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Abstract. In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed
their speed equal to the speed of light. If additionally the gravitational aberration would have
the same magnitude as the aberration of light, we would observe several paradoxical phenomena.
For instance, the orbit of two bodies would be unstable, since two attractive forces arise that
are not in line and hence form a couple. This will be modelled by a nonautonomous system
of ordinary differential equations with delay. In fact, any positive value of the gravitational
aberration increases the angular momentum of such a system and this may contribute to the
expansion of the universe. We found a remarkable coincidence between the Hubble constant and
the increasing distance of the Moon from the Earth.

In 2000, Carlip showed that in general relativity gravitational aberration is almost cancelled
out by velocity–dependent interactions. We show how the actual value of the gravitational
aberration can be obtained by measurement of a single angle at a suitable time t∗ corresponding
to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses
how accurately t∗ has to be determined to obtain the gravitational aberration to a prescribed
tolerance.
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1. Historical remarks
Aberration of light is an apparent change of the observed position of some celestial body due

to the movement of an observer, and the finite speed of light. The annual light aberration (Ron
& Vondrák 1986) caused by the Earth’s orbit around the Sun was discovered by James Bradley
around 1725 and published in Phil. Trans. (Bradley 1729). Throughout the year each star (except
for the Sun) on the celestial sphere circumscribes an apparent ellipse whose semimajor axis in
angular measure is α̃

.
= 10−4 .

= 20′′. This phenomenon helped to improve the calculation of the
speed of light to c = 3 · 105 km/s from the relation

c =
v

tan α

.
=

v

α
, (1.1)

where v
.
= 30 km/s is the mean speed of the Earth and the light aberration angle α is given in

radians. For a circular orbit of the Earth we would get α̃ = α (cf. also (5.9)). In Section 3, we
introduce a formula similar to (1.1), where the gravitational aberration appears.

Gravitational waves were predicted already by Henri Poincaré. In 1905 he conjectured that
their speed is the same as the speed of the light (see Poincaré 1905, p. 1507), i.e., before the same
result was postulated by A. Einstein. If these speeds differ then it will be difficult to identify the
source of gravitational waves with its optical counterpart, e.g., during (unsymmetric) explosions
of supernovae. At present, several large projects (GEO, LIGO, VIRGO, LISA,...) are developed
to measure the speed of gravitational waves and determine the direction from where they come.
However, for the time being they have not been detected, even though all close binary systems
are supposed to produce these waves.
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2. Stability of a close binary system
By analyzing the motion of the Moon, Pierre Laplace conjectured in 1805 (see Laplace 1966)

that the actual speed of Newtonian gravity cg must be at least 7× 106c. Recently, van Flandern
(1998) raised this lower bound to 2×1010c; otherwise two bodies forming a binary system could
not have stable orbits.† For cg ≈ c their angular momenta would not be in equilibrium.

If the Sun attracts Jupiter at its instantaneous position and also Jupiter attracts the Sun at
its instantaneous position (i.e., cg = ∞), then these forces are in the same line and in balance.
Note that the centre of gravity of this system lies outside the Sun.

On the other hand, suppose that the Sun S attracts Jupiter towards its previous position J ′

(see Figure 1). Similarly let Jupiter J attract the Sun in the direction of its previous position
S′ (i.e., cg < ∞). Then a couple of forces arises which increases the angular momentum and
total energy of this system (see Kř́ıžek 1999), and thus also prolongs the orbital period, which
does not fit with observations. Therefore, the Sun’s rays arriving at the Earth are not parallel
with the vector of attractive gravitational force of the Sun. Ways of interpreting the above
paradoxical phenomena that do not contradict general relativity and causality are discussed in
Carlip (2000), Marsh & Nissim-Sabat (1999), and van Flandern (1998).

J
J’

S
S’

Figure 1. Gravitational interaction between the Sun and Jupiter for cg < ∞.

Now let us verify the Laplace conjecture numerically. Consider two mass points m1 and m2 in
the two- or three-dimensional space equipped with the Euclidean norm | · |. Introducing a delay
into gravitational interactions, the classical autonomous Newtonian system of ordinary differen-
tial equations can be rewritten as the following nonautonomous system for two trajectories r1

and r2:

r′′1 (t) = G
m2(r2(t − d2(t)) − r1(t))

|r2(t − d2(t)) − r1(t)|3
, (2.1)

r′′2 (t) = G
m1(r1(t − d1(t)) − r2(t))

|r1(t − d1(t)) − r2(t)|3
(2.2)

with two variable delays d1 and d2 satisfying (2.4), and the gravitational constant G = 6.673 ·
10−11 m3kg−1s−2. Consider the initial conditions:

ri (t) = pi (t), r′i (t) = vi (t), t ∈ [τ, 0], i = 1, 2, (2.3)

where τ � 0 is an appropriate given number and pi and vi are given functions characterizing
previous positions and velocities. If cg = ∞ then τ = d1 = d2 = 0 and system (2.1)–(2.2) reduces
to the classical Newton two-body problem. For cg < ∞ the delay functions satisfy the relations

d1(t) =
|r1(t − d1(t)) − r2(t)|

cg
, d2(t) =

|r2(t − d2(t)) − r1(t)|
cg

, (2.4)

† Note that not all interactions have the same speed. For instance the speed of the weak
interaction is much smaller than that of light, since the masses of the gauge bosons W ± and Z0

are more than 80 times larger than the proton mass.
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i.e., each di has to be calculated iteratively in the numerical solution (using the Banach fixed-
point theorem). For the theory of ordinary delay differential equations we refer to Driver (1977),
Louisell (1991), and Meinardus & Nürnberger (1985).

Assume now that m1R1 = m2R2, where R1 and R2 are distances from the Newtonian centre
of gravity. Let us define

p1 = (R1, 0), p2 = (−R2, 0), v1 =

(
0,

√
Gm2R1

R1 + R2

)
, v2 =

(
0,−

√
Gm1R2

R1 + R2

)
. (2.5)

These values yield exactly circular orbits for τ = 0 in (2.3) and cg = ∞. They are employed
to establish initial conditions (2.3) for cg < ∞. This, of course, requires to store old values of
r1 and r2 throughout the computation due to the initial conditions (2.3). A big advantage of
computer simulation is that we can easily perform many tests for various possible values of the
speed of gravity cg appearing in (2.4).

For m1 = m2 and cg � c the numerically calculated trajectories r1 and r2 depicted in Figure 2
are quite unrealistic, since they form two quickly expanding spirals.

J
J’

S
S’

Figure 2. Trajectories of a two-body problem (2.1)–(2.4) for m1 = m2 and cg � c.

As another illustrative example consider the close binary system Earth-Moon with

m1 = 5.976 · 1024 kg, m2 = 7.350 · 1022 kg, (2.6)

and the corresponding distance

D = R1 + R2 = 384 400 km. (2.7)

For cg = c we calculate that the distance between Moon and Earth will be about 250 m larger
after 1 year (i.e., after 12 revolutions), which does not correspond with observations. If for
instance cg = 105c, this augmentation is only

a = 2.5 cm/yr (2.8)

and the associated trajectories form two very slowly expanding spirals.†
By means of laser retroreflectors installed on the Moon by Apollo 11, Lunokhod, Apollo 14,

etc., we know that the mean distance between Earth and Moon increases by 3.8 cm per year.
However, this value depends not only on the finite speed of gravity, but also on tidal forces (see
Section 5 for details) and other phenomena that have an influence on the variable distance and

† Similar phenomena are observed when the standard gravitational potential 1/r is replaced
by 1/r ± C/r2. In this case trajectories again expand and moreover, a perihelion advance of
elliptic orbits appears (see Kř́ıžek 1999).
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that are not described by (2.1)–(2.4). Finite speed of gravity thus always causes an expansion
of any binary or multiple body system and it should be taken into account when dealing with
the expansion of the whole universe (see Kř́ıžek 1999). A high value of cg could also explain a
perfect point-symmetry of many galaxies.

All calculations were done in extended 10-byte precision by the standard fourth order ex-
plicit Runge-Kutta method (see Ralston & Rabinowitz 2001) which gives a surprisingly small
discretization error when the orbits are circular (Kř́ıžek 1995, Kř́ıžek 1999). For instance, the
time step ∆t = 100 s, that produces practically the same results as ∆t/2, yields for cg = ∞ a
total error after 1000 revolutions of only 17 mm, which is almost negligible.

3. Gravitational aberration
In this section we introduce the concept of gravitational aberration. We first restrict ourselves

to measurement on the Earth. For simplicity assume now that its orbit is elliptic. By Kepler’s
second law the radius vector connecting the Earth and the Sun sweeps out equal areas in equal
times, and therefore, 1

2
rvT = πab, where T = 31 558 149.5 s (=365.25636 days) is the Earth’s

sidereal year,

a = 149.598 · 106 km, b = 149.577 · 106 km (3.1)

is the semimajor and semiminor axis, respectively, r = 147.055 · 106 km is the distance of the
Earth to the Sun at the perihelion P of its elliptic orbit and v is the magnitude of the velocity
at P , i.e.,

v =
2πab

rT
= 30.287 km/s.

The associated value of the light aberration α at P is then given by (cf. (1.1))

α =
v

c
= 0.000 101 027 = 20′′.84. (3.2)

Further assume that the vector of gravitational interaction is perpendicular to the Earth’s
trajectory at perihelion P . Denote by β the angle between the Sun’s rays arriving at the Earth
and the tangent vector to the Earth’s trajectory when the Earth is at P (around January 4). The
tangent vector lies on a line connecting two opposite points on the ecliptic. The gravitational
aberration γ at P is then given by the formula

γ = α + β − π

2
, (3.3)

where α is defined by (3.2) and β has to be measured (cf. Figure 3).
Similarly to (1.1) we can define the real “Newtonian” speed of gravity

cg =
v

tan γ

.
=

v

γ
. (3.4)

For γ = 0 the speed of gravitational interaction would be infinite. However, the actual value of
γ must be at least slightly positive, if we want to preserve causality. For instance, the angles
∠JSJ ′ and ∠SJS′ representing the gravitational aberration in Figure 1 cannot vanish when
cg < ∞. From (1.1) and (3.4) we obtain the formula

cg =
αc

γ
. (3.5)

Note that ?2) showed that in general relativity gravitational aberration is almost cancelled
out by velocity-dependent interactions. Therefore, we do not see the Sun in the direction of its
attractive force, but slightly shifted.

4. A priori estimation of reaching the perihelion
The disadvantage of the method described in Section 3 is the fact that the Earth’s trajectory

is substantially influenced by the Moon. Therefore, it is much more suitable to measure the
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Figure 3. The speed of gravitational interaction cg can be determined from only the
knowledge of the angle β, when the Earth is at the perihelion.

angle β on a spacecraft orbiting the Sun. If its trajectory is circular, we can use relations (3.5)
and (3.3) for any time.

�

��� 0 x

y

x

y

Figure 4. Coordinates of a spacecraft with an elliptic orbit.

Suppose now that the spacecraft trajectory is elliptic. Let us ask the question: how accurately
do we have to measure the instant of reaching the perihelion to determine the gravitational
aberration γ with an error less than a given angle, e.g., 1′′. To answer this, let the Sun be placed
at the origin of the coordinate system and let the second focus be at the point (−2ε, 0), where

ε =
√

a2 − b2 (4.1)

and a > b. Denote by (x, y) the coordinates of the spacecraft (see Figure 4). Let k1 and k2 be
the slopes of two lines passing through the foci (0, 0) and (−2ε, 0), respectively, and the point
(x, y). Substituting y = k1x into the equation of the ellipse b2(x − ε)2 + a2y2 = a2b2, we get a
quadratic equation for x > 0:

(a2k2
1 + b2)x2 − 2b2εx − a2b2 = 0. (4.2)
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The second slope can be then expressed as (see Figure 4)

k2 =
k1x

x + 2ε
. (4.3)

For the angle ϕ between these two lines we have

tan ϕ =

∣∣∣∣ k1 − k2

1 + k1k2

∣∣∣∣, k1k2 �= −1,

where by substituting for k2 from relation (4.3) we obtain the expression for the angle ϕ as a
function of a single variable k1. Thus we get:

Corollary. Under the above notations for elliptic orbit we have

ϕ = arctan

∣∣∣∣ 2εk1

x + 2ε + k2
1x

∣∣∣∣, (4.4)

where ε is given by (4.1) and x > 0 satisfies equation (4.2).

Let us apply this Corollary to the elliptic orbit whose semi-axes are given by (3.1). According
to Rektorys (1994), p. 116, a normal vector at the point (x, y) bisects the angle ϕ. From this
we may calculate the difference 1

2
ϕ between the slopes of the normal and k1. Denote by t∗ the

time instant when the spacecraft is at the perihelion. According to (4.4), 1
2
ϕ will be less than

1′′ for |k1| < 0.0006. This slope corresponds to the time interval (t∗ − 50, t∗ + 50) in minutes.
The spacecraft’s orbit is influenced by other planets (except for the Earth). In particular,

Jupiter affects the orbit by a force which is at most 16 000 times smaller than that of the Sun.
We are, of course, not able to take into account all nongravitational forces that have an influence
on the measurement (even though almost negligible), such as the solar wind, thermal radiation
of the Earth, Yarkovsky effect, collision with interplanetary dust and meteorites, presence of
magnetic fields, gravitational radiation, etc. Anyway, an approximate value of cg can also be
similarly obtained by (3.5) for the other planets, asteroids, comets etc. with the corresponding
aberration γ. The closer approach of the spacecraft to the Sun, the larger gravitational aberration
should appear.

5. Some remarkable coincidences
From Section 2 we know that an arbitrarily small value of the gravitational aberration of a

binary system tends to increase its angular momentum. The associated trajectories form two
very slowly expanding spirals. Similar phenomena are observed for a general n-body problem as
well. Thus, the finite speed of gravitational interaction can contribute to the expansion of the
universe which is given by the Hubble constant

H0 =
c

15 Gly
= 20 km s−1(Mly)−1,

where 15 Gly is an approximate value of the age of universe 13.7 Gly.
For the mean distance D of the Moon from the Earth given by (2.7), we can compare the

Hubble constant with the increasing value of D during one year T = 31 558 149.5 s = 1 yr,

H0 = 20 km s−1(Mly)−1 = 2 cm s−1ly−1 = 2T cm yr−1ly−1 (5.1)

=
2T

9.46 · 1012
cm yr−1km−1 =

2T

2.5 · 107D
cm yr−1 =

2.5

D
cm yr−1.

We observe that this value is the same as that given in (2.8) and it is surprisingly very close to
the measured value

∆ = 3.8 cm/yr. (5.2)

Now let us estimate the contribution of tidal forces to the value ∆. Consider the system Earth-
Moon with masses m1 and m2 given in (2.6), R1 = 4670 369.5 m, and R2 = 379 729 630.5 m
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(see (2.7)). By conservation of the total momentum of this system, the value

M = I1ω1 + I2ω2 + m1R1v1 + m2R2v2 (5.3)

has to be constant. Here v1 = 12.545 m/s and v2 = 1020 m/s is the speed of the Earth and
Moon, respectively, relative to their centre of gravity,

I1 = 8.036 ± 0.008 · 1037 kg m2 (5.4)

is the inertia moment of the Earth (see Burša & Pěč 1993), ω1 = 2π/T1 is the angular frequency
of the Earth, and T1 = 86 164 s is the sidereal day. Moreover, by Rektorys (1994), p. 109, we
have

I2ω2 <
16

15
ρ2

π2r5
2

T2
= 0.236 · 1030 kg m2s−1, (5.5)

where ρ2 = 3 340 kg/m3 denotes the mean density of the Moon, r2 = 1 737 km is its radius,
and T2 = 29.322 T1, i.e., the term I2ω2 corresponding to the Moon is almost negligible when
compared with I1ω1 = 0.586 · 1034 kg m2s−1.

The Earth’s rotation slows down mainly due to tidal forces of the Moon (∼66%), but also of
the Sun (∼33%) so that the length of a day increases by τ1 = 1.7 ·10−5 s per year (see e.g., Said
& Stephenson 1996, p. 270). Thus its angular frequency after one year will be

ω1 =
2π

T1 + τ1
. (5.6)

Therefore, by (5.4) and (5.6), the decrease of the Earth’s angular momentum is

I1(ω1 − ω1) = 2πI1
τ1

T1(T1 + τ1)
= 1.156 · 1024 kg m2s−1. (5.7)

The Moon also reduces its angular momentum due to (5.2) and the 1:1 resonance between
the orbital period T2 and the Moon’s rotation. However, from (5.5) and Kepler’s third law we
find that the decrease of the Moon’s angular momentum is negligible with respect to the value
given in (5.7). Therefore, the decrease in (5.7) must be compensated by the increase of the sum
m1R1v1 + m2R2v2 in (5.3).

Since m1v1 = m2v2, we get by (2.7) that

m1R1v1 + m2R2v2 = (R1 + R2)m1v1 = Dm1v1.

Dividing 66 % of the value given in (5.7) by m1v1, we find that the distance D would increase
only about

∆1 = 1 cm/yr.

We observe that the difference

∆2 = ∆ − ∆1 = 2.8 cm/yr

between the measured value ∆ in (5.2) and the calculated value ∆1 corresponding to tidal forces
is surprisingly very similar to the value H0 given by (5.1). This enables us to declare that the
gravitational aberration caused by the finite speed of gravity contributes not only to the increase
of the distance Earth-Moon, but also to the expansion of the whole universe.

We close this section by discussing another interesting property. The direction of the Earth’s
movement changes every day with about 1◦ (

.
= 360◦/365.25 days). Light photons travel from

the Sun to the Earth in about 8.3 minutes. Consequently, during this time period the Earth
shifts its trajectory about an angle

α
.
=

8.3

60 · 24 · 365.25
360◦ .

= 20′′ (5.8)

with respect to the stars. The angle α is very small, and thus it is almost equal to its tangent
(using radian measure). For a circular orbit we observe by (5.8) and (1.1) that the angles α and
α coincide:

α =
2πr

cT
=

v

c
= α. (5.9)
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This also means that we don’t see the Sun at its instantaneous position, but about α
.
= 20′′

delayed (see Figure 3). Note that the instantaneous position of the Sun is about 20′′ east of its
visible position.
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Kř́ıžek, M. 1995, “Numerical experience with the three-body problem”, J. Comput. Appl. Math.,

63, 403–409
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