THE MODULAR REPRESENTATION ALGEBRA OF GROUPS WITH SYLOW 2-SUBGROUP $z_2 \times z_2$

S. B. CONLON

(Received 18 January 1965)

Let k be a field of characteristic 2 and let G be a finite group. Let A(G) be the modular representation algebra ¹ over the complex numbers C, formed from kG-modules ². If the Sylow 2-subgroup of G is isomorphic to $Z_2 \times Z_2$, we show that A(G) is semisimple ¹. We make use of the theorems proved by Green [4], and the results of the author concerning $A(\mathcal{A}_4)$ [2], where \mathcal{A}_4 is the alternating group on 4 symbols.

1. Generalities on representation algebras

Let A be any commutative linear algebra over the complex number field C. A *point* of A is a non-zero algebra homomorphism

$$\phi: A \to C.$$

Thus $\phi(A) = C$. A is said to be *semisimple* if for each non-zero element $a \in A$, there exists a point ϕ of A such that $\phi(a) \neq 0$. If dim_C A = r is finite, A is semisimple if and only if A has r points; A is then the direct sum of r copies of C.

PROPOSITION 1. If B is an ideal of A such that both A|B and B are semisimple, then A is semisimple.

PROOF. Take $a \in B$, and let ϕ be a point of B such that $\phi(a) \neq 0$. We extend $\delta \phi$ to be a point of A by noting that, as $\phi(B) = C$, there exists in B an element b such that $\phi(b) = 1$. For x any element of A, we define $\phi(x) = \phi(xb)$.

Secondly let $a \notin B$. Thus there exists a point ϕ of A/B such that $\phi(a+B) \neq 0$. But ϕ can be regarded as a point of A which is zero on B. Thus $\phi(a) \neq 0$ and so A is semisimple.

Let k be an arbitrary field and G a finite group. Let M be a kG-module

¹ We adopt the definitions and notation of Green in [4].

^{*} A kG-module is a finitely generated k-module on which G acts as a group of left operators. kG is the group algebra on G over k.

^{*} As in lemma 6 of [4].

(of finite k-dimension), and write $\{M\}$ for the class of modules kG-isomorphic to M (or simply the "class of M"). As in [4] we form the modular representation algebra A(G) as an algebra over the complex numbers Cin which sum corresponds to direct sum of modules and multiplication to tensor product of kG-modules. A basis for A(G) over C is provided by the indecomposable kG-module classes. k_G will denote the trivial kG-module, and $\mathbf{1}_G = \{k_G\}$ its class. Then A(G) is a commutative algebra over C with identity $\mathbf{1}_G$.

Let $\theta: H \to G$ be a homomorphism of groups, L a kH-module and M a kG-module. Then θ^*M will denote the restricted kH-module, where the operation of a group element $h \in H$ on $m \in M$ is given by

$$h \cdot m = \theta(h)m$$

 $\theta_{*}L$ will denote the induced kG-module

$$kG \otimes_{kH} L$$
,

where kG is regarded as a right kH-module by means of θ . Thus we get induced linear maps:

$$\theta^* : A(G) \to A(H), \quad \theta_* : A(H) \to A(G).$$

 θ^* is an algebra homomorphism, while for θ_* we have the identity

(1) ⁴
$$\theta_*L \otimes M \approx \theta_*(L \otimes \theta^*M).$$

Here ' \otimes ' denotes Tensor (or Kronecker) product of the representation modules. In particular, if *H* is a subgroup of *G*, with θ the embedding map, we write $M_H = \theta^* M$, and $L^G = \theta_* L$; also θ^* , θ_* coincide with the maps r_{GH} , t_{HG} respectively of Green [4].

If H is a normal subgroup of G, and L is kH-module, let S denote the set of elements $s \in G$ such that $s \bigotimes_{kH} L \approx L$ as left kH-modules. Then S is a subgroup of G containing H and is called the *stabilizer* of L in G. If S = G, we say that L is *stable* in G. § 2 of [1] contains the following theorem: (2) If L is indecomposable, then L^G decomposes according to the decomposition of a certain twisted group algebra on S/H into one-sided indecomposable ideals.

(2') It should be noted that twisted group algebras on cyclic groups are always isomorphic to the group algebras.

PROPOSITION 2. If G_1G_2 is the direct product of finite groups G_1 , G_2 and if $(|G_1|, p) = 1$, where p is the characteristic of k, or if k has characteristic 0, then

⁴ For proof of (1), see p. 268 of [3].

$$A(G_1G_2) \approx A(G_1) \otimes_{\mathbf{C}} A(G_2).$$

PROOF. Write $G = G_1G_2$, and let $\sigma_i: G \to G_i$ be the natural homomorphisms (i = 1, 2). Then we have

$$\sigma_i^*: A(G_i) \to A(G),$$

and combining these we get an algebra homomorphism

$$\sigma^{*} = \sigma_{1}^{*} \otimes \sigma_{2}^{*} : A(G_{1}) \otimes_{C} A(G_{2}) \to A(G),$$

which we show to be an isomorphism.

By Higman's theorem 1 in [5], every indecomposable kG-module can be considered as a direct summand of L^G , where L is an indecomposable kG_2 -module. Now L is stable in G and the twisted group algebra of (2) is the group algebra kG_1 . Indeed the endomorphisms $\theta_{\alpha,\beta}$ of L in the analysis of § 2 of [1] may all be taken to be the identity automorphism, and for $g \in G$ we may take

$$D_g = \lambda(\sigma_2(g))$$
 (Notation as in § 2 of [1]),

where λ is a G_2 -representation afforded by L. If π is a principal indecomposable G_1 -representation, the typical indecomposable G-representation ψ has the form

$$\psi(g) = \pi(\sigma_1(g)) \otimes \lambda(\sigma_2(g)),$$

analogously to proposition 1 of § 2 in [1]. Hence the indecomposable kG-modules have the form ⁵

 $P \neq L,$

where P and L are indecomposable kG_1 - and kG_2 -modules respectively. Then $\sigma^* \{P \otimes_C L\} = \{P \neq L\}$, and σ^* is onto.

Moreover, if P, L are indecomposable, and

(4)
$$P \neq L \approx P' \neq L'$$
 (as kG-modules),

by restricting to G_1 and G_2 it follows that $P \approx P', L \approx L'$. As $\{P \otimes_C L\}$, $\{P \neq L\}$ form free bases over C for $A(G_1) \otimes_C A(G_2), A(G_1G_2)$ respectively, σ^* is 1-1 and so σ^* is an isomorphism.

Identity (1) has the following consequence when representations are stable.

PROPOSITION 3. Let H be a normal subgroup of G and suppose all the indecomposable kH-modules are stable in G. Then A(H) isomorphic to an ideal direct summand of A(G).

PROOF. Let $\phi: H \to G$ be the inclusion homomorphism and let L be a kH-module. Define

⁵ This is the outer tensor product as defined on p. 315 of [3].

[4] The modular representation algebra of groups with Sylow 2-subgroups $Z_2 \times Z_2$ 79

$$\sigma\{L\} = \frac{1}{m}\phi_{*}\{L\} \qquad (m = G: H),$$

and then σ induces a homomorphism of A(H) into A(G). For if L, L' are kH-modules, we have

$$\sigma(\{L\} \cdot \{L'\}) = \sigma\{L \otimes L'\},$$

$$= \frac{1}{m} \phi_* \{L \otimes L'\},$$

$$= \frac{1}{m^2} \phi_* \{L \otimes \phi^*(\phi_*(L'))\} \quad (as \ L' \ is \ stable),$$

$$= \frac{1}{m^2} \{\phi_*(L) \otimes \phi_*(L')\} \quad (by \ (1)),$$

$$\sigma(\{L\} \cdot \{L'\}) = \sigma\{L\} \cdot \sigma\{L'\}.$$

i.e.

(5

Now $I = \sigma(1_H)$ is an idempotent of A(G) from (5), and if M is any kG-module it follows from (1) that

$$I \cdot \{M\} = \sigma\{\phi^*M\}.$$

Again from (5)

$$I \cdot \sigma\{L\} = \sigma\{L\},\$$

and so the image of σ is the ideal direct summand $I \cdot A(G)$ of A(G).

Furthermore the restriction ρ of ϕ^* to $I \cdot A(G)$ satisfies the conditions,

 $\rho\sigma$ = identity homomorphism on A(H),

and

 $\sigma \rho$ = identity homomorphism on $I \cdot A(G)$,

and so σ is an isomorphism of A(H) onto $I \cdot A(G)$.

Thus we see that in $A(G_1) \otimes_C A(G_2)$ ($\approx A(G_1G_2)$) of proposition 2 we have direct summands isomorphic to $A(G_1)$ and $A(G_2)$.

We will require the following

PROPOSITION 4. If H is a normal subgroup of G, then the decomposition of A(G|H) as a direct sum of ideals gives rise to a corresponding one for A(G).

PROOF. Consider the natural map $\theta: G \to G/H$. This induces a monomorphism $\theta^*: A(G/H) \to A(G)$. Moreover $\theta^*(\mathbf{1}_{G/H}) = \mathbf{1}_G$. Thus any decomposition of the identity $\mathbf{1}_{G/H}$ of A(G/H) into the sum of idempotents is carried over by θ^* into A(G), and similarly for the ideals generated by these idempotents in their respective algebras.

Let P be a subgroup of G, and write $A_P(G)$ for the C-subspace of A(G) spanned by the symbols $\{L\}$ for all P-projective kG-modules L. Write

 $A'_{P}(G)$ for the subspace of A(G) spanned by the symbols $\{L\}$ for all *H*-projective *kG*-modules *L*, where $H \leq_G P$, $H \neq_G P^{5'}$. As in [4], $A_{P}(G)$ and $A'_{P}(G)$ are ideals of A(G), with $A'_{P}(G) \subseteq A_{P}(G)$.

Write $W_P(G) = A_P(G)/A'_P(G)$.

(6) If k has characteristic p, then Green in [4] shows that A(G) is semisimple if, for each p-subgroup P of G, $W_P(N(P))$ is semisimple, where N(P) is the normalizer of P in G.

(7) Proposition 3 in [2] shows that if we take the trivial p-subgroup $P = \{e\}$, then $W_P(N(P)) = A_P(G)$ is the "projective ideal" of A(G), which is an ideal direct summand of A(G) consisting of the direct sum of a finite number of copies of C. Hence for $P = \{e\}$, $W_P(N(P))$ is semisimple. We denote the projective ideal of A(G) by $A_{\bullet}(G)$.

Finally it should be noted that as far as the question of the semisimplicity of A(G) is concerned we can assume k to be algebraically closed. For if not let k^* be its algebraic closure and let $A^*(G)$ be the corresponding modular representation algebra. Proposition 1 and (3) of [2] show there is a natural monomorphism

$$(8) A(G) \to A^*(G),$$

and so, if $A^*(G)$ is semisimple, the restrictions of its points to A(G) ensure the semisimplicity of A(G).

2. Representation algebras of \mathscr{V}_4 and \mathscr{A}_4

Let k be an algebraically closed field of characteristic 2, let $\mathscr{V}_4 = Z_2 \times Z_2$, be the Klein 4-group and let \mathscr{A}_4 be the alternating group on 4 symbols. We shall consider \mathscr{V}_4 to be identified with the Sylow 2-subgroup of \mathscr{A}_4 . The following facts are proved in [2].

The indecomposable $k\mathscr{V}_{\bullet}$ -module classes may be written

 $A_0 = B_0, A_n, B_n, C_n(\pi), D,$

where n > 0, and $\pi \in k \cup \{\infty\}$. If we write

$$\mathscr{V}_4 = \{x, y | x^2 = y^2 = e, xy = yx\},$$

then the vertices of these classes are as follows:

(9i) A_0 , A_n (n > 0), B_n (n > 0), C_n $(\pi)(n > 1)$, and $C_1(\pi)$ $(\pi \neq 0, 1, \infty)$ have vertex \mathscr{V}_4 ,

(9ii) $C_1(0)$, $C_1(1)$, $C_1(\infty)$ have vertices $\{y\}$, $\{xy\}$, $\{x\}$ respectively (order 2),

(9iii) and D has vertex $\{e\}$ (order 1).

D is the regular (indecomposable) module class.

^{b'} $H \leq_G P$ means that there exists an element $x \in G$ such that $x^{-1}Hx \leq P$, etc.

[6] The modular representation algebra of groups with Sylow 2-subgroup $Z_3 \times Z_3 = 81$

We require the following products:

(10i)
$$B_m C_n(\pi) = A_m C_n(\pi) = C_n(\pi) \mod A_{\bullet}(\mathscr{V}_{\bullet}) \quad (n > 0, \ m \ge 0)$$

(10ii) $C_m(\pi)C_n(\pi') = 0$, if $\pi \neq \pi'$,
 $2C_n(\pi)$, if $\pi = \pi', \ m \ge n$,
except that
 $C_1(\pi)C_1(\pi) = C_2(\pi)$
if $\pi \neq 0, 1 \text{ or } \infty$,
 $C_1(\pi)C_1(\pi) = C_2(\pi)$

The representation algebra $A(\mathscr{V}_4)$ may be written:

(11)
$$A(\mathscr{V}_{4}) = \left(C\left[X,\frac{1}{X}\right] + \left\{\bigoplus_{\substack{\pi,n\\n>0}} CI_{n,\pi}\right\}\right) \oplus CI_{D},$$

where $X^{m}I_{n,\pi} = I_{n,\pi}$ (all integers *m*) and where $\{\bigoplus_{\pi,n>0} CI_{n,\pi}\}$ is the direct sum of ideals isomorphic to *C*. CI_{D} is the projective ideal $A_{\epsilon}(\mathscr{V}_{4})$. Here we have the following identifications module $A_{\epsilon}(\mathscr{V}_{4})$:

$$(12i) X^n = A_n (n \ge 0),$$

(12ii)
$$\begin{aligned} X^{-n} &= B_n & (n \ge 0), \\ I_{1,\pi} &= \frac{1}{2}C_1(\pi), \\ I_{n,\pi} &= \frac{1}{2}(C_n(\pi) - C_{n-1}(\pi)) & (n > 1), \end{aligned} \right\} & \text{when } \pi = 0, 1 \text{ or } \infty, \\ (12iii) & I_{1,\pi} &= \frac{1}{4}(C_2(\pi) - \sqrt{2}C_1(\pi)), \\ I_{2,\pi} &= \frac{1}{4}(C_2(\pi) + \sqrt{2}C_1(\pi)), \\ I_{n,\pi} &= \frac{1}{2}(C_n(\pi) - C_{n-1}(\pi)) & (n > 2), \end{aligned} \right\} & \text{when } \pi \neq 0, 1 \text{ or } \infty. \end{aligned}$$

 $A(\mathscr{V}_4)$ is semisimple. We may write

(13)
$$W_{\mathscr{V}_{4}}^{\cdot}(\mathscr{V}_{4}) = C\left[X, \frac{1}{X}\right] + \left(\left\{\bigoplus_{\substack{\pi \neq (0, 1, \infty) \\ n > 0}} CI_{n, \pi}\right\} \oplus \left\{\bigoplus_{\substack{\pi = (0, 1, \infty) \\ n > 1}} CI_{n, \pi}\right\}\right)$$

and as in the proof of the semisimplicity of $A(\mathscr{V}_4)$ in § 4 of [2], $W_{\mathscr{V}_4}(\mathscr{V}_4)$ is semisimple.

 $\mathscr{V}_4 \triangleleft \mathscr{A}_4$ and so we can consider the stability of $k\mathscr{V}_4$ -module classes in \mathscr{A}_4 . We have that

(14i) A_0 , A_n , B_n , $C_n(\omega)$, $C_n(\omega^2)$, D are stable in \mathscr{A}_4 , (14ii) $C_n(\pi)$ ($\pi \neq \omega$, ω^2) are not stable in \mathscr{A}_4 , where ω is a primitive cube root of unity in k.

Say w is an element of order 3 of \mathscr{A}_4 with $w^{-2}xw^2 = w^{-1}yw = xy$. Then we have that the $k\mathscr{V}_4$ -module class

(15)
$$w \otimes_{k \neq n} C_n(\pi) = C_n(\theta(\pi)),$$

where $\theta(\pi) = (1+\pi)/\pi$, with the obvious interpretation when $\pi = 0$ or ∞ . θ gives a permutation on $k \cup \{\infty\}$. We denote the typical class of transitivity by $\mu = (\pi, \theta(\pi), \theta^2(\pi))$, but (ω) and (ω^2) form transitivity classes by themselves. Applying (2) together with Higman's theorem 1 in [5], we see that the indecomposable $k \mathscr{A}_4$ -module classes can be written (see [2])

(16i)
$$A_0^{\alpha}, A_n^{\alpha}, B_n^{\alpha}, C_n^{\alpha}(\omega), C_n^{\alpha}(\omega^2), D^{\alpha}$$

(16ii)
$$C_n^*(\mu)$$

where n > 0 and $\alpha = 0, 1, 2$. Superscripts α will always be taken modulo 3 (0, 1 or 2). Note that

$$(C_n^*(\mu))\mathscr{V}_4 = C_n(\pi) + C_n(\theta(\pi)) + C_n(\theta^2(\pi)), \text{ and } (L^a)_{\mathscr{V}_4} = L,$$

where L^{α} is any one of (16i). The vertices of the above $k\mathscr{A}$ -module classes remain the same as the corresponding $k\mathscr{V}_{4}$ -module classes. The representation algebra $A(\mathscr{A}_{4})$ may be written

(18)

$$A(\mathscr{A}_{\bullet}) = \left(C\left[Y_{0}, \frac{1}{Y_{0}}\right] + \left\{ \bigoplus_{\substack{n > 0 \\ \phi = w, w^{2}, \mu}} CI_{n0}(\phi)\right\}\right)$$

$$\oplus \left(\bigoplus_{\beta = 1, 2} \left[C\left[Y_{\beta}, \frac{1}{Y_{\beta}}\right] + \left\{\bigoplus_{\substack{n > 0 \\ \phi = w, w^{2}}} CI_{n\beta}(\phi)\right\}\right]\right)$$

$$\oplus (C \oplus C \oplus C),$$

where the last term is the projective ideal $A_{\bullet}(\mathscr{A}_{\bullet})$,

$$\begin{split} Y^{m}_{\beta}I_{n\beta}(\omega^{\alpha}) &= u^{-\alpha\beta m}I_{n\beta}(\omega^{\alpha}) \qquad (\beta = 0, 1, 2; \ \alpha = 1, 2), \\ Y^{m}_{0}I_{n0}(\mu) &= I_{n0}(\mu), \end{split}$$

with u a primitive cube root of unity in C. We have the following identifications modulo $A_{\bullet}(\mathscr{A}_{\bullet})$:

$$Y^{n}_{\beta} = \frac{1}{3} (A^{0}_{n} + u^{\beta} A^{1}_{n} + u^{2\beta} A^{2}_{n}),$$

$$Y^{-n}_{\beta} = \frac{1}{3} (B^{0}_{n} + u^{\beta} B^{1}_{n} + u^{2\beta} B^{2}_{n}),$$

 $I_{n\beta}(\phi) = \text{finite linear combination of } C^{\alpha}_{m}(\phi), \text{ for } \alpha, \beta = 0, 1, 2. A(\mathscr{A}_{4})$ is again semisimple.

3. A(G) for G with Sylow 2-subgroup $Z_2 \times Z_2$

Let k be an algebraically closed field of characteristic 2 and G a finite group with Sylow 2-subgroup isomorphic to $\mathscr{V}_4 = Z_2 \times Z_2$. To see that A(G) is semisimple we use Green's theorem (6) and show that $W_P(N(P))$ is semisimple, where P is a 2-subgroup of G of order 1, 2 or 4.

[8] The modular representation algebra of groups with Sylow 2-subgroup $Z_3 \times Z_3$ 83

The case when |P| = 1 has been dealt with in (7). When |P| = 2, a basis for $W_P(N(P))$ is obtained from the indecomposable direct summands of $(k_P)^{N(P)}$. But these correspond, as in (2), to the principal representations of k(N(P)/P), and it is readily seen that $W_P(N(P))$ is a homomorphic image of the projective ideal⁶ of A(N(P)/P). Thus by (7) $W_P(N(P))$ is semisimple.

Now assume that |P| = 4, and so $P \approx \mathscr{V}_4$. Write H = N(P). Two cases arise:

(a) the centralizer C(P) of P in H is H itself, and

(b) the centralizer C(P) is not H.

In case (a) it is clear that H = RP, the direct product of two groups. Thus by proposition 2

$$A(H) \approx A(R) \otimes_{C} A(P).$$

Moreover in this correspondence

$$W_P(H) \approx A(R) \otimes_C W_P(P).$$

A(R) is semisimple and of finite dimension over C as (|R|, 2) = 1, and $W_P(P)$ is semisimple by (13). Hence $W_P(H)$ is semisimple.

Case (b). In this case we show $W_P(H)$ to be semisimple by taking an ideal S of $W_P(H)$ such that both S and $W_P(H)/S$ are semisimple. $W_P(H)$ is itself semisimple by proposition 1.

Structure of H. We can find a complement R to P in H and write H = RP. The centralizer C(P) of P in H may be written in the form QP, a direct product of groups, where Q is a normal subgroup of H contained in R. $H/QP \approx R/Q$ has order 3, as elements of R/Q correspond to automorphisms of \mathscr{V}_4 whose orders are prime to 2. Take $r \in R$ such that rQ generates R/Q. Then any element $h \in H$ has a unique expression in the form

$$(20) h = r^{\beta}q\phi$$

where $\beta = 0, 1, 2, q \in Q, p \in P$. Write $\rho_1 : H \to R$ to be the epimorphism $\rho_1(h) = r^{\beta}q$. We define K to be the extension ⁷ of P by R/Q, its elements being written in the form $(r^{\beta}Q)(p)$ or $(r^{\beta})(p)$ and satisfying the relation

$$(r^{\beta})(p) = (r^{\beta} p r^{-\beta})(r^{\beta}).$$

Thus P is its own centralizer in K and $K \approx \mathscr{A}_4$. Further there is an epimorphism $\rho_2: H \to K$ given by $\rho_2(h) = (r^{\beta})(p)$, where h is given by (20). Finally we have a monomorphism,

$$(21) \qquad \rho: H \to RK,$$

into the direct product of R and K given by $\rho(h) = \rho_1(h) \cdot \rho_2(h)$.

• In fact, $W_{p}(N(P)) \approx A_{\epsilon}(N(P)/P)$.

⁷ $K \approx H/Q$ essentially.

84

Indecomposable kH-modules. To obtain the indecomposable kH-modules, we use Higman's theorem 1 in [5] and look at the break-up of kH-modules L^H , where L is an indecomposable kQP-module. As in (3), L has the form M # N, where M is an indecomposable (principal) kQ-module and N is an indecomposable kP-module. By (4), M # N is stable in H if and only if M is stable in R and N is stable in K. By (2) and (2'), $(M \# N)^H$ is the direct sum of 3 non-isomorphic kH-modules

(22i)
$$(M \not\equiv N)^{\alpha}$$
,

if $M \neq N$ is stable in H, or otherwise

$$(22ii) \qquad \qquad (M \neq N)^H$$

is indecomposable. In the latter case it should be noted that

(22iii) $(r^{\beta} \otimes (M \neq N))^{H} \approx ((r^{\beta} \otimes M) \neq (r^{\beta} \otimes N))^{H} \approx (M \neq N)^{H}$.

Moreover the vertex of an indecomposable kH-module so generated is the same as the vertex of N.

Now $W_P(H) = A_P(H)/A'_P(H) = A(H)/A'_P(H)$. Further $A'_P(H) \ge A_e(H)$, and so in looking at $W_P(H)$ we can work modulo the indecomposable kHprojectives. These last are in 1-1 correspondence with the indecomposable projectives of kR, for the regular kP-module N is stable in K as in (14i) and if M is any indecomposable kQ-module, $M \neq N$ is stable in H if and only if M is stable in R. Hence $(M \neq N)^H$ decomposes just as M^R does by (2).

Definition and semisimplicity of S. Consider the subspace S of $W_P(H)$ spanned by classes of indecomposable kH-modules of the form $(M' \# N')^H$ where N' is unstable in K. Then if X is any kH-module such that $X_{(PQ)}$ has form $\bigoplus (M_{\alpha} \# N_{\alpha})$, then

(23)
$$X \otimes (M' \# N')^{H} \approx \bigoplus ((M_{\alpha} \# N_{\alpha}) \otimes (M' \# N'))^{H} \quad (by (1)),$$
$$\approx \bigoplus ((M_{\alpha} \otimes M') \# (N_{\alpha} \otimes N'))^{H}.$$

The unstable classes $\{N\}$ span an ideal of A(P) and so S is an ideal of $W_P(H)$. Furthermore the map

$$(M' \not\equiv N')^H \rightarrow M' \otimes_C (N')^K$$

is an isomorphism from S onto $A(Q) \otimes_C T$, where T is the subspace of $A_P(K)$ coming from indecomposable kP-modules which are unstable in K. But from (18) T is the direct sum of copies of C and so S is a semisimple ideal of $W_P(H)$.

 $W_P(H)/S$. We now consider $W_P(H)/S$. Whereas the basis elements of S came from kP-modules classes which were unstable in K, a basis of

[10] The modular representation algebra of groups with Sylow 2-subgroup $Z_1 \times Z_2 = 85$

 $W_P(H)/S$ will be obtained from kP-module classes which have vertex P, and are stable in K.

The embedding homomorphism ρ of H into the direct product RK as in (21) gives rise to an algebra homomorphism

$$\rho^*: A(RK) \to A(H).$$

By proposition 2, $A(RK) \approx A(R) \otimes_C A(K)$, and so we get a succession of homomorphisms:

$$A(R) \otimes A(K) \approx A(RK) \rightarrow A(H) \rightarrow A(H) / A'_{P}(H) = W_{P}(H) \rightarrow W_{P}(H) / S.$$

Let σ denote the composition of these homomorphisms. We show σ is onto and analyse $W_P(H)/S$ as a quotient of $A(R) \otimes A(K)$.

 σ is onto. Let N be an indecomposable kP-module which is stable in K, and let $\nu(p)$ $(p \in P)$ be a representation afforded by this module. As N is stable in K, there exists a matrix R_{ν} such that

$$\boldsymbol{\nu}(\boldsymbol{r}^{-1}\boldsymbol{\rho}\boldsymbol{r}) = R_{\boldsymbol{\nu}}^{-1}\boldsymbol{\nu}(\boldsymbol{\rho})R_{\boldsymbol{\nu}} \qquad (\boldsymbol{\rho}\in P).$$

Then

$$\mathbf{v}_{\alpha}(\mathbf{p}) = \mathbf{v}(\mathbf{p}), \quad \mathbf{v}_{\alpha}(\mathbf{r}) = \omega^{\alpha} R_{\nu}, \qquad (\alpha = 0, 1, 2),$$

are 3 inequivalent indecomposable K-representations "contained" in N^{K} .

Let *M* be an indecomposable kQ-module. Let $\mu(q)$ $(q \in Q)$ be a representation afforded by this module. Then the kQP-module $M \neq N$ is stable in *H* if and only if *M* is stable in *R*.

(i) Say M is unstable in R. Let $\tilde{\mu}$ be the R-representation afforded by the indecomposable kR-module M^R . In the representation ζ afforded by $(M \# N)^H$ (indecomposable) choose a basis according to the direct sum decomposition

$$((M \not\equiv N)^{H})_{QP} = \oplus (r^{\beta} \otimes M) \not\equiv (r^{\beta} \otimes N),$$

but in the subspace corresponding to $r^{\beta} \otimes N$ choose the basis such that we have

$$\zeta(qp) = \begin{bmatrix} \mu(q) \otimes \nu(p) & 0 & 0 \\ 0 & \mu(r^{-1}qr) \otimes \nu(p) & 0 \\ 0 & 0 & \mu(r^{-2}qr^{2}) \otimes \nu(p) \end{bmatrix}.$$

Then $\zeta(r)$ takes the form

$$\zeta(\mathbf{r}) = \begin{bmatrix} 0 & 0 & \mu(\mathbf{r}^3) \otimes R_{\mathbf{r}} \\ I \otimes R_{\mathbf{r}} & 0 & 0 \\ 0 & I \otimes R_{\mathbf{r}} & 0 \end{bmatrix}.$$

It is now clear that

S. B. Conlon

(24i)
$$\zeta(h) = \tilde{\mu}(\rho_1(h)) \otimes \nu_0(\rho_2(h))$$

for all $h \in H$. Thus $\{(M \neq N)^H\}$ lies in the image of ρ^* .

(ii) Say M is stable in R. Thus there exists a matrix R_{ρ} such that

$$\mu(r^{-1}qr) = R^{-1}_{\mu}\mu(q)R_{\mu},$$

and

$$\mu_{\alpha}(q) = \mu(q), \ \mu_{\alpha}(r) = \omega^{\alpha} R_{\mu}, \qquad (\alpha = 0, 1, 2),$$

are 3 inequivalent indecomposable R-representations "contained" in M^R . Now

$$(M \not\equiv N)^H \approx \bigoplus_{\alpha=0}^{\mathbf{s}} (M \not\equiv N)^{\alpha},$$

and we can take the representation ζ_{α} afforded by $(M \neq N)^{\alpha}$ to be in the form

$$\zeta_{\alpha}(qp) = \mu(P) \otimes \nu(p), \ \zeta_{\alpha}(r) = \omega^{\alpha} R_{\mu} \otimes R_{\nu}.$$

Thus again we have

(24ii)
$$\zeta_{\alpha}(h) = \mu_{\alpha}(\rho_1(h)) \otimes \nu_0(\rho_2(h))$$
 (\$\alpha = 0, 1, 2\$).

Hence σ is onto $W_{\mathbf{P}}(H)/S$.

Study of ker σ . Elements of the form

 $\{L\} \otimes C^*_n(\mu) \quad (\mu \neq (\omega), (\omega^2)), \quad \{L\} \otimes D^{\alpha}$

of $A(R) \otimes A(K)$ (*L* an *kR*-module) either have vertex of order less than 4 or map to elements of *S*. Hence if *U* is the ideal of $A(R) \otimes A(K)$ generated by the above elements, we can regard σ as a map $\bar{\sigma}: (A(R) \otimes A(K))/U \rightarrow W_P(H)/S$. Moreover, from (18) the structure of $(A(R) \otimes A(K))/U$ may be written

(25)
$$(A(R) \otimes A(K))/U \approx A(R) \otimes \left[\bigoplus_{\beta=0}^{2} \left(C\left[Y_{\beta}, \frac{1}{Y_{\beta}} \right] + \left(\bigoplus_{\substack{n \ge 1 \\ \phi=\omega, \omega^{2}}} CI_{n\beta}(\phi) \right) \right) \right].$$

This is semisimple, as A(R) is the direct sum of a finite number of copies of C and the direct factors on the right are each semisimple as is shown in § 4 of [2].

 $\bar{\sigma}$ and ρ^* . We next show that $(A(R) \otimes A(K))/U$ is the ideal direct sum of three ideals, two of which are sent to 0 by $\bar{\sigma}$ and the last of which is isomorphic to $W_P(H)/S$ under $\bar{\sigma}$. To this end we look more closely at ρ^* .

If M, N are indecomposable kQ-, kP-modules respectively with N stable in K, then from (24i), (24ii) under ρ^* we obtain

(26i) $M^R \otimes N^{\alpha} \to (M \neq N)^H$ when M is unstable in R, and

(26ii) $M^{\beta} \otimes N^{\alpha} \to (M \neq N)^{\alpha+\beta}$ when M is stable in R

[11]

86

[12] The modular representation algebra of groups with Sylow 2-subgroup $Z_3 \times Z_3 = 87$

(superscripts being modulo 3). Clearly the only elements of $(A(R) \otimes A(K))/U$ which can map onto these basis elements are in the subspace generated by $M^R \otimes N^{\alpha}$ or $M^{\beta} \otimes N^{\alpha}$ as the case may be.

(27) Thus in either case we have a subspace of dimension 3 mapping onto a 1-dimensional subspace (if we consider $\alpha + \beta$ fixed (modulo 3) in the second case).

Idempotents of $(A(R) \otimes A(K))/U$. To obtain the ideal direct summands of $(A(R) \otimes A(K))/U$ we proceed to obtain their generating idempotents as follows.

Let E^{α} , F^{α} , G^{α} ($\alpha = 0, 1, 2$) be the 3 1-dimensional kR-, kK-, kHmodules respectively corresponding to the matrix representations

 $r^{\beta} \rightarrow \omega^{\beta \alpha}$.

Thus we can write $k_R = E^0$, $k_K = F^0$, $k_H = G^0$. We use the same symbols E^{α} , F^{α} , G^{α} to denote the corresponding module classes. Then under ρ^* we have from (26ii) that

(28)
$$E^{\alpha} \otimes F^{\beta} \to G^{\alpha+\beta}.$$

Consider the normal subgroup QP of RK. $RK/QP \approx R/Q \cdot K/P$, which is the direct product of two cyclic groups of order 3. We can denote the various $k(R/Q \cdot K/P)$ -module classes by $E^{\alpha} \otimes_{C} F^{\beta}$ ($\alpha, \beta = 0, 1, 2$). Thus we get that $A(R/Q \cdot K/P)$ is the direct sum of 9 copies of C with idempotents

$$I_{\alpha\beta} = \frac{1}{3}(E^0 + u^{\alpha}E^1 + u^{2\alpha}E^2) \otimes \frac{1}{3}(F^0 + u^{\beta}F^1 + u^{2\beta}F^2),$$

where α , $\beta = 0, 1, 2$, and u is a primitive cube root of unity in C. By proposition 4 we get a corresponding decomposition of $A(RK) \approx A(R) \otimes A(K)$, and so one induced on the quotient $(A(R) \otimes A(K))/U$. Consider the 3 idempotents

$$\begin{split} &J_0 = I_{00} + I_{11} + I_{22} = \frac{1}{3} (E^0 \otimes F^0 + E^1 \otimes F^2 + E^2 \otimes F^1), \\ &J_1 = I_{10} + I_{21} + I_{02} = \frac{1}{3} (E^0 \otimes F^0 + uE^1 \otimes F^2 + u^2E^2 \otimes F^1), \\ &J_2 = I_{20} + I_{01} + I_{12} = \frac{1}{3} (E^0 \otimes F^0 + u^2E^1 \otimes F^2 + uE^2 \otimes F^1). \end{split}$$

Then $\rho^*(J_0) = G^0$, the identity of A(H), and $\rho^*(J_1) = \rho^*(J_2) = 0$. On the other hand none of the following products vanishes:

$$\begin{array}{ll} J_{\pmb{\beta}} \cdot (M^R \otimes N^{\pmb{\alpha}}) & (M \text{ unstable in } R), \\ J_{\pmb{\beta}} \cdot (M^{\pmb{\beta}} \otimes N^{\pmb{\alpha}}) & (M \text{ stable in } R), \end{array}$$

where $\beta = 0, 1, 2$, and the 3-dimensional subspaces of (27) are the sum of 1-dimensional subspaces one in each of the summands $J_{\beta} \cdot A(RK)$ ($\beta = 0, 1, 2$).

Hence restricting $\bar{\sigma}$ to the direct summand $J_0 \cdot (A(R) \otimes A(K))/U$ we have that $\bar{\sigma}$ is one-to-one and onto. Thus

$$W_{\mathbf{P}}(H)/S \approx J_{\mathbf{0}} \cdot (A(R) \otimes A(K))/U.$$

Hence $W_P(H)/S$ is isomorphic to an ideal (direct summand) of a semisimple algebra (by (25)) and so $W_P(H)/S$ is semisimple.

 $W_P(H)$ contains an ideal S such that $W_P(H)/S$ and S are semisimple and so by proposition 1 it is semisimple. This completes the proof of the semisimplicity of $W_P(N(P))$ for P of orders 1, 2 or 4. By Green's theorem (6), A(G) is semisimple. By (8) we can further remove the restriction of k being algebraically closed and so we have the following theorem:

THEOREM. Let G be a finite group whose Sylow 2-subgroup is isomorphic to $Z_2 \times Z_2$, and let k be any field of characteristic 2. Then the modular representation algebra A(G) formed from kG-modules is semisimple.

References

- Conlon, S. B., Twisted group algebras and their representations, J. Austral. Math. Soc. 4 (1964), 152-173.
- [2] Conlon, S. B., Certain representation algebras, J. Austral. Math. Soc. 5 (1965), 83-99.
- [3] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [4] Green, J. A., A transfer theorem for modular representations, J. of Algebra 1 (1964), 73-84.
- [5] Higman, D. G., Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381.

University of Sydney