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Abstract

Let A" be a nonarchimedean local field, let L be a separable quadratic extension of K, and let h denote a
nondegenerate sesquilinear form on ZA The Bruhat-Tits building associated with SU3(h) is a tree. This
is applied to the study of certain groups acting simply transitively on vertices of the building associated
with SL(3, F), F = Q3 or F3((X)).
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1. Introduction

Let L be a nonarchimedean local field, and let AL denote the Bruhat-Tits building of
type A2 associated with SL(3, L) (see, for example, [Ro, §9.2], [Br, §V.8] or [Ste]).

Now suppose that L is a separable quadratic extension of a local field K. Let q
be the order of the residual field of K. Let h denote a nondegenerate sesquilinear
form on L3, and let 5C/3(/z) denote the group of 3 x 3 matrices g of determinant 1
with entries in L which preserve h. The nontrivial Galois automorphism of L over K
induces a non-type-preserving automorphism a of AL. This gives rise to a tree T, as
follows. The vertex set of T is the union of two disjoint sets, Ao and Ai, consisting,
respectively, of the vertices of AL fixed by a and of the pairs of adjacent vertices of
At interchanged by a. The edges of T correspond to the chambers of AL fixed by a.
That is, v0 € Ao and V\ e Ai are adjacent in T if the vertex of AL corresponding to
v0 and the two vertices of AL corresponding to vx form a chamber of AL.

More precisely, the following result is well-known [Ti]:
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THEOREM 1.1. With the above notation, the set Ao U A,, together with the above
adjacency relation, forms a tree T. This tree is homogeneous of degree q +1 when L is
a ramified extension ofK, and is bihomogeneous when L is an unramified extension of
K, each v € Ao having q3 + 1 neighbours, and each v e A i having q + 1 neighbours.
It is isomorphic to the Bruhat-Tits building associated with SU}(h).

This theorem is well-known (though we do not know of a complete proof in the
literature) so we shall not prove it here. In Section 2, we recall the well-known
concrete description of AL in terms of lattices. This gives us a lattice description of
T. In Section 3, we use this description to help us obtain a better realization of certain
subgroups T of PGL(3 , F), F = Q3 or F3((X)), described in [CMSZ] which act
simply transitively on the vertices of A/r. In particular, certain pairs of these groups
F are commensurable in PGL(3, F), and the commensurability index is explained
in terms of the groups' action on the tree T (for suitable K, L and h). Note that the
groups F have property (T) [CMS], and so must have subgroups of index at most
2 which fix a vertex of T (see [HV, Proposition 6.4]). Location of this vertex is an
important step in obtaining the realizations referred to above.

We would like to thank Robert Kottwitz for helpful discussions we have had with
him concerning this paper and also Joe Buhler and Michael Drinen for carrying out
some norm calculations related to our earlier study of Groups 7.1 and 8.1.

2. The tree of S{/3(/i)

For a local field L, denote the valuation on L by w : L —*• 2U{oo}, and let
oL = {x e L : co(x) > 0} be the valuation ring of L. Let pL = {x e L : co(x) > 0} be
the maximal ideal of oL, and let L = 0i/pL denote the residual field of L. Let n = nL

be a generator of pL. We assume that co is normalized so that &>(LX) = Z, and hence
co(n) = 1.

A lattice in L3 is a subset JZ? of L3 of the form

(2.1) -S? = {fliUi +02^2+03^3 : 01,02,^3 ^ °L},

where {v{, v2, v^} is a basis of Z,3. Let Lat denote the set of lattices. Two lattices
and Jz?2 are called equivalent if Jf2 = tJf\ for some non-zero t e L. The vertices of
AL consist of the equivalence classes Lif] of lattices. Two vertices [.i?,] and LS?2] are
called adjacent if representatives Jz?i and Ji?2 can be found so that 7rJz?, ^ -Sf2 %. %\-
A chamber in AL consists of three vertices, any two of which are adjacent.

Taking the usual basis of L3 in (2.1), the lattice j£? is

(2.2)
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The group GL(3, L) acts naturally on Lat. In fact, GL(3, L) acts transitively on Lat,
for if i f is the lattice (2.1), and if g is the matrix whose columns are vu v2 and w3,
then i f = g(jS?0). The stabilizer [g e GL(3, L) : g(jSf0) = JS?0} of if0 in GL(3, L)
is GL(3, oL) = {g e GL(3, L) : g and g~' have entries in oL}. We define the type
r ( [ i f ] ) of a vertex [ i f ] to be a>(det(g)) mod 3 if i f = g(i?0)-

If we fix a vertex v\ of AL and a lattice i ^ in the class V\, then the vertices v2 — [JZ?]
adjacent to v\ are in one to one correspondence ( if2 <->• S£^lnS£{) with the nonzero
proper vector subspaces of the 3-dimensional vector space i?i/7rifi over L. Thus if
qL = \L\, there are q\ + <?L + 1 v2's corresponding to the 2-dimensional subspaces
of ifi/7rJzfi, and <?£ + qL + 1 i;2's corresponding to the 1-dimensional subspaces
of j£?i/jrj£?i. These neighbours of vx form a projective plane, with incidence being
adjacency.

Let A c oL denote a set of representatives of L, that is, a set such that a t-> a + pL

is a bijection A -> L. We shall assume that 0 e A. Let us take if, to be the if0 of
(2.2). Then the q\ + qL + 1 if2 's corresponding to the 2-dimensional subspaces of
ifo/7rifo are the lattices g(ifo), where for a, b € A,

(2.3)

The <7j? + qL + 1 Jzf2's corresponding to the 1-dimensional subspaces of JZo/nJ&o are
the lattices g(ifo), where for a, b G A,

( 71 0 0>

0 0

Now suppose that L is a separable quadratic extension of a local field K, and that
the valuation on K is the restriction of the valuation w o n t . Let oK, px, K and nK be
defined as for L, and let q = \K\.

Consider the natural map x + pK i-> x + pL embedding K into L. There are two
cases (see, for example, [Cas, p. 127]): either L is an unramified extension of K
— this means that co(Kx) = Z, and that L is a degree 2 extension of K (so that
qL = \L\ = q1); or L is an ramified extension of A" — this means that co(Kx) = 21,
and that the above embedding is an isomorphism K —> L.

Let x i->- JC denote the non-trivial Galois automorphism of L over K. As the
extension to L of the valuation on K is unique, co(x) = co(x) for all x G L.

Let h denote a nondegenerate sesquilinearform on L3, that is, h : L3 x L3 —>• Z,
is a map such that

(a) x i-> /i(x, y) is a linear (over L), for each fixed y e L3;
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(b) h(y,x) = h(x, y) for each x, y e L3;
(c) if y ^ 0, the linear map in (a) is not the zero map.

If {vi, v2, u3] is a basis of Z,3, and if H is the 3 x 3 matrix with (/, y')-th entry h(Vj, vt),
then we can write h(x, y) = y*Hx, where x and y are the coordinate column vectors
of x and y with respect to the basis, and where for any matrix M, M* denotes the
matrix obtained from M by applying x H> X to each element of the transpose of M.
Let U(h) = U3(h) denote the group of 3 x 3 matrices with entries in L which preserve
h (equivalently, g*Hg = H), and let SU(h) - SU3(h) = {g € U(h) : det(g) = 1}.

If i f eLat, then

Jgf = [x e L3 : h(x, y) e oL for all y

is again a lattice. For if J5f is as in (2.1) and if v\, v'2, v'3 is the dual basis with
respect to h, that is, h{vt, up = 5,-̂ -, then JSf' is the oL-span of v\, v'2, v'3. This
also shows that (jg?')' = -^- If ^ e Lx, then (rJSf)' = r'jSf'. Hence we may
define an involution a : AL —> AL by CT([J£?]) = [JSf' ]. Note that a does not
preserve types. For if JSf = g(jS?0) € Lat, then JSf' is the lattice (g*//)-'(Jz?0).
Hence r(a([JS?])) = -r([J&f]) - w(det(//)) mod 3. Because jSfj C JSf2 implies that
Jzf2' c JSfJ', we see that a preserves adjacency, and maps chambers to chambers.

Now suppose that a stabilizes a chamber. Then it must fix one of the vertices (the
one of type i, where 2/ = — co (det(//)) mod 3) and interchange the other two vertices
of the chamber. This motivates the following definitions:

Let

Ao = {[JSf] : & € Lat and [jgf'] = [if]},

and let

A, = {([^#], [Jg'\) : J? e Lat and [^#] is adjacent to \Ji'\\.

We shall call [if] 6 Ao and ( [ ^ ] , KT']) e A! ad/acen? if {[if], [^T], [^T']J form
a chamber in AL (equivalently, [J/f] is adjacent in AL to either of \JC\ or [^#']). The
set Ao U Ai, with this adjacency relation, forms a graph T, and Theorem 1.1 states,
amongst other things, that T is a tree.

Notice that if i f = g(3f0), then [Jf] € Ao if and only if g*Hg is a multiple of a
matrix in GL(3, 0). When oo(det(H)) is even, 2r say, as happens in our applications
below (and can always be arranged by multiplying h by a suitable element of K), then
for each v e Ao there is a unique S£ € Lat such that u = [if] and £^' = if'. Indeed,
if v = [g(ifo)]andiff(g*//g) e GL(3, 0), let ££ = cg(^0) for c = l/(nrtdet(g)).
Similarly, if v e Ai, there is a unique Jt e Lat such that v = {[J%], \Jt'\> and

^ C ^ ' . Thus we may work with lattices rather than lattice classes.
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3. Application to some A2 groups

An A2 group is a group which acts simply transitively and in a type-rotating way
on the set of vertices of a thick building A of type A2 (see [CMSZ]). Amongst the
results of [CMSZ], all A2 groups were found for the case when A was the building
AF, F = Q3 or F3((X)), and all were realized as co-compact lattice subgroups
of PGL(3, F). Two of these groups, named Groups 7.1 and 8.1, were realized in
PGL(3, Q3) in a rather messy way, using certain simple algebras of dimension 9
over Q(V—23). Five other groups, named 4 . 1 , . . . , 4.4 and 5.1 were all realized in
PGL(3, Q(x/=2)) C PGL(3, Q3), but it was not shown how to realize Group 5.1
in a way so that it was commensurable with the Groups 4.j, though general results
guaranteed that this was possible. A similar situation held for four other groups,
numbered 2.1, 2.2, 3.1 and 3.2, which were all realized in PGL(3, F3((X))).

In this section, we show how the building T of SU3(h) was used to understand
better the relationship between these groups. First of all, some pairs of these of
groups F, F' were realized as commensurable subgroups of PGL(3, F) as follows.
Suppose that the natural (see [CMSZ]) generators of F and F' are represented by
3 x 3 matrices a; and bj over F, respectively, j = 0 , . . . , 12. The quantity Inv(g) =
Trace(g)3/det(g), for g e GL(3, F), is an invariant with respect to conjugation and
multiplication by nonzero numbers. The invariants lnv(g\gJ

2), i, j = 0, 1, 2, were
calculated for noncommuting pairs (g\, g2) of short words in the a/s and the bk's.
If Inv(g',g2) = ln\(h\h'2) for i, j = 0, 1, 2, where g\ and g2 are words in the a/s,
while h i and h2 are words in the bj's, then we sought to conjugate all the bj's by some
matrix, and multiply the fe/s by various constants so that /i i coincided with g\ and h2

with g2. This achieved, F n F' contains the images in PGL(3, F) of both gi and g2,
and closer investigation showed that, for some gu g2, ht and h2, F D f had small
finite index in F and F'. The package MAGMA was useful for verifying this.

Groups 4 . 1 , . . . , 4.4 and 5.1. These groups were realized in [CMSZ] by exhib-
iting matrices a; and bj in GL{3, Q(S)), 7 = 0 , . . . ,12, where S2 = —2, for Groups
4.1 and 5.1, respectively. These matrices had entries in 1[S, 1/2, 1/3], and preserved
the form h(x, y) = x,y{ + x2y2 + x3y3, where v i->- y is the nontrivial automorphism
of Q(5). Groups 4.1-4.4 are all normal index 4 subgroups of a group f4.i which is
generated by a6 and an element / of order 4 (see [CMSZ]). Similarly, Group 5.1 is a
normal index 4 subgroup of a group f 5) which is generated by b6 and an element / '
of order 4.

We found that Inv(aoa/O) = lnv(b'0b{0) for i, j = 0, 1, 2, and could conjugate
the bj's by a suitable matrix so that the new b0 and bw coincided with a0 and ai0,
respectively. It turns out that also b^x = a^a^, and MAGMA told us that a0, ai0

and a3aj~j' generate a subgroup of index 8 in each of Groups 4.1 and 5.1.
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Take K = Q2 and L = K(^2). By mapping 5 e Q(S) to x/^2 e L, we
can regard the matrices representing the elements of our groups as elements of U{h).
These matrices are determined only up to multiplication by elements a + bS e Q(S)
satisfying a2 + 1b2 = 1, but as coL(a + bsp-2) = 0, these groups act on the tree T of
Theorem 1.1, which is homogeneous of degree 3 in this case. Because of the 2's in
the denominators of some of the aj 's and bj 's, the groups F did not fix Jf0. However,
starting from j£fo>

 and using the matrices (2.3) and (2.4), it was easy to move around
the vertices at a small distance from J5f0, and a vertex was found at distance 3 from J?o

which was fixed by all five F's. Conjugating these groups by a suitable matrix, the
groups were all realized in G(Z[l/3]), where G is the projective unitary group with
respect to the form y*Hx, where

The matrices a6 and / generating f 4.1 are now

- 1 0 0
a 6 = | ( 2 S + l ) / 3 - ( S - O / 3 (S + 2)/3 | and / =

( 5 - l ) / 3 (S + 2)/3 - ( 5 -

- 5
- 1
0

- 1
5
0

0
0
1

Now consider the action of G(Q) on AQ3. It is easy to calculate the stabilizer
Go(2[l/3]) of [(Z3)

3] in G(Z[l/3]). For if g e M3x3(Q(S)) and g*Hg = //, then
g~

x = H~lg*H. Now H and H~l have entries in 1[S, 1/2] c Z3. So g and g~l have
entries in Z3 if and only if g and g* have entries in Z3. Since Z[l/3] flZ3 = Z, we need
only find matrices g with entries in Z[S] such that g*Hg = H. Routine calculations
show that (up to multiplication by ±1), there are precisely 16 such matrices. Hence
G0(Z[l/3]) has order 16, and is generated by / and g, where

and / is as above. These generators, with the relations / 4 = g% = 1, fgf ' = g3

and f2 = g4, give a presentation of G0(Z[l/3]).
We obtain generators b0,... , bl2 and / ' for f5, in G(Z[l/3]) by setting b0 = Oo,

b\ = ang, b2 = a2g
4, b3 = a7g\ b4 = a3g, b5 = aug, b6 = a5g

5, b-, = a4g\
b% = a,g5, b9 = a9g, bl0 = aw, bu = a6g

2, bn = a&g2 and / ' = fg2.
We obtain a presentation of all of G(Z[l/3]) from the generators a,, / = 0 , . . . , 12,

plus / and g, together the relations of the form aiCijak = 1 and fa( / " ' = ar given in
[CMSZ, p. 184], and the relations ga0 = a{g

3, gax = a&g2, ga2 = a2g, ga3 = a4g,
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ga4 = a9g
5, ga5 = a6g

2, ga6 = ang, gan = a3g
5, ga% = ang, ga9 = ang,

gaw = a5g
3, gan = al0g

6 and gan = aog
6.

The situation is summarized by the diagram in Figure 1.

Groups 7.1 and 8.1. In [CMSZ], Group 7.1 was realized as a subgroup of
Aut(£*0 = s/x/Z(six) for a central simple algebra si of dimension 9 over K =
Q(5), where S2 = - 2 3 . Group 8.1 had a similar realization, involving another 9
dimensional algebra S8 over Jf. These algebras had definitions in terms of messy
structure constants. Calculations of Hasse invariants told us that si and SB were not
isomorphic to M3x3(K), but, instead, isomorphic or anti-isomorphic to a cyclic simple
algebra s/e defined as follows: Let L - K(9) = Q(5 , 9), where 03 = 6 + 1. Then
L is a normal extension of Q of degree 6 over Q. Let q> generate the Galois group of
L over K. We adjoin to L an element a satisfying a3 = 2 and oxo~x = cp(x) for all
x e L, and obtain s/e = L[CT], which consists of expressions a + bo + co2, where
a, b,c e L. Thus

s/e = {a + bo + ccr2 : a,b,c € L, o3 = 2, a-Xtf"1 = ^(x) for all x e L}.

The algebra s/ has an involutive semilinear anti-automorphism *, and Group 7.1
embedded in the associated projective unitary group {a e Aut(si) : a(£*) =
a(f)* for all | e s/}; similarly for 38 and Group 8.1. Here "semilinear" refers
to the nontrivial field automorphism x=a + bS\-*x = a — bS oi K.

We would like to find an involutive semilinear anti-automorphism * on s/e, and
embeddings of Groups 7.1 and 8.1 as arithmetic subgroups the associated projective
unitary group. There is a simple involutive semilinear anti-automorphism ~ on sfe,
determined by d = o and x = T(X) for x e L, where r is the field automorphism of
L fixing 6 and mapping S to —5:

(a+bo + co2)~= x{a) + ox(b) + o2r(c) = x(a) + <p(x(b))o + (p2(x(c))o2.

Note that r2 = id and x<px~] = <p2.
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As explained below, the anti-automorphism " is not quite suitable for our needs,
and will be modified below, giving us the anti-automorphism *.

Consider the following basis of Q(0, 5) over Q(5): {£0, Si, £>} = {1, 0, 02}- The
dual basis (with respect to Trace : Q(0, 5) ->• Q(S)) is

too, »?i m) = {(5 - 60 + 402)/23, ( -6 - 20 + 902)/23, (4 + 90 - 602)/23}.

Form the 3 x 3 matrix Q whose (i, j) entry is <pJ(£j) for i, j = 0,1,2. Then Q~l

has (J, j) entry <p'{r}j) for each i, j .
Now let w denote an element satisfying io3 = w2 + 1 in some extension of Q. Let

A" = K(w) = Q(S, io). The algebra ^ ® K' splits. For we can map x e A"(0) = L'
to

(A: 0 0
0 ^(JC) 0
0 0 <p\x),

where tp denotes the extension to an automorphism of L' over K' of the automorphism
<p of L over K; we also map a to

0 l + 0 w 0 \
0 0 l+<p(9)w .

, l+^)2(0)u; 0 0 /

Then § i->- G*(S)6~ ' gives an isomorphism of srfe ® K' onto M3x3(A"'). Explicitly,
JC € L' is mapped to the matrix with (i, j) entry Trace(S,-JC»J;-), and a is mapped to
the matrix with (i, _/) entry Trace(S,-io^(^-)) for i, j = 0, 1, 2. The semilinear anti-
automorphism ~ extends to a semilinear anti-automorphism of srf6 <g> K', semilinear
now referring to the extension to an automorphism r of L' over Q(0, w) of the
automorphism r of L over Q(0). By the Skolem-Noether Theorem [We, p. 166],
this anti-automorphism corresponds to an anti-automorphism M i-+ PM*P~' of
MM(K'), for some P e GL(3, A"'), where for M e M3x3(A"'), A/* is obtained from
M by applying r to each entry of the transpose of M. In fact, a simple calculation
shows that P must be a multiple of

Unfortunately, this matrix is not positive definite. So if G denotes the projective
unitary group associated with ~, which we regard as defined over Q, then G(K) is not
compact.
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So we must replace ~ by another involutive semilinear anti-automorphism. Again
by the Skolem-Noether Theorem, this must be of the form f i-> H|u~' , with u — u
to ensure that this is an involution. The u G si6 satisfying it = u are the elements
a + <p2(b)a + <p(c)o2, where a,b,c G Q(0). A little experimentation led to the choice

u = 62 + <p2(92)<j+<p(92)a2.

The anti-automorphism £* = wf w"1 corresponds as above to the anti-automorphism
M H* H- 'A/ ' / / of M3x3(K'), where H = 138(£/P)-' equals

28io2+27i»+39 17u;2+(9-75)u;+36-3S -1

17w2+(9+7S)ui+36+35 -2U)2+3UJ+104

^- I9U; 2 - (2S+29)«I+S-24 9u)2-(48-65)w+5-31 I7u;2+32m+13

and where U G Mixi(K') corresponds to u G srfe ® K' under the above isomorphism.
Now H is positive definite, and so if G is the projective unitary group associated
with *, regarded as an algebraic group defined over Q, then G(R) is compact.

Our aim is to exhibit Groups 7.1 and 8.1 as subgroups of G(Q) commensurable
with G(Z[l/3]). To do this, we must first specify a basis of s/e over Q(S). A
convenient basis is {m,,... , m9}, where

rri\ = u<p(02)a2, m2 = u<p2(62)o, m3 = u(p(6)a2, m4 = u(p2(0)a,

m5=u02, mb = u6, m1=uo2, m8 = ua, m9 = 1.

(The rrij satisfy m* = mh because they are of the form H£, where f = f.) By the
Skolem-Noether Theorem, the automorphisms a of £/e satisfying a(§*) = a( |)* for
all^ are the maps | *->• a%a~\ where a e s?e satisfies a*a = c, for some c G Qx. Note
that a*a = c for some c e Qx if and only if (ta)*(ta) = 1 for some t G Q(5)x. Thus
to say that a e #/e* corresponds to an element of G(Z[l/3]) means that (ta)*(ta) = 1
for some t e Q(S)X, and that antja'1 = J^=i cijmj f°r s o m e ctj e 2[l/3]. Note
that (ta)*(ta) = 1 and m* = nit implies that the c,,y must be in Q.

To exhibit Groups 7.1 and 8.1 in G(Q), we next needed to find some elements of
G (Z[ 1 /3]), in fact enough to generate a finite index subgroup thereof. To find elements
satisfying a*a = 1, we first took elements x satisfying x* = x, and then let a be the
(modified) Cayley transform of x: a — (S + x)(S — JC)"1. A program was run which
took x of the form ]T^=I Xjirij, where thejc/s were small integers, and checked whether
the corresponding automorphism £ H* a |a" ' was in G(Z[l/3]). Forming suitable
words in the elements a found in this way, we obtained more elements. We then sought
non-commuting pairs a, a' found this way and pairs b, b' of elements in Group 7.1 so
that Inv(a'V);) = \n\(b'{b')i) for i, j = 0, 1, 2. Here Inv(£) = Trace(£)3/det(£)
for | in either algebra, regarding £ as a 3 x 3 matrix with entries in Q(5, w) for
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| e s!9, and with entries in Q(5, a) (see [CMSZ, p. 193]) for % e #/. For if there is
an isomorphism or anti-isomorphism srfe —> s/ mapping a to a multiple of b and a'
to a multiple of b', then the above equations between the invariants must hold.

After much effort, elements a, a' e £/e* were found so that the corresponding
automorphisms belonged to G(2[l/3]), and so that

(11 + 5) _, , (11 + 5) _, _,
* a n d a ^ g 88a n d a 1 2 g

induced an anti-isomorphism from srfe to the algebra of Group 7.1 (see below). Ex-
plicitly, if we let x = £^=1 x,m, and a = (5 + x)(S - x)"1 for

, -10, 2, 6, 0, - 8 , 6, 6, -9)

we obtain an element a e &/$
x satisfying am,a ' = £j=i c, jnij for certain c,,7 e

Z[l/3]. We can express a explicitly as a Q(5)-linear combination of the m/s:
a = X^=i f'm> f° r

( / , , . . . , f9) = 93 2 7 ( 3 ( 4 1 5 ~ 2 3 ) ' 2 ( 9 7 5 + 2 3 ) ' 3 ( ~ 5 5 + 2 3 ) ?

2(-615 - 23), 8(75 + 23), 12(55 - 23), 4(-345 - 23),

2(-1035 - 161), 12(295 - 23)).

Similarly, if we let x' = £?= 1 jc/m,- and a' = (S + x')(S - xT1 for

(jtj, . . . ,x'9) = -(162,268, 14,-120,236, 156,-98,-132,-471)

we obtain an element a' e s4^ satisfying a'w,(a') = z2j=ic'ijmj f°r certain
c't j e Z[l/3]. Again, we can express a' explicitly as a Q(5)-linear combination of
the m/s: a' = J^Li ? im ' ^OT

1

4 • 2~7~- 23 '
6(275 + 437), 72(25 + 23), 28(5 - 46),

2(-555 - 713), 48(-5 - 92)).

(t[,... , t'9) == ^,(81(5 + 23), 2115 + 2921, 7(5 + 23), -2035 - 1081,

Using the above anti-isomorphism, we can realise Group 7.1 in s>/e* /Z(^/e
x). To

specify generators aJt j = 0, 1, . . . , 12, of Group 7.1 in &/e in a very compact way,
we first give 13 elements hj of srfe satisfying h* = hj. Then we let a; be the Cayley
transform (5 + hj)(S - hj)'1 of hj for each ; . We let

j 9
hj• = - Y] tj,kmk for j = 0 , . . . , 12,
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where f;Jt is the (j, k) entry of the matrix

( -12
-4
-18
30
-132
36
114
24
-42
-42
-60
-12

^ 48

-60
-20
-36
56
-168
72
198
72
-60
-54
-132
-30
90

-24
_2
-6
0
24
6
30
12
24
6
-30
-6
24

54
12
24
-20
48
-36
-114
-24
48
12
48
-12
-12

-72
-12
-36
32
-192
60
168
60
-12
-48
-120
-24
84

-12
-4
-24
24
-96
48
96
24
-132
-36
-24
24
-24

36
6
6
-4
114
-24
-66
6
-30
24
24
-6
-24

36
24
24
-56
120
-48
-114
-60
48
36
84
42
-66

-63^
-33
27
-9
63
-45
-279
-117
207
57
135
9
-27 )

It is convenient to multiply a\, a2, a7 and aw by —(S + 11)/12. This ensures that all
the a / s have entries in Z3, when 5 and w are regarded as 3-adic numbers (S being
chosen so that 5 = 1 mod 3). Moreover, the 3-adic valuation of each of the a / s is 2,
so that if LQ = (Z3)3 and v0 = [Lo] is the corresponding vertex in AQ 3 , then the cijV0,
j = 0 , . . . , 12, are vertices which are neighbours of v0, and all of the same type. One
may check that they are distinct.

If we let g\ = ((S + Il)/I2)a;[ and g'9 = ((S + ll)/12)a9"1, then one can
check that (g\)3 = £ , 2

= 0c , (g;y , that (g^)3 = E j=o4 (« i ) ' . and that g[g'9 =
Y^i.j^oYi.M'gVig'x)^ where the c/s , dj's and y,,/s are as in [CMSZ, p. 193]. Thus
there is an anti-isomorphism si ->• £/e determined by mapping gx to g\ and g9 to g'9.

The automorphisms £ HV afiaj1 are in G(Z[l/2, 1/3, 1/23]). The elements
a, a' € $4Q defined above are a^auaj and a^1 {a\a^1 ab)a2, respectively. The fact
that a, a' correspond to elements of G(Z[l/3]) means that an and a^a^xa6 are in
G(Z[l/3]) if we replace (m, m9] by {a2mja1~

x : j = 1 , . . . . 9}. MAGMA
tells us that {gu, gig^ge) is an index 24 subgroup of Group 7.1. This exhibits the
arithmeticity of Group 7.1.

For Group 8.1, we let

1
hJ = K^H^"1" for 7 = 0 , . . . , 12,
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where tjtk is the (j, k) entry of the matrix

/ 1668 2598 -444 -324 2736 372 -1026 -2520 -3069\

-106
-96
-216
780

-1124
860
630
1104
-1962
-1560
-276

-332
-212
876
1092
-1892
1444
720
2070
-2088
-3024
-690

130
54
1224
-162
-88
-32
-108
552
-144
-474
-138

300
68

-912
-756
724
-318
324
-276
-396
1560
-276

-60
-332
516
732

-1432
1380
1800
1932
-2808
-2712
-552

-244
-36
-360
1260
-1172
812
936
-552
288

-1632
552

114
-86
210
-216
422
-330
288
-552
1170
780
-138

348
176
-516
-468
1072
-996
-1296
-1518
1764
2064
966

-999
-87
-2115
-783
3597
-2865
-747
-621
1737
3105
207

V 732 2034 258 -1326 768 1200 -636 -1326 -2097/

Then we let a!- = (5 + h'j)(S — h'j)'1 for each j . Again, it is convenient to multiply
a\ ,a'2,a'3 and a'l0 by — (S+11)/12. This achieves the same normalizations as described
above for Group 7.1.

The algebra 03 associated with Group 8.1 is isomorphic to s/g. If we let x\ =
-((7 + 3 * S)/16)a', and x'4 = a\, then one can check that QcJ)3 = ^ 2

= 0 Cj(x[)J, that

« ) 3 = E?=o4W- and that XV\ = EL=o Yi.M)'M)J, where the c/s, d/s and
y,-,/s are as in [CMSZ, p. 196]. Thus there is an isomorphism SS —>• srfB determined
by mapping X\ to x[ and x4 to x\.

Thena',, = an anda^a^)" 1 ^ = ci\a^xa6. Hence, with these realizations F71 and
F81 of Groups 7.1 and 8.1 in £?$

x / Z ( ^ x ) , the two groups have in common the index
24 subgroup generated by an and a\a^xab. The automorphisms £ H> a'j^(a'j)~

i are in
G(Z[l/2, 1/3, 1/23]). So we have the situation shown in Figure 2.

G(Z[l/2, 1/3, 1/23])

(fl11,a1fl3-1a6>CG(Z[l/3])

FIGURE 2

The situation is therefore rather more complicated than in the case of Groups 4.1
and 5.1, say. We now use the tree T associated with <Q>23(\/-23) to show that we
cannot simplify the embeddings.
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Because L = Q23(\/—23) is a ramified extension of Q23, T is homogeneous
of degree 24. The group G defined above acts on T. For if a 6 Aut(^) and
a(£*) = a(£)* for all £ € sie, then there is an a e srfg

x such that a(£) = a%a~x for
all £, and such that a*a = 1. Let A e M3x3(K') be the matrix corresponding to a
under the isomorphism sfe (g> K') = M3x3(Af') defined above. Then A* HA = H.
Moreover, u;3 = w2 + 1 has a solution in Q23 (with w = 17 mod 23). So we can
regard K' as a subfield of L. Thus A € t/3(/i) for the form h on L3 corresponding
to //. So for v € Ao U A], we define a.v = A.v. This is well-defined, for if a is
replaced by ta, where t = tx + t2S e Q(S) and It = 1, then t\ + 23f| = 1, and so t,
regarded as an element of L, has valuation 0, so that ?Jzf = Jzf for any 0/,-lattice ££.

Hence our groups r7., and r81, being subgroups of G(Z[l/2, 1/3, 1/23]) C G(Q),
act on 7. Let if0 = "i- and let J^ = g, (if0) for

Then if,' = if,, so that if, e Ao. Let Jt2 =

Then SJK^ C ^ 2 C ^ ^ s o m a t (^2> ^2 ' ) e A! is a neighbour of ifj in T. One may
verify that F7, fixes ^f2 (and therefore also ^#2'), and hence the vertex (^2, ^ 2 ) of
7. Now let Jzf3 = g3(JS?0) for

Then if3 e Ao is a neighbour of (JKi, J%2) in T, and is fixed by F8A.
Moreover, F71 acts transitively on the 24 neighbours of (^2,^)- Indeed,

the 24 elements {I,ao,ai,a2,a3, a4, a5 , a6, a-,, a9, a10, a^1, a3"', a5"', a<~l, a^1, aQa^,
aoa2

l, aoa^', a\O-i\ a\a^\ a\a^\ a3a^\ a4a^} of F7 A move if3 to these neighbours.
Also, Fg, acts transitively on the 24 neighbours of if3. Indeed, the 24 elements

K,^,^,^,^,^,^,^,^,^,^;)-1^^)-1^^)-1,^;)-1,^)-1,^,^,
a'^a'-j, a\a'2> a[a'3, a[a'n, a'2a'A, a'2a[0} of F 8 A move (J<£2, JK2) to these neighbours.

There is no realization of F71 and F8A in G(Q) for which F7A D F8.i has index
strictly less than 24 in F7, and F8A. For if there were, then there would be isomorphic
subgroups H-iA and HiA of the realizations of F7 , and F8, given above, for which
[F81 : HiA] = n < 24. Applying [Mar, Theorem (5), p. 5], our isomorphism
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/ : H-i.1 -*• HSA would be induced by conjugation ax by some element x of G(Q).
See also [Hum, Section 27.4]; the fact that / is not induced from an automorphism
involving the nontrivial Dynkin diagram automorphism may be deduced, for example,
from the fact that s/e admits no (linear) anti-automorphism. For let srfg' denote the
algebra defined as was s/g, but with the element a replaced by an element a' satisfying
(a')3 = 4. Then there is an anti-isomorphism s/e ->• s46' mapping a to (cr')2/2 and
mapping each x e Q(5 , 9) to x. If s/e has an anti-automorphism, then s/e and s/e'
would be isomorphic, which is impossible because 4/2 = 2 is not the norm of any
element of Q(S, 8) (see, for example, [Deu, p. 65]).

Thus, modulo scalars, / is the restriction of ax to H1A. Let « € A, denote the
vertex {Mi, -^2) e T fixed by F7.i, and let v e Ao denote the vertex i ^ e T fixed
by T8, . Then axT1 . ,«" ' fixes ax.u e Ai. Thus F8.i D axT1Aa~\ and therefore //8 1,
fixes the geodesic in T from v to ax.u. But F 8 , moves this geodesic to 24 different
paths. Hence n = [F8 1 , # 8 1 ] > 24.

Similar considerations show that there is no semi-linear involutory anti-
automorphism § (-> £f of s/e such that, if Gf denotes the corresponding projective
unitary group, then Gf(IR) is compact and Groups 7.1 and 8.1 embed in Gf(2[l/3]).

Groups 2.1, 2.2, 3.1 and 3.2. In [CMSZ], these groups were exhibited in
£?*/Z(srfx) for the following cyclic simple algebra si', defined over F3(P), P an
indeterminate: &/ — F27(/>)[CT], where a3 = P, and axa~] = <p(x) for x e $2i(P)-
Here <p is a generator of the Galois group of F27(P) over F3(P); if we think of F27 as
F3(0), where 03 = 0 + 1, then we can assume that <p(0) = 0 + 1 and <p{P) = P. We
regarded F3(P) as a quadratic extension of F3(/?), where R = P — l/P. We exhibited
an involutive semilinear antiautomorphism * of #/. Groups 2.1 and 2.2 are normal
index 3 subgroups of a group f21 generated by elements a} e si', j = 0 , . . . ,12, and
a. Similarly, Groups 3.1 and 3.2 are normal index 3 subgroups of a group f31 gener-
ated by elements bj e s/, j = 0,... , 12, and a. We embedded f2., in Pt/(F3[l /f l]) ,
where

PU(¥3(R)) = {a e Aut(.«O : «(§*) = «(£)* for all $ e s/}.

If we replace the generators of Group 3.1 given in [CMSZ] by b\ = y~[biy and
a' — y~xoy ( = a), where y = Pa + a2, then the elements b'J{P + 1) are unitary,
so that Group 3.1 is now realized in P£/(F3(fl)). Moreover, the intersection F2 1 n r 3 1
of these realizations F2.i and F3 ] of Groups 2.1 and 3.1 has index 10 in each of F2.i
and F31. Indeed, b'o = a0, b'Ab'g = a$a\ and b'4b'5 = a4a6; MAGMA tells us that
the subgroup of F2.i generated by a0, a^a\ and a4a6 has index 10 in F2.i (and the
subgroup of F3 ] generated by b'o, b'4b'9 and b'4b'5 has index 10 in F3 ]). Group 3.1 is
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now generated by a and b'2, where

Let K denote the completion of F3(/?) with respect to the valuation associated with
the irreducible polynomial R2 + 1. Thus q = 9, and we can take nK = R2 + 1. Let
L = K{P). Then L is a ramified quadratic extension of K containing F3(/

>); we can
take nL = R + P, which satisfies TI2

L = R2 + 1. The antiautomorphism * of si gives
rise to a sesquilinear form (x, y) t-̂  y*Hx on L3, where

mod R2

and the associated tree is homogeneous of degree 10. One may readily check that F21
fixes the vertex u = .£?0 = "1 £ Ao. On the other hand, F31 fixes the neighbouring
vertex v = ( ^ , ^') e Ah where M = g(J£o) for

H =
\ R

\R

R
—1

1

R-
-R
-R

1

- 1

R-
-R
R-

1
- 1

1

One may verify that Group 2.1 acts transitively on the 10 neighbours of u. Indeed,
the elements 1, au a2, a3, a4, a7, au, a^x, a^x and af' move v to these 10 neighbours.
Similarly, Group 3.1 acts transitively on the 10 neighbours of v. Indeed, the elements
1, b\, b'3, b'4, b'5, b'%, b\0, (b\)~\ (b'3)~

l and (b'6)~
x move u to these 10 neighbours.

Considerations similar to those in the last subsection show that there is no realization
of r2.i and F31 in G(Q) for which F2.i n F3, has index strictly less than 10 in F2.i
and F31.

References

[Br] K. S. Brown, Buildings (Springer, New York, 1989).
[CMSZ] D. I. Cartwright, A.M. Mantero, T. Steger and A. Zappa, 'Groups acting simply transitively

on the vertices of a building of type A2\ I, II, Geom. Dedicata 47 (1993), 143-166, 167-
223.

https://doi.org/10.1017/S1446788700039215 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039215


344 Donald I. Cartwright and Tim Steger [16]

[CMS] D. I. Cartwright, W. Mtotkowski and T. Steger, 'Property (T) and A2 groups', Ann. Inst.
Fourier 44 (1994), 213-248.

[Cas] J. W. S. Cassels, Local fields, London Math. Soc. Stud. Texts 3 (Cambridge University
Press, Cambridge, 1986).

[Deu] M. Deuring, Algebren (Chelsea, New York, 1948).
[HV] P. de la Harpe and A. Valette, 'La Propridt6 (T) de Kazhdan pour les Groupes Localmente

Compacts', Asterisque, Soc. Math. France 175, (1989).
[Hum] J. E. Humphreys, Linear algebraic groups. Graduate Texts in Math. 45 (Springer, New

York, 1975).
[Mar] G. A. Margulis, 'Discrete subgroups of semisimple Lie groups', Ergeb. Math. Grenzgeb.

(3) 17 (Springer, Berlin, 1989).
[Ro] M. Ronan, Lectures on buildings, Perspect. Math. 7 (Academic Press, 1989).
[Ste] T. Steger, 'Local fields and buildings', Contemp. Math. 206 (1997), 79-107.
[Ti] J. Tits, 'Reductive groups over local fields', Proc. Amer. Math. Soc. 33 (1979), 29-69.
[We] A. Weil, Basic number theory, Die Grundlehren der math. Wissen., Band 144, (Springer,

Berlin, 1974). (3rd Edition).

School of Mathematics and Statistics Istituto di Matematica e Fisica
The University of Sydney Universita di Sassari
NSW 2006 via Vienna 2
Australia 07100 Sassari

Italy

https://doi.org/10.1017/S1446788700039215 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039215

