ANTHROPOGENIC RADIOCARBON: PAST. PRESENT, AND FUTURE

PAVEL POVINEC, MARTIN CHUDÝ, and ALEXANDER ŠIVO

Comenius University, Faculty of Mathematics and Physics Department of Nuclear Physics, 842 15 Bratislava, Czechoslovakia

ABSTRACT. ¹⁴C is one of the most important anthropogenic radionuclides released to the environment by human activities. Weapon testing raised the ¹⁴C concentration in the atmosphere and biosphere to +100% above the natural level. This excess of atmospheric ¹⁴C at present decreases with a half-life of ca 7 years. Recently, a new source of artificially produced ¹⁴C in nuclear reactors has become important. Since 1967, the Bratislava ¹⁴C laboratory has been measuring ¹⁴G in atmospheric ¹⁴CO₂ and in a variety of biospheric samples in densely populated areas and in areas close to nuclear power plants. We have been able to identify a heavy-water reactor and the pressurized water reactors as sources of anthropogenic ¹⁴C. ¹⁴C concentrations show typical seasonal variations. These data are supported by measurements of ³H and ⁸⁵Kr in the same locations. Results of calculations of future levels of anthropogenic ¹⁴C in the environment due to increasing nuclear reactor installations are presented.

INTRODUCTION

Natural ¹⁴C concentration in the environment is considerably modified by human activity when measurable quantities of ¹⁴C are released to the atmosphere. These anthropogenic effects have two sources of origin. First, nuclear weapon testing raised the ¹⁴C concentration in the north atmosphere and biosphere in 1963 to ca 100% above the natural level (Münnich, 1963; Nydal & Lövseth, 1965; Olsson, 1968) and in the south atmosphere and biosphere in 1964 to ca 65% above the natural level (Levin, Münnich & Weiss, 1980). After the nuclear moratorium in 1963, excess ¹⁴C has decreased with small interruptions caused by subsequent nuclear testing (Levin, Münnich & Weiss, 1980).

Second, with the development of the nuclear industry for electricity generation, anthropogenic ¹⁴C has been produced in nuclear reactors and released to the atmosphere in measurable quantities. Previous high estimates of the growth of the nuclear industry until the year 2000 would imply a considerable increase of ¹⁴C concentration in the environment. The present more realistic estimates (lower by a factor of 5) indicate a much lower ¹⁴C concentration increase. Nevertheless, ¹⁴C is one of the most important anthropogenic radionuclides with a long half-life and a significant collective dose burden (McCartney *et al*, 1986). The subject requires systematic attention.

Since 1967, we have been measuring ¹⁴C in atmospheric CO₂ and in various biospheric samples in densely populated areas (Bratislava), in non-industrialized areas (Modra), as well as at sites close to nuclear power plants (Bohunice and Žlkovce) (Povinec *et al*, 1968; Chudý *et al*, 1970; Povinec *et al*, 1973). The main purpose of this paper is to show the present anthropogenic sources of ¹⁴C in the atmosphere and biosphere and to estimate ¹⁴C levels for the near future.

METHODS

Monthly samples of atmospheric CO_2 have been collected at Bratislava using the method of static absorption of CO_2 in NaOH solution. Simulta-

neously, at Bohunice (the first Czechoslovakian nuclear power station) and at Žlkovce (the monitoring station close to Bohunice), short-term sampling took place using bubblers filled with NaOH solution. We have also developed a method of sampling CO₂ and H₂O using a molecular sieve CALSIT 5A, for simultaneous sampling as well as measurement of ³H and ¹⁴C concentration in the atmosphere (Povinec, 1975). To measure ¹⁴C concentration in the stack of the nuclear station as well as in the air around the station, the air sample was pressurized into a container and analyzed in the laboratory. The sample was first combusted in a stream of O2 in an electric furnace, where CO, CH₄ and higher hydrocarbons were converted to CO₂. CO₂ was then absorbed in bubblers filled with NaOH and finally liberated from prepared BaCO₃ by adding H₃PO₄ and purified from electronegative impurities (Povinec et al, 1968) or converted to CH₄ (Povinec, 1972). Several samples were measured using the liquid scintillation (C₆H₆) method (Povinec et al, 1980). Simultaneous ³H and ¹⁴C measurements were made using doubly labeled CH₄ (Povinec, 1975). Low-level proportional counters of Oeschger type and multi-element proportional counters have been used for ¹⁴C measurements. Sampling of air well in advance of the reactor operation enabled us to find pre-operational concentrations of ¹⁴C and ³H in the atmosphere and to study the reactor influence on these concentrations.

Tree-ring samples were taken from a pine tree that grew in a non-industrialized area.

BOMB EFFECT

The time variation of ¹⁴C in atmospheric CO₂, plant materials, and tree rings is shown in Figure 1. The results follow a typical pattern of ¹⁴C con-

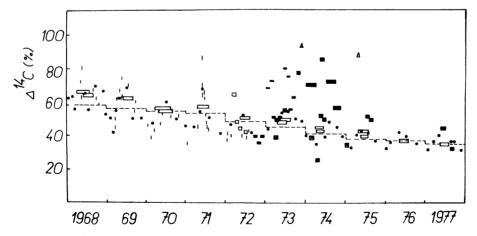


Fig 1. ¹⁴C concentration in the troposphere. \bullet = Bratislava monthly samples; | = Bohunice short-term samples; | = Bohunice monthly samples; | = Zlkovce monthly samples; | = Hodra monthly samples; | = the site of maximum ground concentration; | = plant samples (tree-leaves, grass, etc) from Bohunice; --- = pine tree rings that grew in a non-industrialized area.

centration in the northern hemisphere as previously observed (Levin, Münnich & Weiss, 1980; Segl *et al*, 1983). Reasonable agreement between ¹⁴C concentrations obtained by short-term sampling (3–4 hr) and the average monthly samples, as well as between atmospheric and biospheric (tree-leaves, grass, nuts, grains, sugar, tree rings) ¹⁴C levels has been found.

The average annual ¹⁴C concentration in atmospheric CO₂ collected at Bratislava from 1968 to the present is shown in Figure 2. These results clearly show a lower ¹⁴C concentration (by 3–4%) in Bratislava air in comparison with the clean air ¹⁴C background. This is caused by fossil-fuel combustion CO₂ sources in the environment of the sampling site. Bratislava samples (up to 1975) were taken in the center of the town and ¹⁴C samples were later collected on the roof of a new department store on Mlynská dolina, which is on the outskirts.

The effects of nuclear testing in the atmosphere after 1963 can be identified in Figure 2, mostly in 1968–1970 and 1976, when the ¹⁴C atmospheric inventory was disturbed by adding new quantities of freshly produced ¹⁴C. Similar patterns are also observed for ³H variations in atmospheric humidity measured for the same interval (Chudý *et al*, 1977).

REACTOR EFFECT

With increasing nuclear-produced electric power ¹⁴C production has also become important as a new source of anthropogenic radioactivity. ¹⁴C is produced in nuclear reactors mostly in the following reactions:

$$\begin{array}{ll} ^{14}N~(n,\,p)~^{14}C & \quad \sigma = 175~fm^2 \\ ^{17}O~(n,\,\alpha)~^{14}C & \quad \sigma = 40~fm^2 \\ ^{13}C~(n,\,\gamma)~^{14}C & \quad \sigma = 0.1~fm^2 \end{array}$$

We calculated ¹⁴C production in various types of nuclear reactors (a heavy water reactor with CO₂ coolant, a pressurized water reactor (PWR), a boiling water reactor (BWR), and a graphite reactor). To study local effects of nuclear reactors on ¹⁴C concentration in the environment, we concentrated on the first two types of reactors (Chudý & Povinec, 1982).

The ¹⁴C contribution to local contamination of the environment is measurable, in the case of nuclear reactors, using CO₂ under high pressure

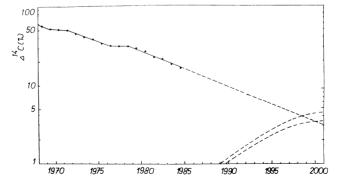


Fig 2. Annual ¹⁴C concentration in the Bratislava air and predicted levels of bomb and reactor effects (lower curves show the boundary ¹⁴C levels for predicted growth of nuclear industry).

as a coolant. As a consequence of the neutron irradiation of the coolant, ¹⁴C is produced in the primary circuit of the reactor and is released to the environment through the ventilation system.

For the 150 MWe heavy water reactor cooled with CO_2 , the saturation level in the ¹⁴C activity of the coolant is reached after ca 10 weeks of reactor operation. The ¹⁴C specific activity of the coolant will be ca 10 GBq·m⁻³ of CO_2 (Chudý & Povinec, 1982).

In light water reactors, ¹⁴C production is predominantly from the reaction ¹⁷O (n, α) ¹⁴C on oxygen present in the molecule of water. The mean production of ¹⁴C in the water of PWR is ca 0.3 TBq·GWe⁻¹·yr⁻¹. This is at least 20 times lower compared to a heavy water reactor. ¹⁴C production in a BWR is almost the same as a PWR.

Except for the coolant, ¹⁴C is also produced in the nuclear fuel, predominantly on ¹⁴N and ¹⁷O left in the fuel. ¹⁴C production in this source is ca 4 times higher than in the light water coolant. However, ¹⁴C from this source is released to the atmosphere in reprocessing plants. Therefore, similar to ⁸⁵Kr, a large reprocessing plant may be a more important source of ¹⁴C than a nuclear reactor.

Figure 1 shows $^{14}\mathrm{C}$ concentration in the atmosphere around the nuclear power plant at Bohunice (the 150 MWe heavy water reactor was put into operation at the end of 1972). A comparison with non-reactor sites (Bratislava air and tree-ring samples) shows a mean excess in Δ $^{14}\mathrm{C}$ activity at Bohunice of ca 25%. Even higher $^{14}\mathrm{C}$ levels (>100% above normal) were measured at the site of maximum ground concentration determined by given meteorologic conditions. On the other hand, $^{14}\mathrm{C}$ in tree leaves (nut) and in nuts when compared with the clean air tree-ring samples shows a mean excess in Δ $^{14}\mathrm{C}$ activity of ca 4% and 6%, respectively.

More recently (1982–1985), we measured $^{14}\mathrm{C}$ concentration in the atmosphere and in the stack of the Bohunice nuclear power plant (2 reactors, each of 420 MWe). Measurements of $^{14}\mathrm{C}$ concentration in the stack showed that these reactors release $^{14}\mathrm{C}$ not only in the form of CO₂ (30%), but also in the form of CO, CH₄ and higher hydrocarbons (70%). A typical $^{14}\mathrm{C}$ concentration in the stack is ca 20 Bq·m $^{-3}$ (0.54 mCi·m $^{-3}$) of air. This is very low in comparison with other radioactive gases, eg, $^{85}\mathrm{Kr}$ (~70 Bq·m $^{-3}$), $^{135}\mathrm{Xe}$ (1000–3000 Bq·m $^{-3}$) and $^{133}\mathrm{Xe}$ (~1500 Bq·m $^{-3}$ of air) (Cimbák, 1984).

We measured ¹⁴C in the atmosphere around this plant at the site of maximum ground concentration. This short-term sample collection (2–3 hr) is compared with similar samples obtained in Bratislava and with the averaged monthly samples. Bohunice samples show an excess of ca 5% compared to the Bratislava short-term samples. However, they are within errors when compared with Bratislava monthly samples. Therefore, more measurements of ¹⁴C in atmospheric and biospheric samples are necessary to better understand the influence of reactor operations on ¹⁴C levels in the local environment.

FUTURE 14C LEVELS

Figure 2 shows estimated future levels of ¹⁴C in the atmosphere. The anthropogenic effect caused by nuclear bomb tests in the atmosphere has a

decreasing tendency. The ¹⁴C concentration in atmospheric CO₂ at present decreases with a half-life of ca 7 years. If there are no more significant nuclear bomb tests in the atmosphere, the bomb effect will disappear in the next 10-15 years and will be completely compensated by the fossil fuel (Suess) effect.

However the reactor effect will have an increasing tendency, although not so fast as was supposed earlier. According to the International Atomic Energy Agency (Bull IAEA, 1984, 1985), world nuclear power will reach ca 600 GWe by the year 2000. Mostly light water reactors are planned for construction. We calculated production rates of radioactive gases which are important for global contamination of the environment. The highest levels will be due to 85 Kr, 3 H and 14 C. Figure 2 shows the calculated increase of ¹⁴C concentration in the atmosphere due to the reactor effect. The reactor contribution in the year 2000 will be about the same as the natural production rate. Therefore, the reactor effect will cause not only the local contamination of the environment around nuclear power plants, but beyond the year 2000 it will have an influence on global contamination, if new technical developments do not help to reduce ¹⁴C discharges from reprocessing plants and reactors.

REFERENCES

Bulletin IAEA, 1984, Vienna, IAEA, v 26, p 70. 1985, Vienna, IAEA, v 27, p 67.

Chudý, M and Povinec, P, 1982, Radiocarbon production in a CO₂ coolant of nuclear reactor: Acta Univ Comen Physica, v 22, p 127-134.

Chudý, M, Povinec, P, Šeliga, M and Šáró, Š, 1970, Carbon 14 in atmosphere and biosphere: Radioisotopy, v 11, p 935–951.

Chudý, M, Usačev, S, Povinec, P and Šáró, Š, 1977, Environment contamination by tritium and radiocarbon: Acta Univ Comen Formatio Protectio Naturae, v 3, p 147-155.

Cimbák, Š (ms), 1984, Anthropogenic radioactive gases in the atmosphere: PhD dissert, Comenius Univ.

Levin, I, Münnich, KO and Weiss, W, 1980, The effect of anthropogenic CO₂ and ¹⁴C sources on the distribution of ¹⁴C in the atmosphere, in Stuiver, M and Kra, RS, eds, Internatl ¹⁴C conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 379-391.

McCartney, M, Baxter, MS, McKay, K and Scott, EM, 1985, Global and local effects of 14C discharges from the nuclear fuel cycle, in Stuiver, M and Kra, R S, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, this issue.

Münnich, KO, 1963, Der Kreislauf des Radiokohlenstoffs in der Natur: Naturwissenschaften, v 6, p 211-218.

Nydal, R and Lövseth, K, 1965, Distribution of radiocarbon from nuclear tests: Nature, v 206, p 1029-1031.

Olsson, I U, 1968, Modern aspects of radiocarbon datings: Earth Sci Rev, v 4, p 203-218.

labelled methane: Internatl Jour Appl Radiation Isotopes, v 26, p 465–469.
Povinec, P, Burchuladze, A A, Usačev, S, Pagava, S V, Togonidze, G I, Eristavi, I V, Polášková, A and Sivo, A, 1980, Preparation of counter fillings for high precision radiocarbon measurements: Acta Univ Comen Physica, v 20, p 185–195.

Povinec, P, Šáró, Š, Chudý, M and Šeliga, M, 1968, The rapid method of carbon-14 counting in atmospheric carbon dioxide: Internatl Jour Appl Radiation Isotopes, v 19, p 877-

Povinec, P, Usačev, S, Chudý, M and Šeliga, M, 1973, Bratislava radiocarbon measurements I: Radiocarbon, v 15, p 443-450.

Segl, M, Levin, I, Schoch-Fischer, H, Münnich, M, Kromer, B, Tschiersch, J and Münnich, K O, 1983, Anthropogenic ¹⁴C variations, *in* Stuiver, Minze and Kra, RS, eds, Internatl ¹⁴C conf, 11th, Proc: Radiocarbon, v 25, no. 2, p 583–592.