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Abstract

An “elementary” proof of Peano’s existence theorem is given that, in addition to avoiding
the Ascoli lemma, relies neither on Dini’s theorem, nor on uniform continuity of the right hand
side of ¢" = f(£,¢). It is based on superfunctions. Also, another standard proof of that theorem,
based on approximation of the right hand side, is made elementary.

Introduction

Recently, the question of an elementary proof of Peano’s existence theorem
has been discussed. (See Kennedy [1] and Walter [4].) Peano’s theorem states
that the initial value problem

M @' =f(t,8), d(to) = xo,

has a solution given only that f is continuous. (See Peano [2] and also Perron
[3]) In [4], Walter gave his own constructive proof using a monotone sequence
of approximate solutions, thus avoiding equicontinuous families and the Ascoli
lemma. Grunsky [5] has also given a constructuve proof. There is no doubt
that Walter’s proof is ‘‘elementary’’. However, in this paper, we show that not
only Ascoli’s lemma can be avoided but also any reference to uniform continuity
of f and to theorems on uniform convergence. Theorems A and B given in this
paper guarantee the existence of the maximal solution to the initial value problem
(1) under the type of hypothesis used by Perron in [3]. The proof of Theorem A
uses a general class of superfunctions in the spirit of Perron’s original proof, but
can be described as ‘‘clementary’’.

It is well known that a proof of the existence theorem for the initial value
problem (1) can be based on approximation of f by functions f, for which the
initial value problem ¢’ = f,(t, ¢), d(t,) = ¢ has a solution, It will be apparent
from the proof of Theorem B that Ascoli’s lemma can be avoided in this procedure
as well. In fact, the whole proof can be made ‘‘elementary’’.

366

https://doi.org/10.1017/51446788700013276 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013276

[2) Peano’s existence theorem 367

1. Statement of the problem

THEOREM A. Let w; and w, be continuous functions on an interval
J =[ty,T] such that the right hand derivatives D,.w, and D.w, exist on
[t0, T), wi(to) = wy(to) = xo, and wy(f) = wy(t) on J. Let f be defined and con-
tinuous on the domain D = {(x,8):t, St < T, w () £ x < w,(1)}. Suppose that
D, w () Zf(t,wi (1) and D wy(t) = f(t, wy(t)) on J. Then there exists a maximal
solution \y to the problem ¢' = f(t, P), ¢(ty) = xo on J, and w(t) S Y(t) < w,(t)
on J

Without loss of generality, we set t, = xo =0 and T> 0 in the rest of the
paper.

In the proofs, a crucial role is played by a theorem discussed by Walter in
remark (c) of [4]. For a complete discussion of theorems of this type see
Walter [6], chapter 2. For convenience, we state what we need as a lemma.

LEMMA. Let f and g be continuous functions on [a, b] that are differentiable
from the right and satisfy f(a) = g(a). If D, f(ts) > D.g(t,) at each point t, of
[a,b] at which f(ty) = g(to), then f = g on [a,b].

In order to facilitate the proofs, we expand the domain of f to J x R by
defining
_ [fEw(®) i x> wa(h)
160 = S0 it x 2

Let |f(t,x)] S M onJ x R.

2. Proof of Theorem A

Let Q be the set of all continuous functions ¢ on J that are differentiable
from the right on [0, T) and satisfy ¢(0) =0 and D, ¢(1) > f(t, ¢(1)) on [0, T).
We call a member of Q a superfunction. Since w,(t) + &f is a superfunction for
each ¢ > 0, Q # . Since the lemma implies that ¢(¢) = w,(¢) on J, w, is a lower
bound for Q. Define the function y on J by y(r) = inf{§(1): ¢ € Q}. It follows
that w, S ¥ < w,.

To show that i is Lipschitz continuous with constant M, one can follow
Perron’s proof (see [3], pp. 474-475) or slightly simplify it by using the lemma of
§1 instead of the theorem in the footnote on page 474 in [3].

We show now that i is a solution. It is sufficient to prove that if t;,t,eJ
and t, <t,, then ' ‘

@ W(t2) — Yty =J,2 F@po)t.

Clearly, y(0) = 0. Fix t; and t,. Define
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t
F() = y(1) — ¥(t) — f S (s, ¥(9)ds,
ty
where t; <t < t,. Equality (2) is equivalent to the equality
Lo Fu—Fay _ o
=1

We show that the assumption L= O leads to a contradiction. By induction, we
define a sequence of subintervals [a,, b, ] of [¢,,1,] as follows. Let a; = ¢, b, = t,.
Given t; L a,_, < b,y £ t,, there exist a, and b, with a,_, <a, < b, < b,_;,
by — a, = ¥(by-1 — @,-4) and

F(b) — F(a,) _

L
bk""ak

(see, for example, Aziz and Diaz [7]); that is,

= Y(b) — ¥(ay) -

by — a,

®

by
B, 1 a J;k S(s,¥(s))ds + L.

Let 7 be the unique point common to all intervals [a,,b,]. Continuity of f at
(f,y(7)) implies the existence of an open, spherical neighborhood N of (7, (7))
with | f(t,x) — f(f,¥(7))| < 4| L] for (t,x) in N. Then, there is k, so large that
ty(®)eN if a, <t < b, and, also, that for all k> k,, the graph of ()
=[fE @) + 1L](t — a) + Y¥(a) lies in N for a, £t < b,. In fact, for q, <t
< b, |f—1t|>0as k— oo and

[¥(@) — ()| 2 |V@) — ¥(ay)| + (b — a) | fEYE) + 3L| -0
as k— 0.

Let k> k, be fixed. We distinguish between two cases: (¢) L< 0 and (f)
L>0.
(«) Suppose L< 0. Then

by
b, = 1 ff(s,t//(s))ds—|L|=f(t','//(t'))"|L|

by — a,

for some t’'e(ay,b;). Since (¢',y(t")) e N, we have ¢, <f(f,Y()) — %I L|. This
means that y(b,) < l,(b,). Therefore, there exists ¢ € Q such that ¢(b,) < L(by).
There are two possibilities. Either ¢(t) < ,(¢) for all te[ay, b,], or ¢(to) = L(to)
for some t, € [a, by). In the first case, ¢(ay) < L (a,) = Y(a,), contradicting the
definition of ¥. In the second case, we can apply the lemma of §1 on the interval
[to, bi] with f= ¢ and g =, since D, ¢ > f(t,$) > f(F,¥(F)) — 3| L| = /',. Thus
I, £ ¢ on [t,,b.], in particular, /,(b,) < ¢(b,), contradicting our choice of ¢.
Therefore, L< 0 is impossible.
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L<O L >0

(8) Suppose L> 0. Here, ¢, > f(i,y()) + 1 L. Thus, y(b,) > I(b,). There is
¢ €Q such that (a,,¢(a,) e N and ¢(a,) — ¥(a,) <(b,) — [(b). Then the line
O =[fCE (@) + 3 L] (t — a) + ¢(a,) satisies [(b,) < y(b,). Define ¢* as
follows:

() if 0=5t=a,

¥ =< 1X®» if a<t=Zb,
M+ 1D —Dby) + ¥y if by<t=T

Then ¢*e€Q, but ¢*(b,) < Y(b,), a contradiction.
This completes the proof that i is a solution. That { is maximal is an easy
consequence of the lemma.

3. Remarks

RemArk 1. If, in the hypothesis, we replace the words “D, w, and D, w,
exist on [y, T)’ by ““D_w, and D_w, exist on (¢y, T}, and the words ‘D, w (1)
S, wi(n)) and Dowy(1) Z f(8,wy(D)” by “D_w,(1) S f(t,w1(1)) and D_w,(1)
= f(t,wy(1))”, then we may modify the proof to deduce the existence of a solution
¥ to the problem ¢’ = f(t, ¢), ¢(tp) = x¢ on J and w,(#) < () S wy(f) on J. In
the proof, this is done by letting Q be the set of continuous functions on J that are
differentiable from the left and satisfy ¢(0) = 0 and D_¢(1) < f(t, ¢(2)) on (0,T].
We let y(1) = sup {¢(f): ¢ € Q}. The main feature distinguishing this proof from
that for superfunctions is that a lemma analogous to that of §1 is weaker (see
Walter [6]). In order to conclude that f = g on an interval [a, b] one must assume
f(a) > g(a). Thus the proof must be modified whenever the lemma is applied.
Note that this weaker lemma is not sufficient to show that i is minimal.

REMARK 2. In proving that i is a solution, one may use a mean value theorem
for continuous functions by Diaz and Vyborny (see [8], top of p. 115) instead of
the method of nested intervals,
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4. A second proof

THEOREM B. Let the hypothesis of theorem A hold. Suppose for each n
there is a function f, defined on D such that lf(t,x) —f,,(t,x), < @) for all
(t,x)e D and the initial value problem

& =11, 8) + g 4O =0

has a solution ¢, on J. Then the sequence {¢,} converges pointwise to a maximal

solution  of the initial value problem ¢’ =f(t,¢), ¢(0) =0, and, moreover,
wi S Y S w,.

ProoF. Extend the domain D of f and each f, to J x R as in §l. Let F,(¢,x)
= f.(t,x) + 4 /2" It is easy to see that F, > F,,; on J. This and the lemma of §1
imply that ¢,= ¢,,, on J. Moreover, ¢, satisfies a Lipschitz condition with
constant M + 5/2" In fact, for ¢t; and ¢, in J,

6,1 — dut)] < J | Fa(5.6,(5) | ds < f (1765 8.60] + g + 5 )as

IIA

(M +%—)]t2—t1]

where M is an upper bound for f. It follows that the sequence {¢,} is bounded
below on J. Define i on J by ¥(t) = inf ¢,(r). Then i is Lipschitz continuous with
constant M.

We show that y is a solution. Let ¢ > 0 and ¢, € J. Let ¢, be any other point
of J. Then,

¢n(t2) - ¢n(tl) - 1 J
L=t )

=1

"t g0y di

1

= F0, 6,00 =2 800 + 7
for some t' € (ty,t,). Now,
A2 8 = S WD) | S LA 00 = S0, i)
17 810 = S (1) = A+ B.

Since |t —t,|<[t, — t;| >0ast, > 1, and

[ $u(t) = ()| S | 9ult) — $u(tD)] + | Bt — ¥(2) |

A

5
2"

(M + )]z'—tll +] $a(t) = (1] =0
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as n— oo and t, - t;, the continuity of f at (¢,,(t,)) implies the existence of
numbers n, and J, such that B <e¢/2 if |t, — t;| <6, and n > n,. In addition,
choose n, large enough that 1/2" < ¢/2 for n > n,, so that 4 <1/2" <¢/2. Then
A + B <. Consequently, for all n> n, and all ¢, with |[t, —t;| < J,, we have

¢uts) — ¢.(1h)

4
DO < Ty + it

Flt bt + = 2 <
Letting n— oo, we get
seabe) —os P22 < gy 4

This means that y'(t,) = f(t,,¥(2)).
That  is maximal follows from an application of the lemma, since ¢,
> f(t, ¢,). Also, the lemma gives us that w; S Y S w,.

The theorem is proved.

5. Remarks

ReMARK 1. Since f is continuous on a compact set D, it can be approximated
uniformly by polynomials or by other functions that are continuous in the first
variable and Lipschitz continuous in the second variable. In any case, the initial
value problem ¢’ = f,(t,¢$) + 4/2", ¢(0) =0 can be solved uniquely on J. Thus
there are functions f, that satisfy the hypothesis of Theorem B.

REMARK 2. One can also approximate f by functions f, that are piecewise
constant, but the corresponding solutions ¢, will only be piecewise continuously
differentiable. However, one can ensure that the f, are defined in such a way that
the ¢, satisfy D, ¢,() =f,(t,$,) + 4/2" at corner points. This is enough for the
proof of Theorem B to go through.

REMARK 3. One can give a very short proof of Theorem B using uniform con-
tinuity of f and Dini’s theorem, while still avoiding the Ascoli lemma. The proof
is the same except that we show y is a solution by the following argument. Dini’s
theorem implies that ¢, — y uniformly on J. (We are grateful to the referee for
pointing out that uniform convergence also follows from the fact that if f, — f
pointwise on J and the sequence {f,} is uniformly Lipschitz continuous, then f is
Lipschitz continuous and the convergence is uniform.) Thus f(¢, ¢,(£)) = f (¢, (1))
by the uniform continuity of f. Also F,(t,¢,(D) — f(t,¢,(t)) » 0 uniformly.
Therefore,

1) = lim ¢,(1) =lim JIF,.(L o) dt
n n 0
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lim L [Fu(t, $,(0)) = f(t, $,(D) + 11, (D] dt

it

Lf(t, o) dt.

REMARK 4. The condition that the functions ¢, satisfy the equations
¢, = f,(t,$,) + 4/2" can be relaxed. It is sufficient that they satisfy the inequalities

Fults ba) + —;— + 2—1— 2 ¢y 2 f(t, 8, + —;—
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