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Abstract

Large surveys of the local Universe have shown that galaxies with different intrinsic properties such as colour, luminosity
and morphological type display a range of clustering amplitudes. Galaxies are therefore not faithful tracers of the
underlying matter distribution. This modulation of galaxy clustering, called bias, contains information about the physics
behind galaxy formation. It is also a systematic to be overcome before the large-scale structure of the Universe can be
used as a cosmological probe. Two types of approaches have been developed to model the clustering of galaxies. The first
class is empirical and filters or weights the distribution of dark matter to reproduce the measured clustering. In the second
approach, an attempt is made to model the physics which governs the fate of baryons in order to predict the number of
galaxies in dark matter haloes. I will review the development of both approaches and summarise what we have learnt
about galaxy bias.
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1 INTRODUCTION

It has long been known that the distribution of galaxies on the
sky is clumpy rather than random. Huge surveys of galaxies in
the local Universe have further revealed that different types
of galaxies are clustered in different ways. If galaxies are
grouped into samples according to intrinsic properties such
as their luminosity, colour, or morphology, then the mea-
sured clustering varies depending on the characteristics of
the galaxies under consideration (Norberg et al. 2001, 2002;
Zehavi et al. 2002, 2011). Figure 1 shows this for galaxies
from the two-degree field galaxy redshift survey which have
been divided into two classes according to their spectral type.
Galaxies with ‘early’ or ‘passive’ spectral types trace out a
different pattern of large-scale structure than the galaxies
with ‘late’ or ‘active’ types. The early types delineate tighter
filaments and the cores of clusters, whereas the late types
sample the outer parts of these structures and appear more
diffuse.

Such differences are driven by the variation in the pro-
cesses which shape the formation and evolution of galax-
ies with environment and halo mass. The fact that the clus-
tering patterns of different kinds of galaxies look different
implies that measurements of galaxy clustering have the
potential to tell us something useful about the nature and
strength of these processes. To realise this, we need theo-
retical models which can describe the large-scale structure

in the galaxy distribution and connect this to the underlying
physics.

The large-scale structure of the galaxy distribution is also
used to constrain the values of the basic cosmological param-
eters, including the equation of state of the dark energy. The
distortion of the clustering signal due to the gravitationally
induced peculiar motions of galaxies provides a measurement
of the rate at which the structure is growing, which in turn
depends on the cosmic expansion history (Guzzo et al. 2008;
Wang 2008). The apparent location of baryonic acoustic os-
cillation (BAO) features in the power spectrum or correlation
function provides a geometrical test, measuring the redshift–
distance relation (Percival et al. 2007; Cabré & Gaztañaga
2009; Sánchez et al. 2009, 2012). The power of large-scale
structure probes depends on how well we can model galaxy
bias. For example, in BAO studies, the measured power spec-
trum is often divided by a featureless reference spectrum to
remove the overall shape of the spectrum from the analysis.
However, this shape contains further cosmological informa-
tion if we can predict the form of the galaxy bias, so that
we can infer the shape of the matter power spectrum. Galaxy
bias is therefore a ‘nuisance’ parameter or systematic in large-
scale structure probes. If we can model bias, we can enhance
the scientific performance of wide-field galaxy surveys by
marginalising over this parameter.

In this article, I will first review empirical approaches to
modelling galaxy clustering, explaining how these developed
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Figure 1. The distribution of galaxies with early (red points) and late spectral (blue points) types
in a volume-limited sample (just faintwards of L*), drawn from the two-degree field galaxy redshift
survey. The early- and late-type galaxies trace out different features of the cosmic web. Adapted from
Norberg et al. (2002).

as the quality of N-body simulations of hierarchical clustering
of the dark matter improved. In the second half, I will discuss
physical approaches to predicting galaxy bias and give an
overview of what such models have told us.

2 EMPIRICAL MODELS OF GALAXY
CLUSTERING

The central pillar of the paradigm for the large-scale structure
of the universe is gravitational instability. Small perturbations
in the matter density seeded during inflation are amplified
by gravitational instability. The early stages of this process
can be followed using perturbation theory (Bernardeau et al.
2002). Unless specialised assumptions are made, the latter,
nonlinear stages of structure formation, can only be modelled
through numerical simulation (Davis et al. 1985).

N-body simulations of the hierarchical growth of pertur-
bations in the density of the Universe have played a central
role in shaping the current cosmological model (Springel,
Frenk, & White 2006). According to these calculations, the
correlation function of the dark matter at the present day
cannot be described by a simple power law. The correlation
function of the mass today in a cold dark matter universe with
a cosmological constant is plotted in Figure 2. The correla-
tion function of galaxies in a flux-limited survey, roughly the
clustering of L* galaxies, is also shown for contrast (Baugh
1996). In this case, the correlation function is impressively
close to a power law over more than three decades in pair
separation. The effective galaxy bias, defined as the square
root of the ratio of the galaxy and dark matter correlation
functions, is therefore scale dependent.
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Figure 2. The clustering in the matter distribution, as quantified through the
two-point correlation function. The lines show measurements from N-body
simulations of a�CDM cosmology at different epochs, with the upper-most
curve corresponding to the present day. The points show a measurement
of the galaxy correlation function, which unlike the dark matter is well
described by a power law in pair separation. The effective galaxy bias, the
square root of the ratio of the galaxy and matter correlation functions, is
shown in the lower panel and is scale dependent. Based on a figure from
Jenkins et al. (1998).
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Early N-body simulations lacked the resolution to reveal
any irregularities in the structure of dark matter haloes. Large
volume simulations suitable for following fluctuations on
scales of tens of megaparsecs were only able to resolve haloes
of group and cluster mass. Motivated by analytic calcula-
tions which explained the large correlation lengths of galaxy
groups through the clustering of high peaks in a Gaussian
density field (Kaiser 1984), the first attempts to model the
spatial distribution of galaxies used the smoothed density
field of the dark matter (Davis et al. 1985; White et al. 1987).
Cole et al. (1997) assumed that the probability of finding a
galaxy was some empirical function of the smoothed density
field, with parameters tuned to reproduce the galaxy correla-
tion function. This approach has continued to be developed,
with the introduction of the idea of stochastic bias (Dekel &
Lahav 1999) in which the overdensity in the galaxy distribu-
tion can be written as a nonlinear function of the overdensity
in the matter distribution with a scatter. This framework has
been further developed and applied to surveys by a number
of authors (Sigad, Branchini, & Dekel 2000; Szapudi & Pan
2004; Marinoni et al. 2005; Kovač et al. 2011).

As codes became more efficient at calculating the grav-
itational forces between large numbers of particles and the
processing speed of computers increased, it became possible
to resolve haloes approaching galactic masses. The cluster-
ing of haloes depends, in the first approximation, on halo
mass, with cluster-mass haloes being much more strongly
clustered than haloes which might host the Milky Way (Cole
& Kaiser 1989; Mo & White 1996). This led to models in
which the form of the measured galaxy clustering could be
obtained by applying a suitable weighting to haloes, which
varies with halo mass (Jing, Mo, & Boerner 1998). This is
the forerunner of today’s halo occupation distribution mod-
els in which the weighting is expressed in terms of the mean
number of galaxies per halo, as described later.

With further improvements to the simulations, it be-
came possible to resolve structure inside dark matter haloes
(Klypin et al. 1999; Moore et al. 1999). Haloes form through
mergers and the accretion of mass. With sufficient resolution,
the central regions of the accreted haloes can be preserved
for many orbits, whilst the outer parts are stripped off. This
prompted a new generation of modelling in which resolved
subhaloes were associated with galaxies. In an early example
of what today would be called ‘subhalo abundance match-
ing’, Colı́n et al. (1999) were able to match the observed
power-law clustering of galaxies by selecting all subhaloes
above some threshold circular velocity (see Figure 3).

So how can the power-law galaxy correlation function be
understood, given the shape of the dark matter correlation
function? Benson et al. (2000) described the predictions of
their galaxy formation model in these terms and argued that a
power law could be obtained for the galaxy correlation func-
tion if the ‘right’ number of galaxy pairs was predicted in
each halo. Models which were set up to reproduce the galaxy
luminosity function were found to predict a power-law galaxy
correlation function in a�CDM cosmology. Figure 4 shows
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Figure 3. An attempt to reproduce the observed clustering of galaxies by
associating galaxies with subhaloes with effective circular velocities above
some threshold value (dashed, dot–dashed, and solid). The clustering of
subhaloes is different from that of the overall dark matter (shown by the
dotted line), and by tuning the circular velocity which defines the sample, a
good match can be obtained with the observed galaxy clustering (shown by
the points). Reproduced from Colı́n et al. (1999).
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Figure 4. Reproducing the clustering of galaxies in �CDM. The correla-
tion function of haloes which contain galaxies is shown by the heavy solid
line. This curve turns over below r � 0.5h−1 Mpc due to an exclusion
effect which prevents haloes overlapping. The correlation function of the
dark matter particles in these haloes is shown by the long-dashed line; this
puts too many pairs in massive haloes and leads to an overprediction of the
small-scale clustering. The number of galaxies predicted by a galaxy for-
mation model set up to reproduce the luminosity function gives a reduced
number of pairs by comparison with the particle case, and is in excellent
agreement with the observed galaxy clustering. Based on a figure in Benson
et al. (2000).
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the components of the galaxy correlation function. The clus-
tering of the haloes occupied by galaxies is shown by the
heavy solid line. Each halo has unit weight in this example.
The curve turns over at small pair separations due to an ex-
clusion effect; if haloes got any closer to one another, they
would be identified as a more massive halo by a percola-
tion group finder. Considering only the dark matter particles
contained within occupied dark matter haloes (long-dashed
line) overpredicts the small-scale clustering. The number of
galaxy pairs within a halo does not increase with halo mass
in proportion to the number of particles, so a lower clustering
amplitude is predicted on small scales (light solid line).

Today, these approaches have crystalised into two
schemes: halo occupation distribution (HOD) modelling and
subhalo abundance matching (SHAM).

HOD modelling has its roots in the clump model of Ney-
man & Scott (1952). In its modern form, HOD modelling
took off around the start of the millennium, spurred on by the
physical modelling described in the second part of this article.
The HOD is a parametrisation of the mean number of galax-
ies per halo. The HOD is split into contributions from central
galaxies and satellite galaxies (Zheng et al. 2005). Central
galaxies are typically modelled using a softened step func-
tion, which encapsulates the transition from haloes which are
not massive enough to host a galaxy which meets the obser-
vational selection, to the mass for which all central galaxies
are included. The mean number of satellite galaxies per halo
is described by a power law, which reaches unity at a higher
halo mass than the central HOD (Cooray & Sheth 2002).
The canonical form used to model the HOD of optically se-
lected galaxy samples is shown by the fit in the left panel of
Figure 8.

A limitation of the HOD approach is that it is descriptive
rather than predictive. Given an observational measurement
of the clustering of galaxies, the parameters of the HOD can
be constrained to reproduce this clustering, returning an in-
terpretation of the measurement in terms of the number of
galaxies per halo. The basic HOD machinery cannot make
a prediction for a new clustering measurement with, for ex-
ample, a different galaxy selection or at a different redshift.
However, refinements to the HOD model to include galaxy
luminosity and colour have been devised (Skibba & Sheth
2009). As we will see later, the canonical form of the HOD
outline above does not apply to all galaxy selections and
there is no way to anticipate this without trying to implement
a physical model of the galaxy population. Lastly, the basic
assumption behind HOD modelling, that the clustering of
dark matter haloes depends solely on halo mass, has recently
been demonstrated to be inaccurate (Gao, Springel, & White
2005; Croton et al. 2006; Gao & White 2007; Angulo et al.
2009).

SHAM is an even simpler approach to realising a galaxy
distribution in an N-body simulation. The fundamental as-
sumption behind SHAM is that there is a monotonic relation
between a galaxy property, e.g. stellar mass, and the mass
of the subhalo which hosts the galaxy. This relation is also

assumed to have zero scatter. The subhaloes from the sim-
ulation are then ranked in mass, breaking each halo into its
component subhaloes. A volume-limited sample of galaxies,
e.g. generated from a measurement of the galaxy luminosity
function, is then also ranked by the galaxy property (in this
example, luminosity) and the two lists are paired off, with
the most luminous galaxy being matched up with the most
massive subhalo until the end of the list is reached (Vale &
Ostriker 2004; Conroy, Wechsler, & Kravtsov 2006). In the
simulation, the mass estimated for subhaloes can be affected
by stripping, so the mass of the subhalo at infall is used in
the SHAM procedure.

SHAM seems to provide surprisingly good descriptions
of observational samples (Conroy et al. 2006; Moster et al.
2010). This is all the more remarkable when one considers
that no distinction is made regarding where the subhalo came
from, that is, regardless of whether it was part of a cluster-
mass halo or an isolated halo, there is assumed to be a con-
nection to a galaxy property (Watson & Conroy 2013). One
might imagine that environmental factors would change the
nature of the connection between subhalo mass and galaxy
property for a satellite galaxy in a cluster. In SHAM, the
subhalo mass is frozen at infall into a larger structure. Sub-
sequently, the satellite galaxy could continue to form stars
using up any available reservoir of cold gas, which would
appear to change the subhalo mass–galaxy property relation.

The SHAM approach has been extended to cope with the
scatter in the galaxy property–halo mass relation (Moster
et al. 2010; Rodrı́guez-Puebla, Drory, & Avila-Reese 2012).
The assumption which underpins SHAM has been evalu-
ated by Simha et al. (2012) using the output of a gas dy-
namic simulation. These authors found that the simulation
produced relations between selected galaxy properties and
subhalo mass which were monotonic, but with scatter. The
scatter led to the clustering in a catalogue constructed by
applying the SHAM hypothesis to differ somewhat from that
in the original simulation output.

The connection between empirical models of galaxy clus-
tering based on the smoothed distribution of matter and those
which start from haloes has recently been made (Cacciato
et al. 2012). In the next section, we discuss a more physical
approach which does not rely upon existing clustering data
being available.

3 PHYSICAL MODELLING OF GALAXY
FORMATION

By itself, the cold dark matter model says nothing directly
about galaxy formation. Inferences can be drawn about the
sequence of galaxy formation, based on how structures grow
in the dark matter. However, without an attempt at a physi-
cally motivated calculation of the fate of baryons in a cold
dark matter universe, there is little hope of learning much
about galaxy formation or of understanding the implica-
tions of observations of high-redshift galaxies for the cold

PASA, 30, e030 (2013)
doi:10.1017/pas.2013.007

https://doi.org/10.1017/pas.2013.007 Published online by Cambridge University Press

https://doi.org/10.1017/pas.2013.007


Luminosity Bias: From Haloes to Galaxies 5

dark matter cosmology (for reviews see Baugh 2006; Ben-
son 2010).

White & Rees (1978) argued that galaxy formation is a
two-phase process, with the bulk of the mass undergoing
a dissipationless collapse which is responsible for building
the gravitational potential wells or haloes in which galaxies
form. The baryonic component of the universe is able to dissi-
pate energy and therefore to collapse down to smaller scales,
forming denser units, which retain their identity within the
cluster. This model was able to explain the appearance of
clusters of galaxies. However, without an additional process
to reduce the efficiency of galaxy formation in shallow grav-
itational potential wells, the predicted luminosity function is
much steeper than is observed at the faint end.

This pioneering work, along with a clutch of papers pub-
lished around the same time looking at the radiative cooling
of gas within gravitational potential wells, laid the ground-
work for modern galaxy formation theories. The break in the
galaxy luminosity function can be understood by comparing
the time taken for gas to cool with the age of the universe.
The time taken for all of the gas within a halo to cool ra-
diatively increases with halo mass. This is because cooling
is a two-body process (collisionally excited radiative tran-
sitions or bremsstrahlung) which depends on the square of
the gas density. In hierarchical models, more massive haloes
tend to form later when the density of the universe is lower.
It is possible for the cooling time of the gas to exceed the
Hubble time, thus limiting the supply of cold gas to form
a galaxy (see the review of Fred Hoyle’s contributions to
galaxy formation theory by Efstathiou 2003).

The first papers to incorporate these ideas fully into the
cold dark matter cosmology, introducing the semi analytical
methodology, were published in 1991 (White & Frenk 1991;
Cole 1991; Lacey & Silk 1991). This approach tries to fol-
low a wide range of the processes which are thought to be
important in determining the fate of the baryons. This is a
daunting task. At the time, theories of star formation were
rudimentary at best. There has been much progress in this
area since 1991, but we are still a long way from having a
reliable description of the process which underpins galaxy
formation. The regulation of star formation efficiency comes
from the stars themselves. Stars above ≈5–8 times the mass
of the Sun end their life in a Type II supernova, which in-
jects substantial amounts of energy and momentum into the
interstellar medium (ISM). This alters the state of the gas
in the ISM, perhaps leading to the ejection of gas from the
galactic disc or even the dark matter halo. This process is
known as supernova feedback and is critical to the success
of any model of galaxy formation.

The absence of a precise description of a key process, such
as star formation and supernova feedback, may lead one to
consider giving up any hope of ever understanding galaxy
formation. Instead, in semi-analytical modelling an attempt
is made to write down the differential equation which gives
the current best bet model of how the system behaves. As
our understanding develops, or when new observations clar-
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Figure 5. The flow of mass and metals between reservoirs of hot gas,
cold gas, and stars. Semi-analytical models of galaxy formation solve the
differential equations which describe the transfer of materials between these
reservoirs. Reproduced from Cole et al. (2000).

ify how a process works, then the model can be improved.
The differential equation may contain a free parameter. Often
there is little guidance as to the appropriate range of values to
take for the parameter. In such instances, the only approach is
to be pragmatic and see what the model predicts for different
parameter values. By comparing the model predictions to ob-
servations, the value of the parameter is set as the one which
gives the most faithful reproduction of the data. This proce-
dure is exactly what physicists undergo when attempting to
describe complex phenomena: start off with a simple model,
which can be adjusted or refined to improve the description
of the observations. I will give an example of this principle
in action in the next section.

The semi-analytical framework allows us to model a range
of processes together, within the cosmological setting of the
formation of structure in the dark matter. The ability to fol-
low the interplay between processes is essential in studying
galaxy formation. The models solve the set of differential
equations which govern the flow of mass and metals be-
tween different reservoirs of baryons: hot gas, cold gas, and
stars (Figure 5). The output of the models is the full star for-
mation and chemical enrichment histories for a wide range
of galaxies, including mergers between galaxies.

Semi-analytical modelling has some features which might
be perceived as limitations or drawbacks. One example is the
generality of the assumptions which are needed to be able to
calculate the fate of the baryonic component. Another is the
‘deterministic’ way in which processes such as supernova
feedback are modelled. In the semi-analytical model, the
mass loading of the supernova-driven wind is specified by
choosing model parameters, and precisely this amount of
gas is ejected from the ISM. In a gas dynamics simulation
in which the wind is fully coupled to the hydrodynamics
equations (note this is not generally the case, with a semi-
analytical model of feedback inserted into the simulation to
describe feedback), the same number of supernovae could
result in a very different mass of gas being ejected. The mass
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loading could be intricately linked to the resolution of the
simulation.

Nevertheless, despite the progress made over the past 20
years, there is still widespread mistrust of semi-analytical
modelling. This has led to a burgeoning reductionist move-
ment in galaxy formation in which simplified models have
been devised with the aim of elucidating how galaxies
form. Examples include the ‘bathtub’ and ‘reservoir’ models
(Bouché et al. 2010; Davé, Finlator, & Oppenheimer 2012).
These calculations are inspired by models of supply and de-
mand from economics, and track the inflow (sources) of gas
into haloes and the ‘sinks’ of cold gas in star formation and
supernova feedback. In their simplest form, the models fol-
low one galaxy per halo and invoke ad hoc efficiency factors
to specify the inflow of gas as a function of halo mass, without
any attempt to calculate the rate at which gas can cool or to
explain the form of the efficiency factor. Galaxy mergers are
ignored. This class of calculation effectively takes one of the
equations which has been considered within semi-analytical
models for more than two decades and solves it in isolation.

The desire for a better grasp of how galaxy properties are
shaped by different processes is understandable, but it is not
clear that it can be usefully gained from such stripped-down
approaches. The perceived ‘complexity’ of semi-analytical
modelling is actually the great strength of the technique. The
ability to model the interplay between processes is the key
to building a realistic model of galaxy formation. By tak-
ing a more complete view of galaxy formation rather than a
selective one, the consequences of the calculation—the pre-
dictions of the model—are more far reaching and therefore
more tightly constrained by observations. If the model seems
complex, then this is simply a reflection of the nature of the
underlying processes such as star formation and heating by
supernovae.

Semi-analytical modelling of galaxy formation is comple-
mentary to the approach of using a gas dynamics simulation,
with the two techniques having many aspects in common.
In general, gas dynamics simulations rely on fewer assump-
tions to follow some of the processes in galaxy formation.
For example, the treatment of gas cooling in semi-analytical
models assumes spherical symmetry, whereas this is not nec-
essary in a hydrodynamics simulation. Nevertheless, in care-
fully controlled comparisons, the modelling of gas cooling in
semi-analytical models can produce the same results as are
obtained in the hydro-simulation (Yoshida et al. 2002; Helly
et al. 2003; De Lucia et al. 2010). In other areas, the two
methods are more similar than many people realise. A good
illustration is star formation, which is firmly ‘sub grid’ in
simulations which aim to follow more than one galaxy. The
treatments of star formation in a gas dynamics simulation and
in a semi-analytical model are very similar. Further discus-
sion of how star formation is treated in semi-analytical mod-
els is given in the next section. A key limitation on the use of
gas dynamics simulations to model galaxy clustering is their
computational expense and the requirement for ‘sufficient’
resolution in mass and length scales (Governato et al. 2007).

These considerations have tended to force gas simulators to
use relatively small simulation boxes, typically measured in
tens of megaparsecs. This in turns limits the predictions for
the clustering to pair separations of a few magaparsecs. An
alternative to trying to predict the galaxy correlation function
is to focus instead on how haloes are populated with galax-
ies. If enough different environments can be sampled, e.g. by
re-simulating patches from a larger volume at high resolu-
tion and with gas (Crain et al. 2009), then such a simulation
could be used to predict the halo occupation distribution.
One advantage of gas simulations over semi-analytics is that
they can follow the redistribution of matter due to outflows
of baryons. Calculations using the OverWhelmingly Large
Simulations have shown that the physics of galaxy forma-
tion, particularly active galactic nucleus (AGN) feedback,
has an impact on the distribution of matter which has impli-
cations for the interpretation of weak lensing measurements
(Semboloni et al. 2011; van Daalen et al. 2011).

Nevertheless, to address clustering on scales of tens to
hundreds of megaparsecs, the only viable technique is semi-
analytics used in combination with large volume, high-
resolution N-body simulations of the clustering of dark mat-
ter, which we focus on in the later sections of this review.

4 ILLUSTRATION: THE STAR FORMATION
RATE IN GALAXIES

An illustration of how semi-analytical models work can be
obtained by considering recent progress in how star forma-
tion is modelled within a galaxy.

The bulk of semi-analytical models attempts to predict
the global star formation rate within a galaxy. The early
modelling of the star formation rate was essentially based on
dynamical arguments, with loose motivation coming from
a comparison with the Kennicutt–Schmidt law (Bell et al.
2003). The star formation rate, ψ , is often parametrised as

ψ = ε
Mcold

τ
,

where Mcold is the total mass of cold gas in the galaxy and ε
is an efficiency factor which controls the fraction of cold gas
which is turned into stars in the timescale τ . The timescale
for star formation is generally assumed to scale with the
dynamical time within the galaxy:

τ = tdyn f (vdisc).

In some models, f(vdisc) = 1; in the Cole et al. (2000)
model, an explicit scaling of the star formation timescale
with the circular velocity of the disc was implemented,
to allow the model to produce a better match to the ob-
served gas fraction luminosity relation for spiral galaxies:
f (vdisc) = (vdisc/200 km s−1)α∗ . Hence, in the most general
case, two parameters are required to set the star formation
rate: ε and α*. These parameters are set by choosing values,
running the model and then comparing the model predictions
with observables. The key observables for constraining the
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Figure 6. The scale-dependent bias of haloes of different mass, as measured from a very large volume N-body simulation. Each
panel corresponds to a different redshift as labelled. The halo mass range and the measured asymptotic bias are given by the legend.
If the asymptotic bias described the halo power spectrum, the ratio of the halo power spectrum divided by the linear power spectrum
multiplied by the square of this bias would be unity. The clustering of haloes measured from the simulation deviates strongly from
a ratio of unity, which indicates that the halo bias is scale dependent. Furthermore, the shape of these curves is different from that
corresponding to the nonlinear matter power spectrum divided by the linear theory spectrum (shown by the dashed line). Reproduced
from Angulo et al. (2008).

values of these star formation parameters are the gas fraction–
luminosity relation, the galaxy luminosity function, and the
colour–magnitude relation.

High-resolution imaging of galaxies at different wave-
lengths has revealed that star formation activity correlates
better with the molecular hydrogen content of galaxies than
with the overall cold gas mass. Lagos et al. (2011b) inves-
tigated more general star formation models in the galform
semi-analytical model, implementing different empirical and
theoretically motivated star formation laws (see also Cook
et al. 2010; Fu et al. 2010). The most successful of these
was the empirical star formation law proposed by Blitz &
Rosolowsky (2006), who suggested that the observational
data could be explained if the ratio of molecular to atomic
hydrogen is set by the pressure in the midplane of galactic
discs; gas discs with higher pressure have a higher fraction
of H2.

This work illustrates the modularity of semi-analytical
modelling and how it provides a framework in which new
and improved descriptions of various processes can be read-
ily implemented. The Blitz–Rosolowsky star formation law
involves two observationally determined ‘parameters’. Al-
though in the original parameterisation of the star formation
rate there was little guidance about the range of parameter
values which should be considered, there is now a much
smaller volume of parameter space to search (at least once
the Blitz–Rosolowsky law has been adopted). Furthermore,
as the modelling of the star formation becomes more so-
phisticated, the predictions that can be made by the model
expand. Rather than simply outputting the cold gas mass of
galaxies, the atomic and molecular hydrogen contents are
now predicted, meaning that the model should also be able
to reproduce the mass functions of H i and H2, their evolu-

tion and their relation to other galaxy properties (Lagos et al.
2011a). By combining galform with the photon-dominated
region model of Bell et al. (2006), it is also possible to pre-
dict the different carbon monoxide transitions and to make
contact with observations from ALMA (Lagos et al. 2012).

Hence, by adopting the improved star formation model,
the parameter space open to the model has shrunk in volume
and the constraints on the model have increased through the
capability to make new predictions which must match the
available observations.

5 PREDICTIONS FOR GALAXY CLUSTERING

The combination of a semi-analytical model of galaxy for-
mation with a cosmological N-body simulation extends the
capability of the models to make predictions for the spatial
distribution of galaxies (Kauffmann et al. 1999; Benson et al.
2000). The models follow the physics of the baryonic compo-
nent of the universe to predict how many galaxies populate
dark matter haloes as a function of their mass and forma-
tion history and tell us the properties of these galaxies. The
semi-analytical model therefore predicts the mean number of
galaxies per halo and it was the description of the model out-
put in these terms which helped to stimulate the development
of HOD modelling.

The form of galaxy bias can be understood by first looking
at the clustering of dark matter haloes. The canonical model
is that the clustering of haloes can be described by multiply-
ing the matter power spectrum by the square of an asymptotic
bias factor. Formally, the bias factor should be applied to the
linear power spectrum of matter fluctuations. Angulo et al.
(2008) investigated this hypothesis with a moderate resolu-
tion N-body simulation of a very large cosmological volume,
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Figure 7. The predicted scale-dependent bias in the galaxy distribution. As in the previous
figure, the power spectrum measured for different galaxy selections is divided by the linear
theory power spectrum multiplied by the square of the asymptotic bias. Different colours
correspond to different selections: red and orange show the predicted clustering for flux limited
samples, the blue curves show the power spectrum for red galaxies, and the green curves show
galaxies with strong emission lines. Reproduced from Angulo et al. (2008).

Stellar Mass        Density Cut 2

N

M h

Cold Gas Mass SFR

Figure 8. The form of the halo occupation distribution predicted by two different semi-analytic galaxy formation models, the models of
Bower et al. (2006) and De Lucia & Blaizot (2007). The HOD for galaxies selected according to a different intrinsic property is shown
in each panel: left, stellar mass; middle, cold gas mass; right, star formation rate. In all cases, the samples have been ranked in terms of
the intrinsic property, and the same abundance of objects is considered. The form of the HOD predicted for the cases of cold gas and
star formation rate selected samples is different from that for stellar mass selected samples, with a peaked HOD for central galaxies.
The dashed curves show how well parametric equations for the HOD can reproduce the forms predicted in the models. For stellar mass
samples, a five-parameter fit gives a good match to the model results. For cold gas or star formation rate samples, a nine-parameter HOD
is needed. Reproduced from Contreras et al. (2013).

measuring 1340h−1 Mpc on a side. Figure 6 shows the ra-
tio of the power spectrum measured for different samples of
dark matter haloes divided by a scaled linear theory power
spectrum. The scaling is the square of the asymptotic bias,
which is measured from the simulation on very large scales
(small k). This ratio deviates strongly from unity at quite
large scales, typical of those used to fit BAO. This means
that a simple bias squared times the linear theory spectrum
is not a good way to describe halo clustering. If the linear
power spectrum is replaced by the nonlinear matter power
spectrum in the simulation, there is some improvement, but
there are still substantial deviations, as shown by the dis-

crepancy between the coloured curves and the dashed black
line in Figure 6. This disagreement is particularly strong at
high redshift, where the resolved haloes correspond to higher
peaks in the density field than they do at lower redshifts.

The next step in the calculation is to combine the large
volume N-body simulation with a semi-analytical model of
galaxy formation. This is the only way to make predictions for
galaxy clustering on scales of tens of megaparsecs and above.
Current simulations which follow the hydrodynamics of the
gas are restricted to volumes which are several thousand
times smaller, and can only reliably predicted galaxy clus-
tering out to pair separations of a few megaparsecs. Figure 7
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reveals that both the asymptotic bias and the form of the
scale dependence of the bias depend upon how galaxies are
selected (Angulo et al. 2008). This in turns has implications
for the apparent positions of the BAO when observed using
different galaxy tracers.

Finally one might ask, given the uncertainty in the mod-
elling of the processes behind galaxy formation, how far can
we trust the predictions of semi-analytical models for galaxy
clustering? The Millennium N-body simulation of Springel
et al. (2005) provides an excellent test-bed on which differ-
ent semi-analytical models can be run and compared. Contr-
eras et al. (2013) compared the clustering predictions of the
Durham and Munich models (Bower et al. 2006; De Lucia
et al. 2006; Bertone, De Lucia, & Thomas 2007; Font et al.
2008; Guo et al. 2011). These groups have developed inde-
pendent models which follow the same processes but with
different implementations. These differences even extend to
the first step in the galaxy formation code to extract merger
histories for dark matter haloes from the simulation. A sum-
mary of the comparison is given in Figure 8. The different
models give remarkably similar predictions for the HOD (an
output of the models) for galaxy samples selected by stel-
lar mass. The results are qualitatively similar for samples
selected by the cold gas mass or star formation rate of the
galaxies, but differ in detail. These differences can be traced
to the way in which star formation is modelled by the differ-
ent groups.

6 CONCLUSIONS

I have discussed empirical and physical methods for con-
necting dark matter haloes to galaxies. Empirical methods
include: (1) applying a weighting scheme to the smoothed
dark matter density field; (2) applying a weighting of dark
haloes through the HOD which specifies the mean number
of galaxy pairs as a function of halo mass; and (3) SHAM,
in which galaxies and subhaloes are first ranked and then
matched up. The physical approach is to carry out a calcula-
tion of the fate of baryons in a cold dark matter universe to
predict which galaxies are in which haloes. Currently, this is
only possible in cosmologically representative volumes by
using a semi-analytical model of galaxy formation. I briefly
reviewed how these models work and gave an illustration
of the power of this approach by discussing recent work on
improved models of the star formation rate in galaxies.

Much progress has been made in understanding the con-
nection between haloes and galaxies and hence of galaxy
bias. One clear conclusion so far is that galaxy bias is scale
dependent and depends sensitively on the selection applied
to construct the sample. This needs to be taken into account
when analysing large-scale structure as a cosmological probe
so that all of the data can be utilised. A comparison of the
predictions from different models which aim to follow the
same processes in galaxy formation gives some encouraging
results (Contreras et al. 2013). The predictions for samples
selected by stellar mass seem robust. However, there is more

discrepancy between the predictions for other galaxy selec-
tions which are closer to what will be used in future galaxy
surveys. This suggests that further theoretical work is needed
if we are to maximise the potential of future surveys to tell
us the values of the basic cosmological parameters and about
the physics of galaxy formation.
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Oppenheimer, B. D. 2012, MNRAS, 423, 3458
Skibba, R. A., & Sheth, R. K. 2009, MNRAS, 392, 1080
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Natur, 440, 1137
Springel, V., et al. 2005, Natur, 435, 629
Szapudi, I., & Pan, J. 2004, ApJ, 602, 26
Vale, A., & Ostriker, J. P. 2004, MNRAS, 353, 189
van Daalen, M. P., Schaye, J., Booth, C. M., & Dalla Vecchia, C.

2011, MNRAS, 415, 3649
Wang, Y. 2008, JCAP, 5, 21
Watson, D. F., & Conroy, C. 2013, arXiv:1301.4497
White, S. D. M., Davis, M., Efstathiou, G., & Frenk, C. S. 1987,

Natur, 330, 451
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341
Yoshida, N., Stoehr, F., Springel, V., & White, S. D. M. 2002,

MNRAS, 335, 762
Zehavi, I., et al. 2002, ApJ, 571, 172
Zehavi, I., et al. 2011, ApJ, 736, 59
Zheng, Z., et al. 2005, ApJ, 633, 791

PASA, 30, e030 (2013)
doi:10.1017/pas.2013.007

https://doi.org/10.1017/pas.2013.007 Published online by Cambridge University Press

https://doi.org/10.1017/pas.2013.007

