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COMPLEX VECTOR BUNDLES ON REAL
ALGEBRAIC VARIETIES OF SMALL DIMENSION

WOJCIECH KUCHARZ

Let X be an affine real algebraic variety. In this paper, assuming that dim X ^ 7 and
that X satisfies some other reasonable conditions, we give a characterisation of those
continuous complex vector bundles on X which are topologically isomorphic to algebraic
complex vector bundles on X .

1. INTRODUCTION

Let F denote one of the fields R, C or H (the reals, complexes or quaternions).
Let X be an affine real algebraic variety (that is, X is biregularly isomorphic to an
algebraic subset of Rn for some n ; for definitions and notions of real algebraic geometry
we refer to the book [2]). Denote by A the ring of R-valued regular functions on X
and set A(F) = A ®R F. We shall consider A(F) as a subring of the ring B(F) of
continuous F-valued functions on X. A continuous F-vector bundle £ on X is said
to admit an algebraic structure if there exists a finitely generated projective A(F)-
module P such that the .F-vector bundle on X associated, in the usual way (see [17]),
with P ®A(F) B{F) ls topologically isomorphic to £ (an equivalent, more geometric,
definition is given in [2] and [1]).

The following problem has attracted the attention of several mathematicians.

Problem. Characterise continuous .F-vector bundles on X admitting an algebraic
structure.

Until very recently, despite considerable effort, the situation was well understood,
only in a few special cases (see [8, 10, 11] and [16] for a short survey). For dimX ^ 3
and F = R a very satisfactory solution is given in [4] (see also [3, 12, 13] for earlier
results). In [1] (see also [7]) most results are first obtained for C-vector bundles and
then many of them are extended on to F-vector bundles, F = R or H, by using the
realification and quaternionification. The main tool of [1], which will also be used
here, is the functor HT^^ (•, Z) from affine real algebraic varieties to graded rings (we

recall the definition of H^e^ (•> Z) in the next section). If X is an affine real algebraic
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variety, then H™*£ (X, Z) is a subring of the cohomology ring Heven(X, Z) . It is

known that the total Chern class c(£) of a given continuous C-vector bundle { o n l

belongs to HT^fi (X, Z) if £ admits an algebraic structure [1] (see also [7]). In this

paper we show that if c(£) is in /f^ven (X, Z) , d i m X < 7 and X satisfies some

reasonable extra conditions, then £ admits an algebraic structure. This result has been

announced in [7], for d i m X ^ 5 , but no proof is given in the detailed version [1] of [7].

It should be mentiioned that the ring -ff^V^j {X, Z) is computed in [1] (see also [7]) for

a large class of varieties X . It turns out that , in many cases, -ff^ven {X, Z) is small as

compared with Heven(X, Z ) . This imposes strong restrictions on continuous C-vector

bundles on X admitting an algebraic structure (see also [5] for other applications of

2. T H E RESULT

For simplicity we shall recall the definition of ff^ven (X, Z) only for nonsinguiar

affine real algebraic varieties X (see [1] for the general case), which will be sufficient

for our purposes.

Let V be a quasi-projective nonsingular n-dimensional complex algebraic variety.
One defines the natural homomorphism

cl: A'(V) -> H*(V, Z),

where A*(V) is the Chow ring of V and H*(V, Z) is the Cech cohomology of V, as
follows. Let Y C.V be a closed irreducible subvariety of dimension k. Let {Y} be the
element of A"~k(V) represented by Y and let [Y] be the fundamental class of Y in the
Borel-Moore homology group H^k

M(Y, Z) (see [6] or [9, Chapter 19]). Then cl({Y})

is the element of H2n~2k(V, Z) which corresponds, via Poincare duality, to the image
of [Y] in H?k

M(V, Z) under the homomorphism H?k
M{Y, Z) -> H?k

M(V, Z) induced
by the inclusion Y C V. Extending by linearity, d defines a natural homomorphism
cl: A*(V) -> H"{V, Z) . Clearly, the image of cl is contained in Heven{V, Z) . We set

Now let X be an affine real algebraic variety (any such variety can be embedded
as a locally closed algebraic subvariety in some real projective space R P n ). Consider
R P n as a subset of the complex projective space CP" and suppose for a moment that
X is embedded in RPn as a locally closed subvariety. Moreover, assume that X is
nonsingular. Let U be a Zariski neighbourhood of X in the set of nonsingular points
of the Zariski (complex) closure of X in CPn. We define H^*£ {X, Z) by

, Z)),
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where iu- X —> U is the inclusion mapping. One easily sees that -ff^^f {-X, Z) does

not depend on the choice of the embedding of X in RPn and the choice of U (see [1,

Section 3]).

THEOREM. Let X be an affine nonsingular real algebraic variety and let £ be
a continuous C-vector bundle of constant rank on X. Assume that X is compact,
dim* ^ 7, and tie groups H6(X, Z) and H6(X, Z ) / ^ _ a i (X ) Z) i l a v e no 2" tors ion-
Then the following conditions are equivalent:

(a) £ admits an algebraic structure;

(b) the total Chern class c(£) of £ belongs to H™£ (X, Z).

PROOF: The implication (a) = > (b) is proved in [1] (see also [7]) for all affine
real algebraic varieties X without any additional restrictions. |

Before beginning the proof of (b) =>• (a), it will be convenient to collect a few
facts.

LEMMA. Let X be a locally closed read algebraic subvariety of RPn and let V be
a Zariski neighbourhood of X in the Zariski (complex) closure of X in CPn. Let r\
be an algebraic vector bundle on V . Then:

(i) tiiere exists an affine open complex subvariety U of V containing X;
(ii) tie restriction f] \ X of TJ to X, considered as a continuous C-vector

bundle on X , admits an algebraic structure;
(iii) if V is nonsingular, then CI(C(TJ)) = c(rf), where C(TJ) and C(TJ) are

tie total Chern classes of 77 witi vaiues in A*(V) and Heven(V, I),
respectively.

PROOF: (i) and (ii) are completely elementary (see for example [1, Proposition
5.1]), while (iii) is proved in [6]. |

Now we can return to the proof of (b) = > (a). We may assume that X is a locally
closed subvariety of RPn . Let U be an affine Zariski neighbourhood of X in the set of
nonsingular points of the Zariski closure of X in CP" (see (i) of the Lemma) and let

r:H'(U,Z)^H*(X, 1)

be the homomorphism induced by the inclusion X C U. We may assume that for each
i = 1, 2, 3, there exists an element Oi in Al(U) such that

(1) r(cl(ai)) = Ci(0-

Let TJI and 772 be algebraic vector bundles on U satisfying rank TJI = 1, CI(T/I) = aj ,
Ci(t]2) — 0 and €2(112) = 0-2 (the existence of rji is obvious, while the existence of T72
follows at once from the Grothendieck formula [9, Example 15.3.6]).

https://doi.org/10.1017/S0004972700027696 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027696


348 W. Kucharz [4]

Let
p : H*(X, Z) - H*(X, Z/2)

be the reduction (modulo 2) homomorpMsm. It follows from the Wu formula [14, p.
94], applied to ( and rj2 \ X, that

Sq2(p(c2(V2 | X))) = p(c3(V2 | X)),

where 5g2 : H4(X, Z/2) -> # 6 (X, Z/2) is the Steenrod square (to obtain the second
equality, one uses Ci(rj2) = 0 and condition (iii) of the Lemma, which guarantees that
01(772) = 0 and hence CI(T72 \ X) = 0).

Let a = aid2 — a3 + C3(rj2). Then, by (1), (2) and condition (iii) of the Lemma,

p(r(cl(a))) = p(r(cl(aia2 - a,))) + p(r

(0 - C,(0) + P(C3(V2 I X))

= 0.

Hence r(cl(a)) = -2v for some u in H6(X, I). Since 2u is in -ff^-al (X> Z^ a n d t h e

group H6(X, Z)/-ffc_al ^ ' Z^ h a s n o 2- t o r s i o n ' i < ; follows that J/ is in ^ j j (Jf, Z).
Shrinking U, if necessary, we may assume that i/ = r(cl(b)) for some 6 in A3(U). By
the Grothendieck formula [9, Example 15.3.6], there exists a vector bundle 7/3 on U
such that Ci(T)3) — 0 for i = 1, 2 and C3(773) = 26. Let 77 = 771 © 772 © 773 . Then

CJ(T7) = <n for i = 1, 2

Hence, using (1), we obtain

Ci(77 I X) = r(c/(Oi)) = C^f) for i = 1, 2

C3(T7 I X) = r(cl(aia2 + 073(772) + 26))

Thus c(£) = 0(771 X) and, by Peterson's theorem [15], £ and 77 | X are stably equiv-
alent (here we use the assumptions that ( is of constant rank and He(X, Z) has no
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2-torsion). Moreover, by condition (ii) of the Lemma, 77 | X admits an algebraic struc-
ture. It is well-known (see [18, Theorem 2.2 (a)] or [2, Chapter 12]) that a continuous
vector bundle on a compact affine real algebraic variety admits an algebraic structure if
and only if it is stably equivalent to a vector bundle admitting an algebraic structure.
Thus ( admits an algebraic structure.
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