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Abstract. We investigate the possibility of detecting deep convection in the Sun by computing
travel-time shifts induced by convective flows interacting with propagating waves. The convec-
tion zone is modeled using a velocity profile taken from an Anelastic convection simulation. We
present results obtained from a ray calculation of travel-time shifts. We compare these results
with a full 3D calculation of the wave-flow interaction.
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1. Introduction
Many investigators have attempted to detect deep convection (e.g. Zhao & Kosovichev

2004), with some efforts focused on isolating giant cell signatures (e.g. Beck, Duvall, &
Scherrer 1998) from solar data. Despite these efforts, giant cells have not been observed,
perhaps due to the relatively small surface velocities they are estimated to possess (e.g.
van Ballegooijen 1986). Furthermore, there have been no convincing observations relating
to sub-surface convective activity below the supergranular layer. Swisdak & Zweibel
(1999) have shown that solar eigenfrequency shifts may also be poor diagnostic agents
because of their weak sensitivity to large scale convection, the effects of which appear
only at the second order.

We show in this paper that time-distance helioseismology (Duvall et al. 1993) applied
to extract signatures of deep convection may prove to be a promising technique. Time-
distance helioseismology is based on measuring wave travel times from one surface loca-
tion to another to investigate properties along the wave propagation pathways between
these locations. In rough summary, signals at these two regions are cross-correlated and
analyzed to recover the wave travel times. There are two principal diagnostic agents, the
mean travel-time and the travel-time difference, the former being predominantly sensitive
to sound speed perturbations and the latter to flows.

It is known that very small thermal perturbations are sufficient to sustain deep convec-
tive activity. Convective velocities in the interior, estimated from simulations and other-
wise, are placed at 100 ms−1, which in terms of travel-time shifts is arguably a stronger
effect than sound speed flucatuations, a direct effect of the convection induced thermal
fluctuations. Keeping this in mind, we analyze only travel-time differences, which are
sensitive to flows. In order to estimate these travel-time differences, we perform a calcu-
lation of a ray propagating through a model of solar convection, taken from the Anelastic
Spherical Harmonic (ASH) code (Miesch et al. 2000). Such a calculation also shows us
the correlation between the travel-time maps and the convective velocities that the ray
samples.
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2. Ray calculations
To compute travel-time differences, δτ , we use a standard method (e.g. Giles 1998)

that applies the following equation:

δτ = 2
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where r is the radius, uh is the horizontal flow velocity component in the direction of the
propagating ray, ur is the radial velocity component along the ray path, ω the circular
frequency of the acoustic wave, l the spherical harmonic order, c the sound speed, r1 the
lower turning point and r2 is the upper turning point. For calculations presented here, we
approximate r2/R� = 1. The first and second terms on the right-hand-side denote travel
time contributions from the horizontal and radial components of the flow, respectively.

2.1. Deep convection model
The ASH code computes acoustics-free convection in a spherical shell. By neglecting
the rapidly propagating acoustic waves in the convection zone, Miesch et. al. (2000)
are able to obtain a significant increase in the computational timestep of the convection
simulation. For the ASH profile used in the ray calculation, the computational boundaries
were placed at 0.76R� and 0.96R� and act as no-slip, impenetrable walls. Because of
these boundary conditions, the radial velocity vanishes at both ends and it is important
to keep this aspect in mind while interpreting the results from the ray calculations. The
latitudinal velocity at a radial layer from the ASH simulation is shown on the upper
panel of figure 1.

2.2. Surface convection model
Acoustic waves spend the longest time in the near-surface layers. These waves are strongly
biased by supergranular activity in the sub-photospheric regions. In order to take this
effect in account, we model supergranules by cell-like structures with an average horizon-
tal cellular size of 30 Mm and depth of 15 Mm. Each unit acts a ‘convective cell’, with
velocity profiles chosen to satisfy the continuity equation, ∇ · (ρ0v) = 0 (e.g. Swisdak
& Zweibel 1999), where ρ0 is the solar density, v the vector velocity and ∇· the diver-
gence operator. The maximum velocity of a ‘supergranular’ cell is 200 ms−1. The surface
velocity profile is shown in figure 1.

For these calculations, we have taken a snapshot in time from the ASH simulation
and apply a constant (in time) surface convection model. One of the reasons we may do
this is the decoupling of timescales between the acoustics (5 minutes) and the turnover
time of convective cells (several hours to days). Also the long convective cell lifetimes in
comparison to the length of the time series of solar data we use to recover the travel-time
differences, allows us to invoke the assumption of time constancy.

2.3. Travel-times
To determine the travel-time difference associated with a point at a certain depth, we first
center an annulus around the surface projection of the desired point. The diameter of the
annulus is equal to the horizontal distance traversed by a wave whose inner turning point
is r1, as described in equation (2.1). As shown in figure 2, we then divide the annulus
into 4 equal quadrants, two horizontal quadrants ([2π − π/4, 2π) ∪ [0,π/4) and (3π/4,
5π/4]), and two vertical quadrants ([π/4, 3π/4] and (5π/4, 2π − π/4)). The travel-time
differences are divided into two categories, east-west and north-sorth, based on whether
the corresponding rays lie in the horizontal or vertical quadrants, respectively. All the
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Figure 1. Sections of velocity profiles, dimensions of the scale are in m/s. The upper panel shows
the longitudinal velocity taken from the ASH simulation at a single radial cut, corresponding to
r = 0.92R�. The lower panel shows the cellular pattern exhibited by the longitudinal velocity
at the surface, a crude model for supergranular activity. We use 4 times as many ‘supergranules’
in our calculations.

east-west travel times are averaged to give a mean east-west travel-time difference. A
similar procedure is implemented for the north-south travel-time difference. When dealing
with solar data, this procedure helps in reducing the noise.

We use multiple rays with identical frequencies ω/2π = 3.2 mHz but differing inner
turning points. For a fixed ω, the inner turning point moves closer to the surface as the
degree l increases. In figure 3, we show a sample east-west travel-time map for a ray with
l = 128. On the left panel in figure 4, we show the dependence of the RMS travel times
(east-west and north-south) with the inner turning point of the ray.

RMS travel time differences are shown on the left panel in figure 4. The horizontal
co-ordinate represents the inner turning point of the ray used to recover these travel
times. In general, one may expect that as the coherence of velocity map decreases, i.e.
the velocity power is spread over a large range of wave-numbers, travel-time differences
and correlations will also decrease. As can be seen in figure 5, the longitudinal velocity
power peaks at very low l and decays rapidly with increasing l, while the latitudinal
velocity power decays more slowly. The greater clustering of power in the convective
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Figure 2. Quadrants used for travel time averaging. East-west rays are defined as those which
propagate to from one horizontal quadrant to the other. Similarly, rays that span the vertical
quadrants are north-south propagating. After computing the travel times for rays propagating
in various directions, they are then averaged and classified according to the quadrant in which
they propagate.

Figure 3. East-west travel-time difference map for a ray with ω/2π = 3.2 mHz and l = 128
(inner turning point r1 = 0.92R�). The correlation of the travel-time map with the longitudinal
velocity map (see figure 1) at the inner turning point radius is around 0.95, indicating that
convective signals are strongly imprinted onto the travel-time differences.

longitudinal velocity than in latitudinal velocities may be the cause of relatively weaker
scattering of waves propagating in the longitudinal direction, possibly leading to the
differences in east-west and north-south travel times. Furthermore, it may be seen from
figure 6 that the longitudinal velocity is consistently larger than latitudinal velocity over
the simulation domain, contributing to the larger magnitudes of east-west travel-time
differences.

2.4. Correlations

The east-west and north-south travel-time difference maps are then correlated with the
longitudinal and latitudinal velocity maps at the lower turning point of the ray in ques-
tion. Correlations as a function of the inner turning point of the ray are shown on the
left panel in figure 4. The correlations decrease as rays with deeper inner turning points
are used. It must be noted that the east-west correlations are not always larger than
the north-south correlations, as was the case with RMS travel-time differences (see left
panel, figure 4). It is interesting to note that the correlation of the shallow rays is very
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Figure 4. The RMS east-west and north-south travel times on the left panel and correlations
with corresponding velocity maps on the right plane, as a function of the inner turning point
of the diagnostic ray. It can be seen that the east-west RMS travel times are consistently larger
than the north-south travel times for a given ray, sometimes by as much as a factor of 2. The
correlations do not follow such a clear pattern though.

Figure 5. Average power of convective velocities from the ASH simulation (in arbitrary units)
for each degree, l at r = 0.92R�. While the power increases from the bottom of the domain
to the top, the distribution profile is almost constant with radius. The variation of power with
wavenumber indicates the extent of the scattering caused by the convection on the propagating
rays. The longitudinal velocity power is strongly focused around l = 1, indicating that the travel
times will preserve the velocity structure of the convection.

high, perhaps indicating that the convective signals are so well preserved in the travel
times that inversions are not needed to recover convective structures at this depth.

3. Conclusions
Observing interior convection in the Sun is a very exciting prospect. If we are indeed

able to observe these convective cells, even if they are relatively close to the surface, we
will be able to understand if current models accurately predict the characteristic sizes
of these cells and the associated convective velocities. If we are to believe that the ASH
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Figure 6. RMS convective radial, latitudinal and longitudinal velocities from the ASH simula-
tion, as a function of depth. The solid line shows the longitudinal RMS velocity, the dots show
radial velocity and the symbols depict the latitudinal RMS velocity.

simulations are representative of the solar convection zone, then from the results we
obtain, convective signals are strongly imprinted onto the travel-time difference maps.
The correlations we obtain in the near-surface regions are so high (∼0.95) that inversions
are not necessary to recover the structure of convection at this depth. In terms of real
data, we will extract travel times using the deep-focusing technique described in Duvall
(2003).
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Discussion

ROXBURGH: What is the time scale associated with the convective cells from the ASH
simulations? Is it acceptable to use just one snapshot in time?

HANASOGE: It is a reasonable starting point for this calculation. The turnover times of
some deep convection cells (close to the bottom of the convection zone) in the ASH
simulations is of the order of a month. A simple way to estimate the timescale associated
with convective cells is to divide twice the depth of the convective cell by the RMS
velocity (longitudinal or latitudinal) at that depth.
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