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TRACKING CONTROL OF LINEAR SWITCHED SYSTEMS
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Abstract

This paper deals with the optimal tracking problem for switched systems, where the control
input, the switching times and the switching index are all design variables. We propose a
three-stage method for solving this problem. First, we fix the switching times and switching
index sequence, which leads to a linear tracking problem, except different subsystems are
defined in their respective time intervals. The optimal control and the corresponding cost
function obtained depend on the switching signal. This gives rise to an optimal parameter
selection problem for which the switching instants and the switching index are to be chosen
optimally. In the second stage, the switching index is fixed. A reverse time transformation
followed by a time scaling transform are introduced to convert this subproblem into an
equivalent standard optimal parameter selection problem. The gradient formula of the cost
function is derived. Then the discrete filled function is used in the third stage to search
for the optimal switching index. On this basis, a computational method, which combines a
gradient-based method, a local search algorithm and a filled function method, is developed
for solving this problem. A numerical exampleis solved, showing the effectiveness of the
proposed approach.

2000 Mathematics subject classification: primary 49N90; secondary 90C11,93C95.
Keywords and phrases: optimal tracking control, switched systems, a time scaling trans-
formation, linear quadratic control theory, discrete filled function.

1. Introduction

Switched systems, which include variable structure systems and multi-modal systems,
are an important class of hybrid systems. They have many practical applications arising
in areas such as. the control of mechanical systems, the automotive industry, aircraft
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and air traffic control, and switching power converters. For further details, see [14].
With regard to these, the question on the determination of optimal control laws for
switched systems has been widely investigated in recent years and many results are
now available in the control and computer science literature. In [12, 13, 15], some
necessary and sufficient conditions for optimality are obtained. In [2], a method for
solving a hybrid optimal control problem is formulated for a two-switched system.
The two-switched system is embedded in a larger family of systems for which an
optimization problem is formulated. In [6], convex dynamic programming is used to
approximate optimal switching control laws and to compute lower and upper bounds of
the optimal cost. In [18], a class of optimal control problems for the switched systems
with a pre-specified sequence of active subsystems is considered. This optimal control
problem is first transformed into an equivalent optimal parameter selection problem
parameterized by the switching instants. The gradient formula of the cost function
is then derived and a gradient-based method is thus developed. However, how to
determine the switching index sequence is still a challenge. For this, a discrete filled
function method can be used. The concept of a filled function was first introduced
in [5] for global optimization with continuous variables. A discrete filled function
method is developed in [11] to solve discrete global optimization problems. In [4,17],
efficient discrete filled function methods are developed to solve the optimal control
problem of discrete-time switched systems and impulsive optimal control problem,
respectively.

Tracking problems are a special class of optimal control problems. The theory
of optimal tracking controllers for linear systems is now fundamental to the subject
and is covered in most standard control text books. See, for example, [1] and [10].
For nonlinear dynamical systems, results obtained using the differential geometric ap-
proach are summarized in [7] - an outstanding book by Isidori, where clear connections
linking the concept of the inverse system and the zero dynamics are established.

For fixed multi-variable linear or nonlinear continuous dynamic plants, internal
model theory has been developed to realize good tracking. For switched and hybrid
systems, there are very few results on tracking problems. In [3], an approach is
proposed for exact output-tracking of switched systems, which is also applicable to
non-minimum-phase systems. They present necessary and sufficient conditions for
the solvability of the inversion problem for linear systems with switches, where the
inverse is used to track the desired output. In [19], a multi-contact hand manipulation
problem in a hybrid system field is considered and an MLD model, which encapsulates
switching between types of motion and phases of continuous motion, is proposed.
Then the tracking problem of a hybrid system to follow a family of reference signals
produced by an external signal generator is considered, and the existing internal model
theory for continuous systems is extended to deal with the tracking problem for the
hybrid system.
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The rest of the paper is organized as follows. In Section 2, we provide the exact
problem formulation. In Section 3, we decompose our problem into three subproblems
and then propose a method for solving the first subproblem. In Section 4, we suppose
the switching index sequence is given. Then, a reverse time transformation followed
by a time scaling transformation is introduced. We convert this problem into an
equivalent optimal parameter selection problem in standard form. Then a gradient-
based algorithm is developed. In Section 5, a discrete filled function is used to search
for the optimal switching index sequence. A computational procedure is developed
in the same section. A numerical example is solved in Section 6 so as to illustrate the
effectiveness of the method. Section 7 concludes the paper.

2. Problem formulation

We consider the switched linear system

x(t) = Ak,(t)x(t) + fl*,(O«(O. t e /,, i = 1, 2 N, (2.1)

y(t) = C(t)x(t), (2.2)

with the initial condition and intermediate conditions

x(t0) = x°, (2.3)
jc(f , + )=jc(r , ) , i = \ , . . . , N - \ , (2.4)

where /,• = (/,-_i, r,-], i = 1, 2 , . . . , N, x e R" and w <= Kra denote, respectively, the
state and the control vectors, and _y € Kr is the output vector, while At(t), 5,(0.
i = 1, 2 , . . . , M, and C{t) are time-varying matrices with appropriate dimensions.
Here, t+ and i~ are, respectively, defined by

f+ = limr and i~ = Ximt.
m it'

The set of the switching signal sequences in t e [to, tf] is defined as:

E = {o\o = ((f i ,*i) , . . . , fo,*,) (tN,kN))},

where t0 < ti < • • • < tN = tf, while for each i = l,...,N,kt € {1, 2 , . . . , M] and
(f,, k,) indicates that the subsystem kt is active during the time interval (r,_), f,].

Define

Q = [t\t = {tuh r*-i)r eOS""1}, (2.5)

where Q = h < t\ < • • • < tN.\ < tN = tj. Let ^ be the set of all piecewise
continuous functions defined on [t0, tf] with values in Rm.
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Define

r = {y\ y = (kuk2,...,kj,...,kN), A:,- € {1, 2, . . . , A/}},

where y denotes the switching index sequence.
We assume throughout that the following condition is satisfied.

ASSUMPTION. The elements of the matrix functions At(t) and fi,(r) are continuous
for each i e ( l , . . . , M ) , while C(t), Q(t) and R(t) are continuous in t e [r0, tf].

The optimal tracking problem for the switched system may now be formulated as
follows.

PROBLEM 1. Given the switched dynamical system (2.1)—(2.4), find a piecewise
continuous control input u(t) € ^ and a switching signal a e E such that the cost
function

J(a, u) = l-[y(tf) - y(tf)]
TS [y(tf) - y(tf)]

+ o / \{y(O-y(t)) Q(t)(y(t)-y(t)) + uT(t)R(t)u(t)\dt (2.6)
2 Jh L J

is minimized, where y(t) is a given r-dimensional continuous trajectory vector to
be tracked, Q{t) and R{t) are continuous matrix-valued functions with appropriate
dimensions in / 6 [t0, tf], and for each t e [t0, tf], they are symmetric positive semi-
definite, while S is a symmetric positive semi-definite constant matrix with proper
dimension.

3. A three-stage optimization approach

In Problem 1, there are three types of decision variables: The first one is a piecewise
continuous control input, the second one is the switching time sequence and the
third one is the switching index sequence. Problem 1 is, in fact, a mixed-integer
programming problem. We can't solve this problem by using conventional linear
quadratic optimal control theory due to the presence of the varying switching times
and the switching index sequence. If we suppose that the switching times and the
switching index sequence are fixed, then the optimal tracking problem becomes a
linear tracking problem. However, it is not a standard linear tracking problem, as
the active subsystem is different during different subintervals. We decompose this
problem into three subproblems: Problem PI, Problem P2 and Problem P3 to be
defined in the following.
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PROBLEM PI. Given a fixed switching signal, find an optimal control input u e %
such that the cost function (2.6) is minimized subject to system (2.1)-(2.4).

Problem PI is a tracking problem but with different subsystems being used in
different time intervals. The following theorem gives the parameterized optimal
control and the corresponding cost function.

THEOREM 3.1. The optimal control input and the optimal cost function for Prob-
lem PI are, respectively,

u*{t\a) = -R-\t)BT
ki{t)P{t)x(t) - R-\t)BT

ki{t)b(t),

t € / , , / = \,...,N,

and

J(a, u*(a)) = l-xT(tQ)P(to)x(to) + xT(t0)b(t0) + l-g(t0), (3.2)

where b(t), g(t) and P(t) are, respectively, determined by

b{t) = - (Aki(t) - Bkt(t)R-\t)Bl(t)P(t))Tb{t) + CTit)Qit)yit),

t 6 /,, i = l,...,N,

b(ff) = -CTitf)Syit}), (3.4)

btf) = b{ti), i = l N-\, (3.5)

git) = bT{t)Bkiit)R-\t)BT
kiit)bit) - yTit)Qit)yit), t e /„ i = 1,..., N, (3.6)

git/) = yTitf)Syitf), (3.7)

g(t+) = g(t,), i = \ , . . . , N - \ (3.8)

and
-P(t) = P(t)Aki(t) + AT

ki(t)P(t) - P(t)Bki{t)R-\t)BT
ki(t)P{t)

+ CTit)Qit)dt), telh i = \,...,N,

= CTitf)SCitf), (3.10)

i = \,...,N-l. (3.11)

PROOF. Define the Hamiltonian function as

Hit, x, u,X)=X- [(yit) - yit))T Qit)(yit) - y(t)) + uT(t)R(t)u(f)]

Tit) {Akiit)xit) + Bkiit)uit)) xi,{t), (3.12)

where X/,(0 = | 1 ' 'U ^ ^ (3-13)
0, otherwise.
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Applying the necessary condition for optimality, we take the partial differentiation
of H with respect to u and then set it equal to zero. This gives

N

R(t)u*(t) + £fi£(OMOX/,(O = 0, t e /,, i = 1 N, (3.14)
1=1

where X(t) is the solution of the co-state system:

MO = -CT{t)Q{t)y{t) + CT(t)Q(t)C(t)x(t) + AT
ki(t)X(t),

t € / , , / = 1... . .W,
with the terminal condition and intermediate conditions

X(tf) = CT(tf)S
Ty(tf) + CT(tf)SC(tf)x(tf) and

k(t+) = k(t,), i = l,...,N-\.

Since R(t) is positive definite, (3.14) yields

«*(0 = -R-\t)Bl(t)k(t), t e /,, i = 1 N.

We assume that the state and the co-state satisfy

= P(t)x(t) + b(t). (3.16)

Differentiating (3.16) and comparing the results with (3.15), we obtain

+ [b{t) - P(t)Bki(t)R-\t)Bl(t)b(t) + AT
ki(t)b(t) - C7(0G(0y(0] = 0,

f 6 /,, i = l,...,N.

Thus

-P(t) = P(t)Aki(t) + AT
ti(t)P(t) - P(t)Bkl(t)R-\t)B£(t)P(t)

+ CT(t)Q(t)C(t), t €/,-, i = l,...,N

with the terminal condition and intermediate conditions

= CT(tf)SC(tf) (3.18)

and

b(t) = - (Aki(0 - Bk,(t)R-\t)Bl(t)P(t))T b(t) + CT(t)Q(t)y(t),

t e I,, i = \,...,N

with the terminal condition and intermediate conditions

= -CT(tf)Sy(tf) and (3.20)

b{t+)=b{ti), i = \,...,N-\. (3.21)
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The closed loop control law is

u\t) = -R-l(t)Bl(t)P(t)x(t) - R-l(t)Bl(t)b(t), t 6 /,, i = 1, . . . , N.

By virtue of (2.2), (3.17) and (3.19), we can show, on substituting u* for u in (2.6)
and using integration by parts, that

J(a, u » ) = X- [yT(tf)Sy(tf) - yT{tf)SC{tf)x{tf) - xT(tf)C
T(tf)Sy(tf)

+xT(tf)C
T(tf)Sx(tf)] - l-xT(t)P(t)x(t) \',Z'/0 - xT(t)b(t) \',Z'/0

- [bT(t)Bki(t)R-\t)Bl(t)b(t) - yT{t)Q{t)y{t)} \rJt{ . (3.22)

Let

g(t) = bT(t)Bkl{t)R-\t)BT
ki(t)b{t) - yT(t)Q(t)y(t) (3.23)

with the terminal condition and the intermediate conditions

T ) and (3.24)

Then, by (3.18), (3.20), (3.23) and (3.24), we obtain

J{a, u*{a)) = l-xT(t0)P(t0)x(t0) +xT(t0)b(t0) + l-g(t0).

This completes the proof. •

From Theorem 3.1, we see that we have obtained the optimal control input and the
corresponding form of the cost function. Now, let the switching index sequence be
fixed. Then we have Problem P2.

PROBLEM P2. Suppose that the switching index sequence is given. Find a switching
times vector / e 0 such that (3.2) is minimized subject to the systems (3.3)—(3.11).

4. Problem transformation

Problem P2 is an optimal parameter selection problem governed by systems of
differential equations with final time and intermediate time conditions. We shall
transform it into the form involving initial value systems by using a simple reverse
time transformation.
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Denote

A,(r) = A,(r(T)), B,(x) = B,(t(r)), i = 1 M,

= C(r(r)), Q(T)=Q(t(r)), /?(r) = R(t(r)), y(r) =

) , fa) = b(t(z)), g(r) = g(t(r)).

Let 8 = (TI, . . . , rw_i)r. Then, 0 , which is defined in (2.5), is also the set of all
such 9.

Problem P2 becomes:

PROBLEM P2. Suppose that the switching index sequence y is given. Find a
switching time vector 6 e © such that the cost function

if (0, y) = X{o) = J(u, u*(a))

y T T \ (4.1)

is minimized subject to the systems

H l + Cr(r)Q(r)C(r),

]j)(), (4.2)

T e [T ,_I , r , ) , i = \,...,N,

P(0) = CT(0)SC(0), (4.3)

(4.4)

- Cr(T)Q(T)Kr), r 6 [r,_,, r,), i = 1,. . . , N,

b(0) = -Cr(0)Sy(0), (4.6)

fan = fat), i = \,...,N-\ (4.7)

and

|(r) = -bT{T)BkN+lJr)R-\r)Bl+iJr)fa) + yT(r)Q(r)y(r),
r s [ r , _ i , r , ) , / = 1 /V,

g(0) = j * r ( 0 ) 5 K 0 ) , (4.9)

g ( r f ) = S(T/), i = l , . . . , y v - l . (4.10)

https://doi.org/10.1017/S1446181100012773 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012773


[9] Tracking control of linear switched systems 195

Accordingly, the optimal control input (3.1) becomes

u(tf - r.cr) = R-\x)BT
N_ki{x)P{x)x{tf - x) - R-](x)Bl+]Jx)b(x),

t € [r,--,,r,-), i = l A'.

Note that the switching instants in the cost function are decision variables. Now
we introduce a time scaling transform, which is called the control parametrization
enhancing transform (CPET) in [9], given below:

x(s) = v(s) (4.12)

with the initial condition

r(0) = 0 (4.13)

and the terminal condition

x(N) = tf, (4.14)

where v(s) is a piecewise constant function with possible discontinuity points at
s = 1 , . . . , N — 1. It is a time scaling control given by

(4.15)

Let 8j, i = I,..., N, satisfying <5,- > 0, be referred to collectively as S, and let A
be the set of all such S. Then, the new state x(s) is given by

x(s) = / v&di; = y > , + S,(s - i + l), s € [i - 1, i). (4.16)

Denote

A,(s) = A,(x(s)), B,(s) = 4(T(s)), i = 1, . . . , M,

C{s) = C{x{s)), Q(s) = Q(x(s)), R(s) = R(x(s)), y(s) = }(*(*))>

P(s) = P(r(s)), b(s) = b(x(s)), g(s) = g(x(s)).

Then, (4.l)-(4.10) is written as

Sf(6, Y) = ^xT(t0)P(N)x(t0)+xT(t0)b(N) + l-g(N), (4.17)

where P, b and g are, respectively, determined by

(4.18)
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= Cr(0)SC(0),

(i-) = P(i), i = l N-l,

b(s)

(4.19)

(4.20)

(4.21)

+ C T ( s ) Q ( s ) y ( s ) ] v ( s ) , s e [ i - 1, i ) , i = 1 , . . . , N,

b(0) = -Cr(0)5K0), (4.22)

b ( r ) = b ( i ) , i = l , . . . , N - l (4.23)

and

+lJs)R-\s)Bl+iJs)b(s) - yT(s)Q(s)y(s)] v(s),

s e [/ - 1 , / ) , « = 1 , . . . , i V ,
(4.24)

(4.25)

(4.26)

For brevity, we set

Pi2 (s)
and

Define

x(s) = [xj(s), xl(s), xl(s), xJ(S))
T , where

Then, (4.12), (4.18)-(4.26) is written collectively as:

and

= f ( s , x { s ) , 8 ) , s e [ 0 , N ]

Jc(O)=*0,

(4.27)

(4.28)

where / , Jc0 are obtained from (4.18)-(4.26). The cost function (4.17) takes the form

i?(a,y) = <&(Jc(AO). (4-29)

where O is still a function of P, b and g. Problem P2 becomes:
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PROBLEM P2. Suppose that the switching index sequence y is given. Find a S e A
such that the cost function (4.29) is minimized, subject to the system (4.27)-(4.28).

Note that in the transformed problem P2, all the locations of the switchings of the
state differential equation are known and fixed. To solve the problem as a mathematical
programming problem, we require the gradient formula of the cost function (4.29).
Let H be the Hamilton function defined by

H(s, x(s), A*(5), S) = (MT(s)f(s, x(s), 8), (4.30)

where fx(s) is the co-state, which satisfies

T v , m ( 4 3 1 )

3A: (5)
with the terminal condition

(4.32)

The following theorem gives the gradient formula of the cost function with respect
to<5.

THEOREM 4.1. The gradient of the cost function (4.29) is given by

-N
ft I M I >\ . JL I A I . l l . l , \ I . (3 I

ds. (4.33)-I
JoPROOF. The proof is similar to that given for Theorem 5.2.1 in [16]. • D

To solve Problem P2, any gradient-based method can be used, such as the sequential
quadratic programming method (see, for example, [16]). For this, we need the value
of the cost function (4.29) for each 8 e A as well as the gradient formula of the cost
function (4.33) for each S e A. They are calculated by:

ALGORITHM 1. Step 1. Construct the expressions of the cost function (4.17), the
control input (4.11) and the state function (4.18)-(4.26).

Step 2. For a given 8 e A, compute the solution i(-|<5) of the system (4.27)-(4.28)
forward in time from j = 0 to s = 1 to obtain x(-\8), s e [0, 1). Then use Jc(115) as
the initial condition,, solve the system from s = 1 tos = 2 to obtain i(.y|<$),.5 e [1,2).
This process is repeated until x(-\8) are obtained for s e [N - 1, N). Then, x(-\8) is
known for s 6 [0, N].
Step 3. Compute the corresponding value ofJf (5, y) from (4.29) for the given 8 e A.
Step 4. Similar to Step 2, we solve the co-state differential equation (4.31) backward
in time with the terminal condition (4.32) from s = N to s = 0. This gives rise to the
solution ix(-\8) of the co-state system.

Step 5. Compute the gradient of the cost function with respect to 8 according to
formula (4.33).
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5. Discrete filled function method

Suppose that for each switching index vector y, through solving Problem P2,
we obtain an optimal switching time vector, denoted by <5*(y). Then we obtain
Problem P3.

PROBLEM P3. Find a switching index vector y e F, such that the cost function

&{y) = if(«*(y), y) (5.1)

is minimized.

For all y\ y2 e F, let p be a nonnegative function from F x F into K defined by

where Q denotes the characteristic function given by

Jo, if i = j,

Here p is a metric in the space F. Then, the space F equipped with the metric p is
a metric space. Let it be denoted by (F, p).

Before proceeding further, we introduce the following definitions [4].

DEFINITION 1. For all y g (F, p), the neighbourhood of y is defined by

{ y ) U { / e r :p(y, / ) = ! } •

DEFINITION 2. A point y* is called a local minimizer of S£ over (F, p) if
*) < i?(y).Vy 6 J/{y*). If, in addition, i?(y*) < i?(y),Vy € jV{y*)\\y*),

then y* is called a strict local minimizer of 5£ over (F, p).

Based on Definitions 1 and 2, we can easily find a local minimizer by using the
following algorithm.

ALGORITHM 2. Step 1. Set the initial switching index vector y° and compute the
value of (5.1).
Step 2. Compute the value of Sf(y), Vy g jV(y°). If there exists y\ such that
i f (y ' ) < J?(y°), then go to Step 3. Otherwise, y° is a local minimizer of S?(y).
Stop.
Step 3. Set y° = y1 as the initial switching index vector. Go to Step 2.
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In order to find a global solution, we shall use the discrete rilled function method.
The following definition is needed.

DEFINITION 3. Given that y* is a local minimizer of Jf over (F, p), B(y*) is said to
be a discrete basin of If at y* over (r, p) if B(y *) c (F, p) and the descent trajectory
from any initial point in B(y*) converges to y*, but the descent trajectory from any
initial point in F \ B(y*) does not converge to y*.

We introduce the following function

2 j i * ) . (5.2)

When yu.2 > 0, Hi < /x2/£ (L is a sufficiently large real number), (5.2) is called a
discrete filled function (for details, see [11]).

It follows from [11] that y* is a local maximizer of F and the optimization process
applied to F can jump out of the current discrete basin by using any descent method.

Using the current local minimizer as an initial vector and considering the discrete
filled function as the the objective function, we can find a better minimizer, if it exists.

The solution procedure for Problem 1 may now be summarized as follows.

Step 1. Choose an initial switching index sequence y° e F and an initial switching
time sequence t° e 0 . Regard Problem 1 as a linear tracking problem.
Step 2. Obtain the optimal control by using (3.1), and substitute it into the cost
function (2.6). This gives rise to a new cost function (3.2).
Step 3. Use the reverse time transformation to convert Problem P2 into Problem P2.
Step 4. Use the time scaling transformation (4.12) to (4.14) to convert Problem P2
into Problem P2.
Step 5. Problem P2 is an optimal parameter selection problem, which is solved as a
constrained optimization problem. The optimal control software package, MISER 3.3
[8] is used, where the optimization technique used is sequential quadratic programming
(see [16]). The value of the cost function (4.29) and its gradient for each 8 e A are
computed by Algorithm 1. The optimal solution obtained is then used to construct the
function ££.
Step 6. Apply Algorithm 2 to find a local minimizer for the cost function (5.1), where
for each switching index vector, its corresponding value of Jf is computed from Step 2
to Step 5. Let y* denote the minimizer.
Step 7. Set y* as the initial point and apply Algorithm 2 to search for a point better
than the current local minimizer y*, with the discrete filled function F^liW used as
the objective function. If a point y better than y* is found during the search, then
stop searching and set y° = y. Go to Step 6. Else if a point better than the current
minimizer u* is not found when the local minimizer y** of the discrete filled function
has been determined, go to Step 8.
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Step 8. Return the optimal solution y* and the corresponding cost function value ££*.

6. Illustrative example

EXAMPLE 1. Consider a second-order switched linear system. Its dynamics are
chosen from a finite set {(Au BO, (A2, B2), (A3, B3)} in 9 time intervals, and its
output matrix is C, where

~°-5 ~ a i i A _1"-0-7 ° l 4 r-°-9 °
0 -0.5J' 2 ~L-0.3 -0.7j' 3 " L 0 -0.9J'

0.3 0 1 [1.2 0 1 _[1.O 0.31

l.oj' fi2 = [o O.4J' S3-[o.3 l.oj
and C =

Here, t0 = O,tf = 9 and JC(O) = [2, I]7".

We need to find the optimal control input, the optimal switching time sequence and
the optimal switching index sequence such that the cost function

J = \ [y(tf) - y(tf)f s [y(tf) - y(tf)]

[(yd) - y(t))T Q(0 (y(t) - y(t)) + uT(t)R(t)u(t)]dt

is minimized, where

_ [1.5 0 1 _. . f l 01 n . N [0.25 0 1

while y(t) = [2sin(f), 2cos(r)]7 is a given two-dimensional reference vector to be
tracked.

We summarize the computational stages as follows.
Choose an initial switching sequence

y° = (1,2,3, 1,2,3,1,2,3)

with the switching time instants

(1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0).

The objective function value is 12.8033933. Apply the time scaling transform and
then MISER 3.3 is used to solve the corresponding version of the optimal parameter
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selection problem. The objective function value obtained is 10.182974. Apply
Algorithm 2 to obtain a local optimal switching sequence

y* = (1,2,3, 1,2,3, 1,2, 1).

The objective function value is 9.58141745. The discrete filled function method is
used in conjunction with MISER 3.3 to jump out from the local optimal switching
sequence, giving rise to a new switching sequence

y* = (1,2,3, 1,2, 1,3,2, 1)

and a new sequence of switching time instants

(0.53593, 2.02713, 3.4693, 3.4693, 4.6707, 5.67035, 6.56754, 7.77026).

The objective function value obtained is 9.26002408. This process is continued.
Finally, we obtain the optimal switching sequence

y* = (1,2, 1,3,2, 1,3,2, 1),

the optimal sequence of switching time instants

(0.55572, 1.52709, 2.51956, 3.42688, 4.66945, 5.67101, 6.56765, 7.77028)

and the optimal objective function value 8.95108976.
The trajectory of the system output using the optimal switching index sequence

and the optimal sequence of switching time instants versus the reference signal are
depicted in Figure 1, where the trajectory of the system output and the reference signal
with the optimal switching index sequence are displaced.

7. Conclusions

We considered a class of optimal tracking problems involving switched systems,
where the switching signal and the control input are considered as decision variables.
We developed an efficient method for solving this optimal tracking problem involving
switched systems as a three-stage optimization problem. Through an illustrative
example we can see the effectiveness of the method developed.
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FIGURE 1. The trajectories of the optimal system output and the reference signal.
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