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Data-driven low-order modelling has been enjoying rapid advances in fluid mechanics.
Arguably, Sirovich (Q. Appl. Maths, vol. XLV, 1987, pp. 561–571) started these
developments with snapshot proper orthogonal decomposition, a particularly simple
method. The resulting reduced-order models provide valuable insights into flow
physics, allow inexpensive explorations of dynamics and operating conditions, and
enable model-based control design. A winning argument for proper orthogonal
decomposition (POD) is the optimality property, i.e. the guarantee of the least
residual for a given number of modes. The price is unpleasant frequency mixing
in the modes which complicates their physical interpretation. In contrast, temporal
Fourier modes and dynamic mode decomposition (DMD) provide pure frequency
dynamics but lose the orthonormality and optimality property of POD. Sieber et al.
(J. Fluid Mech., vol. 792, 2016, pp. 798–828) bridge the least residual and pure
frequency behaviour with an ingenious interpolation, called spectral proper orthogonal
decomposition (SPOD). This article puts the achievement of the TU Berlin authors
in perspective, illustrating the potential of SPOD and the challenges ahead.
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1. Introduction

Fluid mechanics can provide flow descriptions with a widely varying level of
detail. In engineering applications, one may just need one quantity like a pressure
loss in a pipe flow or lift of an airfoil, regardless of the flow physics. In contrast,
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The figure by the title illustrates the SPOD interpolation between POD and Fourier modes.

Courtesy of M. Sieber et al. (see http://dx.doi.org/10.1103/APS.DFD.2015.GFM.P0007).
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direct numerical simulations of turbulence are challenged by the need for a fine
mesh resolving the Kolmogorov scale. The number of grid points scales with the
Reynolds number Re9/4. In contrast, many laminar and turbulent flows exhibit coherent
structures living in a much lower dimensional state space. These coherent structures
inspired Leonardo da Vinci’s famous drawings of a wake and were later quantified
by Eulerian and Lagrangian topology concepts. Low-dimensional coherent structure
descriptions, or feature extraction in computer-science language, are a core discipline
of theoretical fluid mechanics.

In the 19th century, unsteady flows were predominantly explored with Lagrangian
vortex models based on Helmholtz laws. Most applications were 2-D flows, like
vortex pairing, von Kármán vortex shedding, axisymmetric jets and shear layers. In
1915, B. G. Galërkin developed a Eulerian modelling path based on expansions with
global modes (see e.g. Fletcher 1984). After initial applications to vibrations in solid
mechanics, these Galerkin models enjoyed increasing popularity in fluid mechanics.
Burkardt, Gunzburger & Lee (2006) advocated cluster-based reduced-order modelling,
a novel approach that has become increasingly popular nowadays. The discussion of
reduced-order modelling approaches could easily be extended.

The most popular variants of Galerkin models are based on empirical expansions
as ‘post-mortem’ processing of computational or experimental snapshot data. In the
following, we assume a stationary observation domain Ω , a space–time dependent
velocity field u(x, t), a solution for a single operating condition and a simple
manipulation or filter v = H(u), e.g. the subtraction of a base flow uB. The
observable v and domain Ω define an inner product (·, ·)Ω in the Hilbert space
of square-integrable functions L2(Ω) and the associated norm ‖ · ‖Ω . Virtually all
expansions have the form

v(x, t)=
N∑

i=1

ai(t)ui(x)+ ε(x, t), where ui(x)=
N∑

m=1

T m
i vm(x). (1.1)

Here, the flow is expanded with N time-dependent amplitudes ai and space-dependent
modes ui, which are linear combinations of the snapshots vm at equidistantly sampled
time tm. ε denotes the expansion residual. Furthermore, if v represents the flow state,
there exists an autonomous dynamics

am+1
= F(am) where a= (a1, . . . , aN)

t. (1.2)

A key design parameter is the matrix T m
i which gears down M snapshots into a

smaller number N of the most relevant modes. This design parameter can serve several
goals. A natural choice is to minimize the average residual M−1 ∑M

m=1 ‖ε
m
‖

2
Ω . This

leads to orthogonal POD modes. POD tends to mix frequencies in each mode and thus
complicate the physical interpretation. Second, pure frequency modes can be extracted
by a Fourier transform T m

i ∼ eıωitm , ωi being the frequency of the ith mode. In this
case, the ai have, by design, harmonic behaviour, but the spatial orthogonality of the
modes is generally lost. Third, linear dynamics F(a) = Aa may be assumed, and
corresponding eigenmodes identified. The third goal leads to DMD (Rowley et al.
2009; Schmid 2010). With suitable transients some of the DMD modes are stability
eigenmodes. For well-resolved post-transient data, DMD modes approximate Fourier
modes. Moreover, the first N DMD modes may be chosen to minimize the averaged
expansion residual (Chen, Tu & Rowley 2012).
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2. Overview

The paper by Sieber, Paschereit & Oberleithner (2016) proposes a novel interpo-
lation between POD and Fourier modes. Their first ingenious step is to discover
the POD eigenvalue problem with the snapshot correlation matrix Cmn

= (vm, vn)Ω
as a design parameter. Secondly, they employ a relation between the autocorrelation
function and the correlation matrix Cmn. This relation gave rise to the idea of the filter
that leads to periodic mode amplitudes in the limit of maximum filtering. A third
important step was to derive the effect on the dynamics F from a filtered correlation
matrix. The resulting filtered eigenvalue problem can continually interpolate between
POD modes (no filtering) and Fourier modes (maximal filtering). In other words,
minimal residual and orthonormality can be traded against harmonic behaviour of the
mode amplitudes. This modal interpolation is impressively demonstrated by particle
image velocimetry (PIV) data from three experiments: a swirling jet undergoing
vortex breakdown, an airfoil with Gurney flap and a fluidic oscillator.

The key idea of interpolating modes by interpolating the eigenvalue problem is
elegant but not new. In bifurcation analysis, the change of the spectral characteristics
of the stability matrix with respect to the order parameter is a standard procedure.
For data-driven approaches, an interpolated eigenvalue problem has been employed
to interpolate between POD and stability eigenmodes (Morzyński et al. 2006).
The second key enabler, which makes the temporal correlation matrix translation
invariant with respect to time, has a spatial analogue. George (1999) considered a
space-translation invariant cross-correlation and arrived at spatial Fourier modes for
the corresponding POD problem. The third enabler, which incorporates the dynamics
F, is key to the construction of DMD modes. The achievement of the authors is
bringing all enablers together to explore an important new design opportunity in
modal expansions.

3. Future

The literature on the proposed empirical modal expansion is much richer than
for the POD and Fourier modes. The modal expansion may be geared towards an
objective function (Hoarau et al. 2006). Another direction may be sparse dynamics
(Brunton, Proctor & Kutz 2016). To some extent DMD for post-transient data yields a
sparse dynamics with a system of oscillators. One may also add Navier–Stokes-based
balance equations as a constraint (Balajewicz, Dowell & Noack 2013). The list of
modal expansions is as rich as the goals for which reduced-order models are used. For
the interpolation between expansions for different goals, the underlying eigenproblems
constitute, again, an elegant starting point.

There are still big challenges for modal expansions and associated Galerkin models
– all arising from the fact that fluid flows do not behave like the membrane that
B. G. Galërkin considered. First, low-order flow descriptions may require ‘flexible’
modes. A cylinder wake transient from the steady solution to periodic vortex shedding
shows a slow metamorphosis from far-wake fluctuations characterized by stability
modes to near-wake fluctuations accurately presented by POD modes. Elegant
extractions of such flexible modes are pursued by Iollo & Lombardi (2014) and
Babaee & Sapsis (2016). Second, low-order expansions may require addition or
removal of modes depending on the flow state and operating condition. Clustering
may serve these purposes (Kaiser et al. 2014). Yet, an elegant general-purpose
framework is still missing. Third, a key challenge of modal expansions and associated
Galerkin models is rarely reflected in the literature. The very idea of modal
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expansions implies a coherency in space–time behaviour. Equation (1.1) is based
on an ‘elliptical’ coherency which may be characterized by the cross-correlation
function R(x, y)= u(x, t)⊗ u(y, t). If one knows the flow u in a tiny neighbourhood
of x, one can determine all mode amplitudes from (1.1) and thus the flow behaviour
everywhere. This ansatz might be justified for post-transient closed flows or absolutely
unstable flow regions. For shear flows, a far more realistic prediction can be made by
considering the convection process. This ‘hyperbolic’ coherency is reflected in Taylor’s
frozen flow hypothesis and can be quantified in the space–time cross-correlation
function R(x, y, τ )=u(x, t)⊗ u(y, t− τ). The convection effect could be incorporated
in a Floquet-like expansion v(x, t) =

∑N
i=1 ai(t) ui(x, t) with time-dependent modes

representing convecting flow structures and slowly varying ai. In principle, the POD
procedure for the space–time cross-correlation function can distill these modes.

Looking at recent progress, one can expect dramatic changes in data-driven
low-dimensional modelling to incorporate the dynamics, mode deformations, mode
‘scheduling/switching’ and convective effects, largely fuelled by the powerful methods
of machine learning. It is also natural to expect that we will see first many
uncorrelated advances for subproblems and problem-related ‘cook book’ recipes
before unifying optimization principles for well-defined classes of problems emerge.
Last, but not least, the goal of reduced-order modelling should always be kept in
mind, but this may be the topic of a future Focus on Fluids article.
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