Anisotropies of the infrared background and primordial galaxies

Asantha R. Cooray

Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA email: asante@caltech.edu

Abstract. We discuss anisotropies in the near-IR background between 1 to a few microns. This background is expected to contain a signature of primordial galaxies. We have measured fluctuations of resolved galaxies with Spitzer imaging data and we are developing a rocket-borne instrument (the *Cosmic Infrared Background ExpeRiment*, or *CIBER*) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background.

Keywords. large scale structure of Universe, diffuse radiation, infrared: galaxies

The intensity of the cosmic near-infrared background (IRB) is a measure of the total light emitted by stars and galaxies in the universe. While the absolute background has been estimated by space-based experiments, such as the *Diffuse Infrared Background Experiment (DIRBE)*, the total IRB intensity measured still remains fully unaccounted for by sources. Primordial galaxies at redshifts 8 and higher, especially those involving Population III stars, are generally invoked to explain the missing IR flux between 1 μ m and 2 μ m, with most of the intensity associated with red-shifted Lyman- α emission during re-ionization, though there are difficulties with such an assumption.

As pointed out in Cooray *et al.* (2004), if a high-redshift population contributes significantly to the IRB, then these sources are expected to leave a distinct signal in the anisotropy fluctuations of the near-IR intensity, when compared to the anisotropy spectrum associated with low-redshift sources. In Sullivan *et al.* (2007), we presented clustering measurements at 3.6 μ m in several fields of *Spitzer*-IRAC data and we refer the reader to this work for more details and implications.

We are also developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7 arcseconds to 2 degrees. In a short rocket flight, CIBER has sensitivity to probe fluctuations 100 times fainter than DIRBE. By jointly observing regions of the sky studied by Spitzer and Akari, CIBER will build a multi-color view of the near-infrared background, allowing a deep and comprehensive survey for first-light galaxy background fluctuations. The low-resolution spectrometer will search for a redshifted Lyman cutoff feature between $0.8 - 2.0 \,\mu$ m. The high-resolution spectrometer will trace zodiacal light using the intensity of scattered Fraunhofer lines, providing an independent measurement of the zodiacal emission.

References

Cooray, A. R., Bock, J. J., Keatin, B., et al. 2004, ApJ, 606, 611 Sullivan, I., Cooray, A. R., Chary, R.-R., et al. 2007, ApJ, 657, 37