BULL. AUSTRAL. MATH. SOC. Vol. 38 (1988) [345-349]

COMPLEX VECTOR BUNDLES ON REAL ALGEBRAIC VARIETIES OF SMALL DIMENSION

WOJCIECH KUCHARZ

Let X be an affine real algebraic variety. In this paper, assuming that dim $X \leq 7$ and that X satisfies some other reasonable conditions, we give a characterisation of those continuous complex vector bundles on X which are topologically isomorphic to algebraic complex vector bundles on X.

1. INTRODUCTION

Let F denote one of the fields \mathbb{R} , \mathbb{C} or \mathbb{H} (the reals, complexes or quaternions). Let X be an affine real algebraic variety (that is, X is biregularly isomorphic to an algebraic subset of \mathbb{R}^n for some n; for definitions and notions of real algebraic geometry we refer to the book [2]). Denote by A the ring of \mathbb{R} -valued regular functions on X and set $A(F) = A \otimes_{\mathbb{R}} F$. We shall consider A(F) as a subring of the ring B(F) of continuous F-valued functions on X. A continuous F-vector bundle ξ on X is said to admit an algebraic structure if there exists a finitely generated projective A(F)-module P such that the F-vector bundle on X associated, in the usual way (see [17]), with $P \otimes_{A(F)} B(F)$ is topologically isomorphic to ξ (an equivalent, more geometric, definition is given in [2] and [1]).

The following problem has attracted the attention of several mathematicians.

Problem. Characterise continuous F-vector bundles on X admitting an algebraic structure.

Until very recently, despite considerable effort, the situation was well understood, only in a few special cases (see [8, 10, 11] and [16] for a short survey). For dim $X \leq 3$ and $F = \mathbb{R}$ a very satisfactory solution is given in [4] (see also [3, 12, 13] for earlier results). In [1] (see also [7]) most results are first obtained for C-vector bundles and then many of them are extended on to F-vector bundles, $F = \mathbb{R}$ or H, by using the realification and quaternionification. The main tool of [1], which will also be used here, is the functor $H_{C-alg}^{even}(\cdot, \mathbb{Z})$ from affine real algebraic varieties to graded rings (we recall the definition of $H_{C-alg}^{even}(\cdot, \mathbb{Z})$ in the next section). If X is an affine real algebraic

Received 5 January 1988 Research supported by NSF Grant DMS-8602672.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

variety, then $H_{C-alg}^{even}(X, Z)$ is a subring of the cohomology ring $H^{even}(X, Z)$. It is known that the total Chern class $c(\xi)$ of a given continuous C-vector bundle ξ on Xbelongs to $H_{C-alg}^{even}(X, Z)$ if ξ admits an algebraic structure [1] (see also [7]). In this paper we show that if $c(\xi)$ is in $H_{C-alg}^{even}(X, Z)$, dim $X \leq 7$ and X satisfies some reasonable extra conditions, then ξ admits an algebraic structure. This result has been announced in [7], for dim $X \leq 5$, but no proof is given in the detailed version [1] of [7]. It should be mentiioned that the ring $H_{C-alg}^{even}(X, Z)$ is computed in [1] (see also [7]) for a large class of varieties X. It turns out that, in many cases, $H_{C-alg}^{even}(X, Z)$ is small as compared with $H^{even}(X, Z)$. This imposes strong restrictions on continuous C-vector bundles on X admitting an algebraic structure (see also [5] for other applications of $H_{C-alg}^{even}(X, Z)$).

2. The result

For simplicity we shall recall the definition of $H_{C-alg}^{even}(X, \mathbb{Z})$ only for nonsingular affine real algebraic varieties X (see [1] for the general case), which will be sufficient for our purposes.

Let V be a quasi-projective nonsingular *n*-dimensional complex algebraic variety. One defines the natural homomorphism

$$cl: A^*(V) \to H^*(V, \mathbb{Z}),$$

where $A^*(V)$ is the Chow ring of V and $H^*(V, \mathbb{Z})$ is the Čech cohomology of V, as follows. Let $Y \subseteq V$ be a closed irreducible subvariety of dimension k. Let $\{Y\}$ be the element of $A^{n-k}(V)$ represented by Y and let [Y] be the fundamental class of Y in the Borel-Moore homology group $H_{2k}^{BM}(Y,\mathbb{Z})$ (see [6] or [9, Chapter 19]). Then $cl(\{Y\})$ is the element of $H^{2n-2k}(V,\mathbb{Z})$ which corresponds, via Poincaré duality, to the image of [Y] in $H_{2k}^{BM}(V,\mathbb{Z})$ under the homomorphism $H_{2k}^{BM}(Y,\mathbb{Z}) \to H_{2k}^{BM}(V,\mathbb{Z})$ induced by the inclusion $Y \subseteq V$. Extending by linearity, cl defines a natural homomorphism $cl: A^*(V) \to H^*(V,\mathbb{Z})$. Clearly, the image of cl is contained in $H^{even}(V,\mathbb{Z})$. We set

$$H_{\text{alg}}^{\text{even}}(V, \mathbb{Z}) = cl(A^*(V)).$$

Now let X be an affine real algebraic variety (any such variety can be embedded as a locally closed algebraic subvariety in some real projective space $\mathbb{R}P^n$). Consider $\mathbb{R}P^n$ as a subset of the complex projective space $\mathbb{C}P^n$ and suppose for a moment that X is embedded in $\mathbb{R}P^n$ as a locally closed subvariety. Moreover, assume that X is nonsingular. Let U be a Zariski neighbourhood of X in the set of nonsingular points of the Zariski (complex) closure of X in $\mathbb{C}P^n$. We define $H^{\text{even}}_{\mathbb{C}-\text{alg}}(X, \mathbb{Z})$ by

$$H^{\operatorname{even}}_{\operatorname{C-alg}}(X, \mathbb{Z}) = H^*(i_U) \Big(H^{\operatorname{even}}_{\operatorname{alg}}(U, \mathbb{Z}) \Big),$$

where $i_U: X \to U$ is the inclusion mapping. One easily sees that $H^{\text{even}}_{C-\text{alg}}(X, \mathbb{Z})$ does not depend on the choice of the embedding of X in $\mathbb{R}P^n$ and the choice of U (see [1, Section 3]).

THEOREM. Let X be an affine nonsingular real algebraic variety and let ξ be a continuous C-vector bundle of constant rank on X. Assume that X is compact, dim $X \leq 7$, and the groups $H^6(X, \mathbb{Z})$ and $H^6(X, \mathbb{Z})/H^6_{C-alg}(X, \mathbb{Z})$ have no 2-torsion. Then the following conditions are equivalent:

(a) ξ admits an algebraic structure;

[3]

(b) the total Chern class $c(\xi)$ of ξ belongs to $H_{C-alg}^{even}(X, \mathbb{Z})$.

PROOF: The implication (a) \implies (b) is proved in [1] (see also [7]) for all affine real algebraic varieties X without any additional restrictions.

Before beginning the proof of (b) \implies (a), it will be convenient to collect a few facts.

LEMMA. Let X be a locally closed real algebraic subvariety of $\mathbb{R}P^n$ and let V be a Zariski neighbourhood of X in the Zariski (complex) closure of X in $\mathbb{C}P^n$. Let η be an algebraic vector bundle on V. Then:

- (i) there exists an affine open complex subvariety U of V containing X;
- (ii) the restriction $\eta \mid X$ of η to X, considered as a continuous C-vector bundle on X, admits an algebraic structure;
- (iii) if V is nonsingular, then $cl(C(\eta)) = c(\eta)$, where $C(\eta)$ and $c(\eta)$ are the total Chern classes of η with values in $A^*(V)$ and $H^{even}(V, \mathbb{Z})$, respectively.

PROOF: (i) and (ii) are completely elementary (see for example [1, Proposition 5.1]), while (iii) is proved in [6].

Now we can return to the proof of (b) \implies (a). We may assume that X is a locally closed subvariety of $\mathbb{R}P^n$. Let U be an affine Zariski neighbourhood of X in the set of nonsingular points of the Zariski closure of X in $\mathbb{C}P^n$ (see (i) of the Lemma) and let

$$r: H^*(U, \mathbb{Z}) \to H^*(X, \mathbb{Z})$$

be the homomorphism induced by the inclusion $X \subseteq U$. We may assume that for each i = 1, 2, 3, there exists an element a_i in $A^i(U)$ such that

(1)
$$r(cl(a_i)) = c_i(\xi).$$

Let η_1 and η_2 be algebraic vector bundles on U satisfying rank $\eta_1 = 1$, $C_1(\eta_1) = a_1$, $C_1(\eta_2) = 0$ and $C_2(\eta_2) = a_2$ (the existence of η_1 is obvious, while the existence of η_2 follows at once from the Grothendieck formula [9, Example 15.3.6]).

Let

$$\rho: H^*(X, \mathbb{Z}) \to H^*(X, \mathbb{Z}/2)$$

be the reduction (modulo 2) homomorphism. It follows from the Wu formula [14, p. 94], applied to ξ and $\eta_2 \mid X$, that

(2)
$$Sq^{2}(\rho(c_{2}(\xi))) = \rho(c_{1}(\xi)c_{2}(\xi) - c_{3}(\xi))$$
$$Sq^{2}(\rho(c_{2}(\eta_{2} \mid X))) = \rho(c_{3}(\eta_{2} \mid X)),$$

where $Sq^2 : H^4(X, \mathbb{Z}/2) \to H^6(X, \mathbb{Z}/2)$ is the Steenrod square (to obtain the second equality, one uses $C_1(\eta_2) = 0$ and condition (iii) of the Lemma, which guarantees that $c_1(\eta_2) = 0$ and hence $c_1(\eta_2 \mid X) = 0$).

Let $a = a_1a_2 - a_3 + C_3(\eta_2)$. Then, by (1), (2) and condition (iii) of the Lemma,

$$\begin{split} \rho(r(cl(a))) &= \rho(r(cl(a_1a_2 - a_3))) + \rho(r(cl(C_3(\eta_2)))) \\ &= \rho(c_1(\xi)c_2(\xi) - c_3(\xi)) + \rho(c_3(\eta_2 \mid X)) \\ &= Sq^2(\rho(c_2(\xi))) + Sq^2(\rho(c_2(\eta_2 \mid X))) \\ &= Sq^2(\rho(c_2(\xi))) + Sq^2(\rho(c_2(\xi))) \\ &= 0. \end{split}$$

Hence $r(cl(a)) = -2\nu$ for some ν in $H^6(X, \mathbb{Z})$. Since 2ν is in $H^6_{C-alg}(X, \mathbb{Z})$ and the group $H^6(X, \mathbb{Z})/H^6_{C-alg}(X, \mathbb{Z})$ has no 2-torsion, it follows that ν is in $H^6_{C-alg}(X, \mathbb{Z})$. Shrinking U, if necessary, we may assume that $\nu = r(cl(b))$ for some b in $A^3(U)$. By the Grothendieck formula [9, Example 15.3.6], there exists a vector bundle η_3 on U such that $C_i(\eta_3) = 0$ for i = 1, 2 and $C_3(\eta_3) = 2b$. Let $\eta = \eta_1 \oplus \eta_2 \oplus \eta_3$. Then

$$C_i(\eta) = a_i \text{ for } i = 1, 2$$

 $C_3(\eta) = a_1 a_2 + C_3(\eta_2) + 2b.$

Hence, using (1), we obtain

$$c_i(\eta \mid X) = r(cl(a_i)) = C_i(\xi) \text{ for } i = 1, 2$$

$$c_3(\eta \mid X) = r(cl(a_1a_2 + C_3(\eta_2) + 2b))$$

$$= r(cl(a_1a_2 + C_3(\eta_2)) + 2r(cl(b)))$$

$$= r(cl(a + a_3)) - r(cl(a))$$

$$= r(cl(a_3))$$

$$= c_3(\xi).$$

Thus $c(\xi) = c(\eta \mid X)$ and, by Peterson's theorem [15], ξ and $\eta \mid X$ are stably equivalent (here we use the assumptions that ξ is of constant rank and $H^{6}(X, \mathbb{Z})$ has no

348

[5]

2-torsion). Moreover, by condition (ii) of the Lemma, $\eta \mid X$ admits an algebraic structure. It is well-known (see [18, Theorem 2.2 (a)] or [2, Chapter 12]) that a continuous vector bundle on a compact affine real algebraic variety admits an algebraic structure if and only if it is stably equivalent to a vector bundle admitting an algebraic structure. Thus ξ admits an algebraic structure.

REFERENCES

- J. Bochnak, M. Buchner and W. Kucharz, 'Vector bundles over real algebraic varieties', (preprint) (University of New Mexico).
- J. Bochnak, M. Coste and M.-F. Roy, Géométrie Algébrique Réelle (Erge. Math. Grenzgeb (3) 12 Springer, 1987).
- [3] J. Bochnak and W. Kucharz, 'Sur les classes d'homologie représentables par des hypersurfaces algébriques réelles', C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 609-611.
- [4] J. Bochnak and W. Kucharz, 'On homology classes represented by real algebraic hypersurfaces', (preprint) (University of New Mexico).
- [5] J. Bochnak and W. Kucharz, 'Morphismes algébriques réelles à valeurs dans S^{2k} et K-theorie algébrique', C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 545-547.
- [6] A. Borel and A. Haefliger, 'La classe d'homologie fondamental d'un espace analytique', Bull. Soc. Math. France 89 (1961), 461-513.
- M. Buchner and W. Kucharz, 'Algebraic vector bundles over real algebraic varieties', Bull. Amer. Math. Soc. 17 (1987), 279-282.
- [8] R. Fossum, 'Vector bundles over spheres are algebraic', Invent. Math. 8 (1969), 222-225.
- [9] W. Fulton, Intersection Theory 2 (Erge. Math. Grenzgeb (3) Springer, 1984).
- [10] A.V. Geramita and L. G. Roberts, 'Algebraic vector bundles on projective spaces', *Invent. Math.* 10 (1970), 298-304.
- [11] J.-P. Jouanolou, 'Comparison des K-théories algebrique et topologique de quelque variétés algébrique', C. R. Acad. Sci. Paris, Sér A, Ser. A 272 (1971), 1373-1375.
- [12] W. Kucharz, 'Vector bundles over real algebraic surfaces and threefolds', Compositio Math. 60 (1986), 209-225.
- [13] W. Kucharz, 'Topology of real algebraic threefolds', Duke Math. J. 53 (1986), 1073-1079.
- [14] J. Milnor and J. Stasheff, Characteristic Classes (Princeton Univ. Press, Princeton, 1974).
- [15] F.P. Peterson, 'Some remarks on Chern classes', Ann. of Math. (2) 60 (1959), 414-420.
- [16] L.G. Roberts, 'Comparison of algebraic and topological K-theory', Algebraic K-Theory II. Lecture Notes in Math. 342, pp. 74–78 (Springer-Verlag, Berlin and New York, 1973).
- [17] R.G. Swan, 'Vector bundles and projective modules', Trans. Amer. Math. Soc. 105 (1962), 264-277.
- [18] R.G. Swan, 'Topological examples of projective modules', Trans. Amer. Math. Soc. 230 (1977), 201-234.

Department of Mathematics and Statistics University of New Mexico Albuquerque, New Mexico 87131 United States of America.