∣ a, b ∈ Z2, c ∈ V

}
for some vector space V over Z2. 2
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