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Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits

which may lead to acid–base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on

acid–base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0·5 %) or a high

(2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5·5 to 7·3)

parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in

rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold

higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to

56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing

citrate excretion and ameliorating Ca and Mg balance.

Potato: Sodium chloride: Calcium: Citrate

In comparison with the prehistoric diet, the modern human
diet shows an overabundance of NaCl associated with a low
provision of alkaline salts of K, precursors of KHCO3,
which are ubiquitously present in plant foods (Eaton et al.
1996, 1997; Frassetto et al. 2001). As a consequence of a
long-term low K supply and of a shift between the contempor-
ary diet and the genetically determined metabolic machinery
of man, a state of low-grade metabolic acidosis may take
place (Frassetto et al. 1996; Sebastian et al. 2002) with several
metabolic disturbances (Wiederkehr & Krapf, 2001).

There is evidence that long-term periods of dietary NaCl
load may have adverse effects on bone metabolism and may
be a risk factor for osteoporosis in postmenopausal women
(Cohen & Roe, 2000). Excess in dietary NaCl is a well-
known determinant of urinary Ca excretion, frequently in par-
allel to a bone-demineralising effect and an activation of bone
resorption as shown in experimental animals (Goulding &
Gold, 1986; Chan & Swaminathan, 1994; Creedon & Cash-
man, 2000) and human subjects (Shortt & Flynn, 1990,
1991; Matkovic et al. 1995; Itoh & Suyama, 1996; Lietz
et al. 1997; Ginty et al. 1998).

Therapies that decrease urinary Ca excretion could poten-
tially prevent the calciuric effect of affluent dietary NaCl.
Alkaline salts of K (potassium bicarbonate, potassium citrate)
have been shown to significantly reduce urinary Ca excretion
(Lemann et al. 1989, 1991; Sakhaee et al. 1991; Morris et al.
1999; Frassetto et al. 2000) and improve bone status (Tucker
et al. 1999; Marangella et al. 2004). There is also evidence

that fruit and vegetable intake may be an effective means to
counteract the acidity generated by the diet (Vormann &
Daniel, 2001), reduce calciuria and consequently improve
Ca balance (Appel et al. 1997; New, 2003). Rich in K (2 %
of DM), essentially as potassium citrate, potato presents an
interesting potential renal acid load of 24·0 mmol/100 g
edible portion (Remer & Manz, 1995) and has been recently
recognised as an important factor for lowering net acid
excretion (Prynne et al. 2004). Thus, potato intake could be
taken into account in the prevention of mineral loss induced
by chronic consumption of modern diets.

We designed the present study according to the hypothesis
that supplementing the diet with exogenous alkali, in the form
of cooked potato (CP), might counteract deleterious effects of
a high-NaCl load on acid–base status and mineral excretion.
To further investigate these points, rats were fed wheat
starch (WS) or CP diets with low or high NaCl content
during 3 weeks. In each group, the urinary acid–base profile
was determined and Ca and Mg balance examined. These
experiments were conducted in growing rats in condition of
positive Ca and Mg balance.

Materials and methods

Experimental diets

Rats were adapted to four different diets (Table 1) in which
carbohydrates were provided by WS or by CP. Charlotte

*Corresponding author: Dr Christian Rémésy, fax þ33 4 73 62 46 38, email remesy@clermont.inra.fr

Abbreviations: CP, cooked potato; WS, wheat starch.

British Journal of Nutrition (2006), 95, 925–932 DOI: 10.1079/BJN20061742
q The Authors 2006

https://doi.org/10.1079/BJN
20061742  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN20061742


potatoes, a cultivar usually consumed in France, were
obtained from the Jardins de Limagne (Aigueperse, France).
Every day, about 1·5 kg potatoes was steamed for 30 min
before mashing. Mashed potatoes were then mixed with a
semi-purified mixture providing casein, methionine (0·5 %),
maize oil, minerals, trace elements and vitamin mix. Each
diet contained 20 % protein, namely 20 % casein in the WS
diets and 14 % casein in the CP diets, potato providing 8 %
protein on a dry-weight basis. WS and CP diets contained
respectively 3·9 g K/kg and 13 g K/kg DM, K being exclu-
sively provided by potato in the CP diets. High-salt diets
contained 7·9 g Na/kg DM, whereas the others contained
2 g Na/kg DM. Thus, the Na:K ratio was 0·5 with the low-
salt WS diet but only 0·15 with the low-salt CP diet, and it
was 4-fold enhanced by the NaCl load in each case. All
diets were balanced, on a dry-weight basis, in Ca (3·7 g/kg),
Mg (0·9 g/kg) and P (3·1 g/kg), taking into account minerals
provided by potato.

Animals

Male Wistar rats weighing approximately 180 g were used. They
were from the colony of laboratory animals of the National Insti-
tute of Agronomic Research (INRA; Clermont-Ferrand/Theix,
France). They were randomly allocated to four groups of eight
rats and fed one of the experimental diets for 21 d, distributed
as semi-purified moistened powder for the WS diets and as
fresh CP, supplemented with a semi-purified mixture, for the
CP diets. All the diets were balanced in nutrients, vitamins,
Ca, Mg and P, taking into account the endogenous supply of
potatoes. The animals were allowed free access to fresh food
and water. Rats were housed two per cage and maintained in
temperature-controlled rooms (228C), with the dark period

from 20.00 to 08.00 hours. They were maintained and handled
according to the recommendations of the Institutional Ethics
Committee (Clermont-Ferrand University, France), in accord-
ance with decree no. 87–848. The body weight of rats was
recorded twice per week during the experimental period.
During the last 7 d of the experiment period, rats were transferred
to metabolism cages; food intake and daily urine and faecal
excretion were recorded over the last 4 d.

Sampling procedures

Rats were first anaesthetised with sodium pentobarbital
(40 mg/kg) and maintained on a plate at 378C. An abdominal
incision was made, and blood was withdrawn from the
abdominal aorta into heparinised tubes. After centrifugation
at 10 000 g for 2 min, plasma was collected and stored at
2208C for analysis. After blood sampling, the caecum with
its content was removed and weighed and samples of caecal
contents were transferred into two microfuge tubes; one was
immediately frozen at 2208C and the pH of the caecal con-
tents was measured in the other one. Then, rats were killed
by an overdose of pentobarbital.

Analytical procedures

For mineral determinations, 0·25 g dried samples (food and
faeces) was dry-ashed (10 h at 5008C) and then extracted at
1308C in HNO3–H2O2 (2:1) (Suprapur; Merck, Darmstadt,
Germany) until discoloration. Final dilution was made
in 0·1 g/l lanthanum oxyde solution (for Ca and Mg determi-
nations). Mineral concentrations were determined for
Ca and Mg by atomic absorption spectroscopy (AA800;
Perkin-Elmer, Norwalk, CT, USA) in an acetylene–air flame
at the following wavelengths: 422·7 nm (Ca); 285·2 nm
(Mg). K and Na were determined by atomic emission spec-
troscopy at the following wavelengths: 766·5 nm (K);
589·5 nm (Na). P was determined spectrophotometrically
using a commercial kit (Biomérieux SA, Lyon, France).
Urines were 400-fold diluted with milli-Q water and anions
were analysed using a DX320 Dionex chromatograph (Sunny-
vale, CA, USA). The anions were separated on a 4 £ 250 mm
AS 11 column/AG 11 precolumn (flow rate 1 ml/min). An
EG40 eluent generator controlled the elution with an OH2

gradient (0·5 to 35 mmol/l in 20 min) and the conductimetry
detector was preceded by a ASRS self-regenerating suppres-
sor. Peaks were identified and quantified by comparison with
pure anion standards.

SCFA were measured by GLC in supernatant fractions of
caecal contents (40 000 g; 15 min) after acidification by
H3PO4 (10 %), as described by Remesy & Demigne (1974).

Calculation and data analysis

Statistical analysis was performed using the XLStat software
package (Addinsoft SARL, Paris, France). Results were
expressed as mean values with their standard errors. Two-
way ANOVA, coupled with the Newman–Keuls test, defined
as P,0·05, was adopted to determine the main effects (potato
and salt) and interaction.

Table 1. Composition of experimental diets (g/kg dry matter)*

Wheat starch Cooked potato

Ingredients† Low salt High salt Low salt High salt

Casein 200 200 140 140
Methionine 5 5 5 5
Maize oil 50 50 50 50
CaCO3 5 5 5 5
CaH(PO4).2(H2O) 8·6 8·6 6·9 6·9
MgSO4.7H2O 9 9 – –
KCl 3·72 3·72 – –
PO4H2K 6·8 6·8 – –
NaCl 5 20 5 20
Trace element mix 10 10 7·5 7·5
Vitamin mix 10 10 7·5 7·5
Wheat starch 687 672 – –
Cooked potato – – 773 758
Na:K ratio 0·5 2·0 0·15 0·6

* All diets contained on a DM basis (g/kg diet): Ca, 3·7; Mg, 0·9; P, 3·1. The low-
NaCl diets contained 2 g Na/kg whereas high-NaCl diets contained 7·9 g/kg.
Cooked potato and wheat starch diets contained 15 and 4 g K/kg respectively.
The mineral content of all diets was checked before the beginning of the exper-
iment. The mineral content of the Charlotte potato cultivar was on a DM basis
(mg/kg diet): Ca, 92; Mg, 257; K, 4934; P, 510.

† Casein and wheat starch were supplied by Louis François (Saint-Maur, France),
maize oil by Huileries de la Lapalisse S.A. (Lapalisse, France), methionine and
minerals by Sigma Chemical Co. (St Louis, MO, USA), and trace elements and
vitamin AIN-93N mix without vitamin E by Dyets, Inc. (Bethlehem, PA, USA).
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Results

Food intake, body weight and plasma electrolytes

Food intake and body-weight gain did not differ significantly
among the groups (Table 2). Arterial plasma concentrations of
Na, K, Ca and Mg were unchanged.

Urine variables

As shown in Table 2, rats fed the WS diets excreted an acidic
urine (about pH 5·5), whereas rats fed the CP diets excreted
urine near pH 7·3. Urine alkalinisation by potato corresponded
to a rise of cationic species excretion with a major contri-
bution of K. Na excretion was about 5·5 mmol/d in the high-
salt diets. K excretion (Table 2) was 4-fold greater in rats
fed the CP diets than in rats fed the WS diets and it accounted
for the near-totality of K intake. Urinary Ca excretion
(Fig. 1 (A)) was significantly greater in rats fed the high-salt
WS diet (0·11 mmol/d) than in those fed the low-salt WS
diet. Moreover, potato reduced significantly Ca excretion
down to 0·05 mmol/d in the high-salt CP diet compared with
the high-salt WS group. Thus, Ca excretion represented
about 17 % of the daily absorbed Ca in rats fed the high-salt
WS diet compared with 3–5 % in those fed the low-salt WS
and the CP diets. As shown in Fig. 1 (B), urinary Mg excretion
in the WS diets was significantly increased, whereas potato
consumption counteracted this effect. Mg excretion rep-
resented about 46 and 63 % of the daily absorbed Mg in rats
fed the WS diet compared with 21–28 % in those fed the
CP diets. Urinary ammonium (Table 2) was significantly
increased in the high-salt WS diet compared with the others.
Chloride excretion was about 2 mmol/d in rats fed the low-
salt diets, and in the range of 6·15–6·62 mmol/d in diets
supplemented with NaCl. Urinary citrate (Fig. 2 (A)) and
a-ketoglutarate (Fig. 2 (B)) are recognised as extremely sensi-
tive to acid–base conditions in kidneys. They were practically

undetectable in acidic urines (control and NaCl diets), whereas
they were present in substantial amounts in the CP diets, in the
range of 150–300mmol/d. Phosphate (Table 2) and oxalate
(Fig. 2 (C)) excretions were markedly depressed with the
CP diets.

Caecal variables

The CP diets significantly enlarged the caecum (þ84 to
þ91 %) compared with the WS diets (Table 3). The caecal
wall weight was relatively proportional to the caecal weight
(about 30 %). The caecal pH was near neutrality in rats fed
the WS diets whereas an acidification of the caecal pH
(about 5·7) occurred in rats fed the CP diets. The caecal
SCFA pool was larger in rats fed the CP diets, in the range
of 447–491mmol/caecum, than in those fed the WS diets
(146–159mmol/caecum). The acetate molar ratio was particu-
larly high in rats fed the WS diets, and the CP diets increased
the propionate molar ratio. The butyrate concentration in the
caecum of low-salt WS fed rats was about 7·2 mmol/l and
was slightly enhanced in rats fed the low-salt CP diet
(11 mmol/l). The activation of caecal fermentations in rats
fed the CP diets contributes to enhance DM faecal excretion.

Influence of diets on mineral absorption

The Ca and Mg intakes were very similar for all diets, in the
range 1659 to 1817mmol/d. However, apparent Ca absorption
was significantly greater in rats fed CP diets, about 53–56 % of
ingested Ca, than in those fed the WS diets, about 39 % (Table
4). In rats fed the WS diets, 37–41 % of the dietary Mg was
apparently absorbed, whereas CP diets significantly enhanced
apparent Mg absorption up to 60 %.

Table 2. Food intake, body weight, plasma electrolytes and urinary parameters in rats fed the wheat starch (WS) or cooked potato (CP) diets

(Mean values with their standard errors for eight animals per group)

WS CP

Low salt High salt Low salt High salt ANOVA P value

Mean SEM Mean SEM Mean SEM Mean SEM CP Salt CP £ salt

Food intake (g/d) 17·9 0·4 18·7 0·6 18·8 0·4 19·1 0·3 NS NS NS
Body-weight gain (g/d) 5·7 0·3 5·7 0·3 4·6 0·3 4·9 0·3 NS NS NS
Plasma

K (mmol/l) 3·64 0·09 3·69 0·07 3·79 0·11 3·81 0·05 NS NS NS
Na (mmol/l) 133 0·4 133 1·8 129 1·6 129 1·0 NS NS NS
Ca (mmol/l) 2·61 0·06 2·77 0·09 2·81 0·08 2·74 0·10 NS NS NS
Mg (mmol/l) 0·75 0·01 0·8 0·03 0·81 0·02 0·76 0·02 NS NS NS

Urine
pH 5·51b 0·03 5·53b 0·03 7·26a 0·02 7·36a 0·15 ,0·001 NS NS
Volume (ml) 16·0c 1·9 24·9b 1·9 48·3a 1·9 48·8a 2·7 ,0·001 NS NS
NH4 (mmol/d) 1·11b 0·11 1·59a 0·10 0·96b 0·09 0·97b 0·10 NS ,0·05 NS
K (mmol/d) 1·38b 0·09 1·91b 0·25 6·8a 0·15 7·06a 0·26 ,0·001 NS NS
Na (mmol/d) 1·37b 0·09 5·81a 0·47 1.14b 0·03 5·30a 0·20 NS ,0·001 NS
Cl (mmol/d) 2·11b 0·10 6·62a 0·39 1·91b 0·21 6·16a 0·31 NS ,0·001 NS
PO4 (mmol/d) 1·09b 0·05 1·28a 0·08 0·48c 0·03 0·56c 0·04 ,0·001 ,0·05 NS

a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05).
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Discussion

The present study was conducted to determine whether potato
consumption is effective on acid–base homeostasis and to pre-
vent mineral losses induced by a high salt load.

The present results indicate that CP diets delivered a sub-
stantial alkali load, with a significant rise in urinary pH and
a decrease in ammonium excretion as previously shown with
potassium citrate or potassium bicarbonate administration in
men and experimental animals (Sakhaee et al. 1991; Sabboh
et al. 2005).

The present results also confirm that short-term intake of
salt supplements (20 g/kg) significantly increases urinary Ca
and Mg excretion, as shown in experimental animals (Whiting
& Cole, 1986; Shortt & Flynn, 1991; Chan & Swaminathan,
1994; Creedon & Cashman, 2000) and human subjects (Itoh
& Suyama, 1996; Lietz et al. 1997; Ginty et al. 1998). It is
well known that when dietary NaCl is increased, the fractional
reabsorption of Na is decreased, leading to a parallel reduction
in Ca reabsorption (Shortt & Flynn, 1990, 1991). The depen-
dence of urinary Ca excretion on Na excretion has been attrib-
uted to the existence of linked or common reabsorption
pathways for these cations in the convoluted portion of the

proximal tubule and in the loop of Henle (Antoniou et al.
1969). Furthermore, it has been shown that by replacing diet-
ary NaCl with an equimolar amount of dietary NaHCO3, it is
possible to significantly reduce hypercalciuria (Kurtz &
Morris, 1985; Lemann et al. 1991; Maurer et al. 2003).
There is evidence that Cl in excess has to be eliminated exten-
sively by kidneys to maintain a plasma Na:Cl ratio of about
1·4. Thus, the unmetabolisable anion Cl, representing fixed

Fig. 1. Urinary Ca (A) and Mg (B) excretion (mmol/d) in rats fed low-salt

wheat starch (WS; B), high-salt WS (A), low-salt cooked potato (CP; D) or

high-salt CP (B) diets for 3 weeks. Values are means for eight rats per

group, with standard errors represented by vertical bars. Urinary Ca excretion

was affected by NaCl (P,0·01) with a significant interaction between NaCl

and CP (P,0·05). Mg excretion was affected not only by CP (P,0·01) but

also by NaCl (P,0·01). a,b,c Mean values with unlike letters were significantly

different (P,0·05).

Fig. 2. Urinary citrate (A), a-ketoglutarate (a-KG; B) and oxalate (C)

excretion (mmol/d) in rats fed low-salt wheat starch (WS; B), high-salt WS

(A), low-salt cooked potato (CP; D) or high-salt CP (B) diets for 3 weeks.

Values are means for eight rats per group, with standard errors represented

by vertical bars. Citrate, a-KG and oxalate excretion were affected only by

CP (P,0·001). a,b Mean values with unlike letters were significantly different

(P,0·05).
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acidity, might itself play a role in mineral excretion (Massey
& Whiting, 1996; Barzel, 1997).

It has also been shown that acidosis may also affect Mg
reabsorption through a direct effect of protons on distal Mg
transport (Dai et al. 1997, 2001). The present observations
strengthen the view of a major role of urinary Mg excretion
in the regulation of acid–base homeostasis; and its role may
be more relevant than that of Ca, as shown previously
(Sabboh et al. 2005). The present study also shows that, by
replacing WS with CP in a high-salt diet, it is possible to
counteract the hypercalciuric and hypermagnesuric effects of
NaCl. Many studies have shown that K supplementation
reduces whereas K deprivation elevates urinary Ca excretion
(Lemann et al. 1989, 1991). Moreover, the addition of oral
potassium citrate to a high-salt diet may prevent a rise of
urine Ca excretion (Sellmeyer et al. 2002). KHCO3 is well
known to reduce urinary Ca excretion by the neutralisation
of endogenous acid production (Sebastian et al. 1994; Fras-
setto et al. 2000). As K organic salts metabolism yields vir-
tually to KHCO3, they have the potential to neutralise
endogenously produced acidity (Sellmeyer et al. 2002).
They could thus stimulate the renal tubular reabsorption of
cations since urinary Ca and Mg excretion seems to commen-
surate with endogenous acid production (Dai et al. 1997,
2001; Lemann, 1999; Yeh et al. 2003). Furthermore, K
seems to have a direct impact on the kidney to promote Ca
reabsorption (Brunette et al. 1992).

Potato has also to be considered as a source of fibres which
may influence the food efficiency of the diet. The CP diet led
to a rise in faecal DM excretion, which could explain the
difference in the weight gain between the CP and WS diets.
Moreover, the microbial breakdown of potato fibres in the
large intestine produces large amounts of SCFA accompanied
by a lowering of the caecal content pH as previously shown
(Mathers & Dawson, 1991). It is well known that acidic fer-
mentation may influence the intestinal absorption of minerals,
especially Ca and Mg, by increasing their solubility and their
transport across the cell membrane (Nellans & Goldsmith,
1981; Lutz & Scharrer, 1991; Trinidad et al. 1993; Coudray
et al. 2003). It is also conceivable that there are probably
interesting interactions between fermentable fibres and potass-
ium citrate which might have additive alkalinising
consequences.

These observations are particularly important since a nega-
tive Ca balance generally results in a compensatory release of
minerals (Ca, Mg) from bone tissue, liable to alter the struc-
tural integrity of the skeleton, leading in man to various
forms of osteopenia and osteoporosis (Buclin et al. 2001).
The skeleton has also been involved in the buffering of an
acid load through the release of hydroxyde (OH2) and phos-
phate (PO4

32) anions, along with Ca cations (Ca2þ). In this
context, consumption of plant foods rich in K alkaline salts,
such as potato, may be of interest in the maintenance of min-
eral reserves and, in the long term, of bone mass (New et al.
1997; Macdonald et al. 2004, 2005).

Phosphate is the major buffer system in urine and its
excretion is increased during acidosis, probably as a result
of a decrease of the preferentially transported form (HPO4

22)
together with a direct effect of luminal pH on the apical phos-
phate carrier in the proximal tubule (Ambuhl et al. 1998).
Sebastian et al. (1994) have shown that administration ofT
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potassium bicarbonate improved P balance. In this view, phos-
phate excretion was significantly reduced in rats fed the potato
diets, suggesting a better retention of this anion.

Citrate excretion was strongly enhanced in rats fed potato
diets. Addition of fruits and vegetables to the diet have been
shown to increase citrate excretion and to decrease calcium oxa-
late relative saturation in stone formers (Meschi et al. 2004). A
significant decrease in net acid excretion was also observed upon
potassium citrate supplementation, and this was parallel to a sig-
nificant increase of urine citrate (Marangella et al. 2004). It
appears that the major effect of dietary citrate on urinary citrate
excretion is attributable to its metabolism in alkali (Sakhaee et al.
1991). Citrate is a characteristic renal metabolite which is recog-
nised as a ‘window on renal metabolism’ (Simpson, 1983).
Renal handling of citrate takes place in the proximal tubule
across an Na-dependent dicarboxylate transporter (NADC-1)
that reabsorbs a variety of Krebs cycle intermediates such as
a-ketoglutarate and succinate (Pajor, 1999). Decrease in luminal
pH has an effect on citrate reabsorption, probably due to a
change in concentration of the preferentially transported ionic
species, citrate22 (Brennan et al. 1988), and in NADC-1 abun-
dance (Aruga et al. 2000). Citrate metabolism in renal tubular
cells is also affected by urinary pH, with adaptive changes in
the activity of cytosolic ATP citrate lyase and mitochondrial
aconitase (m-aconitase) (Melnick et al. 1996, 1998). Previous
studies have also indicated that urinary citrate could act as a
potent endogenous stone formation inhibitor by chelating Ca
and inhibiting Ca precipitation, as well as Ca oxalate crystallisa-
tion (Harvey et al. 1985). Thus, the alkali load provided by
potato consumption associated with the increase in urinary pH
leads to the rise in urinary citrate excretion which may contribute
to prevent the risk of kidney-stone diseases. Potato contains
small amounts of oxalate, which is partially absorbed, whereas
urinary oxalate might come mainly from endogenous synthesis.
Potato consumption seems effective to lower this endogenous
production.

In conclusion, potato consumption is often associated with
bad food habits (high intake of fats and animal products,
low intake of fruits and vegetables). In itself, potato,

consumed with few fats and within the scope of a balanced
diet, may exert, through its high micronutrient content
(potassium citrate, vitamin C, fibres), a diversity of interesting
effects on health (Ruano-Ravina et al. 2002). In the present
study, potato appears to be effective in alkalinising urine
and ameliorating Ca and Mg balance, in part by counteracting
various adverse effects of a high NaCl load proper to major
Western diets, such as excessive mineral wasting. Increasing
the consumption of plant foods, sources of alkali agents
mainly constituted by organic salts of K and Mg, may prove
to be a practical means to maintain cation reserves in the
body and, in the long term, to protect bone, notably in individ-
uals at risk of developing osteoporosis (New et al. 1997;
Macdonald et al. 2004, 2005). In this context further studies,
in human subjects, should be conducted in order to identify
the extent of the effect of potato on bone health (New, 2003).
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