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Convergence of elements

in random normed spaces

Robert Lee Taylor

For a random normed space of mappings into a separable normed

linear space, convergence of identically distributed elements in

the random norm (norm distribution) is shown to be equivalent to

convergence in measure in the weak linear topology. Convergence

in measure in each coordinate of a Schauder basis is also shown

to be a necessary and sufficient condition for convergence in the

random norm topology. These results have laws of large numbers

for random elements in separable normed linear spaces as almost

immediate corollaries and illustrate some of the recently

obtained laws of large numbers for random elements. Similar

results are also given for elements which need not have the same

norm distributions, and the results are extended to linear metric

spaces. Finally, applications of the results to stochastic

processes are considered.

1. Introduction and preliminaries

The recent consideration of a stochastic process as a random element

in a function space (a measurable function from a probability space to a

function space) by Doob [5], Mann [7], Prokhorov [75], Billingsley [i,1, and

others, has inspired the study of random elements and their properties. In

particular, the laws of large numbers (the Cesaro convergence of a sequence

or measurable functions) have been generalized to random elements by

Mourier [9], 1101, Beck [7], Beck and Warren [3], Beck and Giesy [2],

Taylor [77], Taylor and Padgett [.181, and others. These recent extensions
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of the laws of large numbers were summarized by Padgett, Taylor [74]. At

the same time the concept of a random normed space of mappings and related

properties were being developed by Serstnev [76], Mustari, Serstnev [72],

and Mushtari [7 7]. In this paper results are obtained for convergence in

the random norm topology of a linear space of random elements. In

particular, necessary and sufficient conditions for the convergence are

given in terms of the dual space of a separable normed linear space and in

terms of coordinatewise conditions. These results illustrate some of the

laws of large numbers referred to above and relate the concepts of random

elements and random normed spaces of mappings.

A random normed space of mappings into a normed linear space X with

norm || || is defined [7 7, p. 337] to be a linear space L whose elements

are functions from a probability space (SI, F, P) into X such that

{u> € SI : \\V(ui)\\ 2 a} € F for any V € L and any real number a . The

random norm (or norm distribution) on L is defined by

p(F)(6) = P[||V|| 2 6] , and the topology T of convergence in the random

norm on L is given by the system [N , : a > 0 and 6 > o} of

neighborhoods of 6 (the zero element of L ) where

N x = {V € L : p(F)(S) £ o} . When X is separable, one example of aot, o

random normed space of mappings is the set of all random elements from a

probability space to X , that is, the set of functions which are

measurable with respect to the sigma-field generated by the open subsets of

X . However, when X is not separable, the set of all random elements may

not be a linear space since the sum of two random elements need not be a

random element [73]. For convenience, it will be assumed throughout this

paper that the constant functions are in L .

The topology T defined by the random norm is the same as the

topology of convergence in measure and is pseudometrizable. A pseudometric

which generates the topology T is given by

d(V, Z) =

where V and Z are in L , and it easily follows that V, •*• V in the

random norm topology if and only if d{V\> V) •*• 0 .

Elements {V-. : A € 4} in L are said to be identically distributed
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if P\yx € D] = P\yx Z D] for a l l X^ X2 (. A and for each Borel subset

D . Final ly, E\\V\\ will denote the Lebesgue integral

J \W\\dP ,

and £||V||r < °° denotes that V € Lr(Q, F, P) for r > 0 .

2. Convergence results for random normed spaces of mappings

In this section it will be shown that for identically distributed

elements in L convergence in the random norm topology is equivalent to

convergence in measure in the weak linear topology of a separable normed

linear space. If the normed linear space is a Banach space, then

convergence of identically distributed elements in the random norm topology

will be shown to be equivalent to convergence in measure coordinatewise for

any Schauder basis. These results will also be extended to classes of

elements which need not be identically distributed. Finally, an example

will be given where the elements of L satisfy the hypothesis of the

results and converges in measure but do not converge almost everywhere.

The first results will be for Banach spaces which have Schauder

bases. These results are used in obtaining the results for separable

normed linear spaces, but perhaps more importantly they provide convergence

in the random norm topology with only coordinatewise conditions. In

particular, they are used later to obtain results for linear metric spaces.

Note that since T is pseudometrizable it suffices to state the result in

.terms of sequences.

THEOREM 1. Let X be a Banaah space which has a Schauder basis

{b-^, fj\ j and let {V } be a sequence of identically distributed elements

in L , and let V £ L . For each k , fv[vn) converges to fAV) in

measure if and only if V converges in L to V .

Proof. The "if" part is obvious since convergence in L is

equivalent to the convergence of P[||7 -V\\ > e] to 0 for each e > 0 .

t
For the "only if" part, let VAx) = [ fv(x)b, ,

* k=l K K
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QAx) = x - UAx) , and e > 0 be given. For each t and for all n ,

(2.1) d{Vn, V) = d{Vn-V, 0)

V -V) , o) + d[Q,[v -V) , o) .

Also, for each t and for a l l n ,

(2.2) d{Qt{Vn-V), o) S d{Qt[V^, o) + d{Qt(V), o)

= f ffi |w f,, dP + f

f ||9*
j 5TM

since the elements {Qt{
v ) : « = 1. 2, . . .} are identically distributed

for each t and f(y) = -~- for y t 0 is a Borel fimction. Since

QJ-(%) •* 0 for each x € AT and r*£— £ 1 for all y 2 0 , £ can be

chosen so that d^O^-F) , o) < e/2 for all n . For this t ,

r IWJv-v)\
(2-3) d(Ut{Vn-V) , 0) j ^ ^

%u dP .

Since /^(^ ~v) "*" ° i n probability for each fe , there exists ff such

that d{uAv -V) , o) < e/2 for all n > N . Thus, from (2.1),

d{Vn, V) < E /2 + e/2 = e

for a l l n > N . II

The condition of identically distributed elements was used to achieve

the uniform truncation (in n ) to finite-dimensional subspaces of the

Banach spaces. It is easy to see that the condition of identical

distributions can not be replaced by uniform boundedness of the elements

even when X is assumed to be a separable Hilbert space. Let U

denote the sequence of zeros except for a one in the nth coordinate. The
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constant elements of L , V = U , converge to the zero sequence in the

weak linear topology of X = I , but [| V || E l for all n . Hence,

V = U does not converge to the zero sequence in L .

Other conditions can be used to obtain the uniform truncation to

finite-dimensional subspaces, and hence the condition of identically-

distributed elements can be relaxed. For example, Corollaries 2 and 3 will

show that convergence in each coordinate of a Schauder basis is equivalent

to convergence in the random norm for classes of elements in L which need

not be identically distributed. Later, it will be shown that the structure

of the elements in Corollaries 2 and 3 is quite easy to obtain in

application of these results to stochastic processes. Recall that random

variables are measurable functions from a probability space into the real

numbers.

COROLLARY 2. Let X be a Banach space which has a Schauder basis

[b , f } , and let {V } be a sequence of identically distributed elements

in L , and let V € L . If {A } is a corresponding sequence of random

variables such that the essential supremum of \A | is uniformly bounded

in n j then for each k , /V [A V ) converges to V in measure if and

only if A V converges in L to V .

The proof of Corollary 2 will not be given here but follows by

combining the proof of Theorem 1 with an appropriate modification of the

proof of Corollary 3.

COROLLARY 3. Let X be a Banach space which has a Schauder basis

[b , f } , let V € L , and let {V } be a sequence of identically

distributed elements in L such that

1 r~^ < °° for some r > 1 .

If {A ) is a corresponding sequence of random variables such that

\E\ \An\ \> is a bounded sequence, then for each k s f. (A V ) converges

to V in measure if and only if A V converges in L to V .
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Proof. The "if" part is again obvious. For the "only if" part,
define U. and Q. as in the proof of Theorem 1. Let e > 0 be given.

For each t and for al l n ,

(2 .U) d[AnVn, V) < d[Ut{AnVn-V), 0) • d{Qt{AnVn-V), o) .

Also, for each t and for a l l n ,

(2.5) d[Qt{AnVn-V) , 0) 5 d{Qt{AnVn), o) + dfyiV), o)

r \A \\\Q.(V ) | | f

Since 6. (as) •*• 0 for each x 6 X , -*— 5 1 for all !/ > 0 , and
u 1 •%£

is a bounded sequence, t can be chosen so that

d[Qt(A V -V) , 0) < j for a l l n . Similarly to (2.3) i t follows that for

this t there exists N such that d[u.[A V -V) , o) < §• for al l n > ff .

Hence, by (2.k), the proof is complete. / /

These results obviously also hold for any normed linear space which
has a Schauder basis so that the partial sum operators {U.} are uniformly

bounded in norm (and hence are continuous and Borel measurable). For%

example, X could be a normed linear space which has a monotone basis
[J9]. Also, the structure of the product sequence {A V } is often easily

obtained in applications. Let {Z } be a sequence of separable Wiener

processes on [0, l ] . With probability one these processes can be
regarded as random elements in the Banach space C[0, l ] of real-valued
continuous functions on [0, l ] and hence are elements in L when
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X = C[0, l] . By letting A be the constant random variable E

and Z = A V for each n , the elements {V } are identically
n n n n'

distributed. An extension of this example will be given in the last

section when random mappings in Frechet spaces are introduced and

applications of these results are considered. But first, the results for

Banach spaces which have Schauder bases will be used to obtain the

equivalence of convergence in measure in the weak linear topology of a

separable normed linear space and convergence in the random normed space of

mappings.

THEOREM 4. Let X be a separable normed linear space, let V (. L ,

and let {V } be a sequence of identiaally distributed elements in L .

For each continuous linear functional f , f[v ) converges to f(V) in

measure if and only if V converges in L to V .

Proof. Since X can be embedded isometrically in the Banach space

C[0, l] with norm ||x|| = sup |x(t)| [S, p. 67], there exists a one-to-
t

one, bicontinuous, linear function h from X into C[0, 1] . The

elements {h\V )} are identically distributed in a random normed space of

mappings into C[0, l] , and C[o, l] has a Schauder basis. For each

continuous linear functional g on C[0, l] (and hence for each

coordinate functional), g[h{v }) = {h*g)(y ) converges to

(h*g)(V) = g[h(V)) in measure where h* is the adjoint function from

C[0, 1]* into X* . Thus, by Theorem 1, \\h[v )-h{V)\\ •*• 0 in measure,

and hence ||V —V|| •*• 0 in measure.

COROLLARY 5. Let X be a separable normed linear space, let

V € L , and let {v } be a sequence of identically distributed elements in

L . If {A } is a corresponding net of random variables such that the

essential supremum of \A \ is uniformly bounded in n , then for each

continuous linear functional f € X* , f[A V ) converges to f(v) in

measure if and only if A V converges in L to V .

COROLLARY 6. Let X be a separable normed linear space, let
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V € L , and let {v } be a sequence of identioally dietributed elements in

L such that

£| |V1l | r / ( r - l ) < « for some r > 1 .

If {A } is a corresponding sequence of random variables such that

\ \^n\ f is a bounded sequence, then for each continuous linear

functional f € X* , f[A V ) converges to f(V) in measure if and only

if A V converges in L to V .

3. Comparisons and laws of large numbers

In this section the condition of identical distributions in the
results will again be examined, and the relationships of these results and
the laws of large numbers will be considered. In both cases examples of
spaces and elements will be given where the elements are identically
distributed and where coordinatewise conditions or dual space conditions
will be sufficient to provide convergence in the random norm and hence in
measure but not convergence almost everywhere.

If the elements {V } are identically distributed (or even have the

same norm distribution, that i s , p[\\V || 2 a] = P[\\V || > a] for al l a > 0
u n J u m J

and for all m and n ), then V •*• 0 in measure implies that V = 0

' n n

almost everywhere. This follows since PQlt̂ H < e] = P[||V || £ e] •* 1 for

each e > 0 as n -*• °° , and

o] = P n \\\v\\ sf-1
Lfe=i L x "J

= lim P11|V || 5 j l = 1 ,

However, this does not detract from the results in the previous section,
since {V ) c L being identically distributed and V € L need not imply

that {V -V] are identically distributed. This can be seen tr ivial ly by

let t ing the probability structure be that of the coin-tossing problem and
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letting V be the indicator function for a head appearing on the nth

toss. Note that {v } are identically distributed but that [V -V] are

not when V B V . To show that {V -V : n > m\ need not be identically

distributed for any m , let

00

V = I -k-V.
k=l 2K K

in the coin-tossing example.

A somewhat more involved example will give identically distributed

elements in L and random variables which satisfy the conditions in

Corollary 2, 3, 5> or 6, where the product sequence converges in measure

00 GO

but does not converge almost everywhere. Let ft = ~[ f SI. , F = ] |" F. ,

i=l i=l ^
CO

and P = T T P. where £2. = { l , 2, 3 , . . . } , F. = power set of SI. ,

try rt

and P.({n}) = o/n for each i with a = 6/TT . The space X may be

taken to be tP (p > l) , e (convergent sequences), or a (null

convergent sequences). For (0 = (u> , ..., w, , ) € Q. , define ^.(u) to

be a)tju where M is the sequence of zeros everywhere except for

a one in the nth coordinate. Note that {V, } are identically

distributed elements in L and that

P[vk = ( n V 0 ] = P[{« :
for every k . Define A. to be the constant random variable k for

each k . Then, Ĥ fê iJI * 0 in measure since

2
with probability c/n and
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> e] = I -^j- -• 0 as
n>e2k n

Hovever,

OO OO OO r x

{u : IM-(«)vfr(u)|| + 0} = n u n L -. lH-,(u)7.(u)|| < 4
K K m = l n = l fc=n l " K m>

(a) : |U (u))7 (o))|| < l } .

But,

Hence,

Therefore,

OO OO

u n

{(o : I K (u))F.(u))|| < 1} = 0 {u : Wj, < fe}

0 < P[{u :

£ P U n {u : \\A.
M = l ?C=

T
= l im P P {w :

\k=n

o}]

(<o)ll S 1}

< l }

k n

f 1 °°
1 5 , , , T—r

[l - fcJij 2 lim 1 I
-{o/k+i)

m

= lim lim e k=n k+1 = 0 .
JfKJO flJ-KD

does not converge to zero almost everywhere.

Weak laws of large numbers can he obtained from the structure of
random normed spaces of mappings since convergence in the random norm
topology is convergence in measure. First , le t X be a Banach space which
has a Schauder basis {fc, , / , } , and let {V } be a sequence of

identically distributed elements from L such that SllKjl < <*> . If the

weak law of large numbers holds in each coordinate, that i s , if for each
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' k(n

for each t ,

Vm) = n
i n n e M U r e a s n ' t h e n

where EV denotes the Pet t i s integral of V^ . Moreover,

(3.2) d «* r
m=l

. o| <
II tin w=:m=l ml

tin m=l

2 r-

As t •* °° , the expression in (3.2) goes to zero (independent of n ).

Hence, from (3.1) and (3-2),

as n •*<*>, which implies that the weak law of large numbers holds; that

is,

n
^ t V -EV
n L m 1

in measure as w -»• °° . Similar to the proof of Theorem 1*, it follows that

for identically distributed elements in L the weak law of large numbers

holding in the weak linear topology is necessary and sufficient for the

weak law of large numbers to hold. Using the structure for the elements

which is given in the corollaries, weak laws of large numbers are available

for classes of elements which need not be identically distributed. By

letting Vn = M . with probability % and Vn = -iC
n' with probability

and letting X = I , it is seen that some condition of identical
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distribution is needed in general for the laws of large numbers to hold,

since in this case

ni n ||
L I V \\ = 1 } 0 = EV for a l l n

* A HI »
Beck and Warren [3] constructed random elements {v } in the

separable Banach space of null convergent sequences which are identically

distributed and uniformly bounded and where [f{v } } satisfied the weak

law of large numbers for each f t X* but which did not satisfy the strong

law of large numbers in the norm topology. Thus, from the development

which was previously given for the random normed space of mappings and the

weak, laws of large numbers, their example provides identically distributed

elements {V } with E\\V \\ < « such that Cesaro convergence of {V } to

EV occurs in measure but not almost everywhere.

4. Random metric space of mappings

In this section the results which were given in Sections 2 and 3 will

be extended to certain linear metric spaces. The definition and structure

of the random metric space of mappings into a linear metric space will be

developed in a similar manner to that of the random normed space of

mappings. It will be shown that for identically distributed elements

convergence in the random metric topology is equivalent to convergence in

measure in the weak linear topology of certain Frechet spaces. These

results also hold for classes of random elements which need not be

identically distributed. In addition, if the linear metric space is

complete, then convergence in measure coordinatewise for any Schauder basis

is both necessary and sufficient for convergence of identically distributed

elements in the random metric topology. Again, these results will

illustrate laws of large numbers, and application of these results to

stochastic processes will be considered.

A random metric spaoe of mappings into a linear metric space M with

metric m is defined to be a linear space L whose elements are functions

from a probability space (Q, F, P) into M such that

{to € Q : m[v(di), o) * 6} € F for any V € L and any real number 6 . The

random metric (or metric distribution) on L is defined by
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P(V, Z)(6) = P[m{V, Z) > 6] , and the topology T of convergence in the

random metric on L is given by the system {N * : a > 0 and 6 > 0} of

neighborhoods of 6 (the zero element of L ) where

Na & = {V € L : p(V, 9)(6) < a} .

To avoid trivial cases, it will again be assumed that the constant

functions are in L . Hence, when M is separable, then L will be the

set of random elements on M ; that is, V € L if and only if V is a

measurable function with respect to the sigma-field generated by the open

subsets of M . Also, the topology T defined in this manner is the same

as the topology of convergence in measure and is again pseudometrizable.

Identically distributed elements and integrals are defined similarly to the

normed linear space case.

For the first results let M be a separable Frechet space whose

metric m is given by a sequence of seminorms {p. } .

THEOREM 7. Let M be a separable Frechet space whose metric is

given by the Frechet combination of a sequence of seminorms {p.} . Let

{Vn} be a sequence of identically distributed elements in L , and let

V € L . For each continuous linear functional f on M , f[v )

converges to f{V) in measure if and only if V converges in L to V .

Proof. Since / is a continuous linear functional on M , the "if"

part is obvious. For the "only if" part, it suffices to show that for each

k , P\pv{V -V) > E] -»• 0 for each £ > 0 .

Let the positive integer k be fixed, and let g be a continuous

linear functional on the separable normed linear space M./N-, where wi,/^

is the quotient space with N-. = {x € M : p-Ax) = 0} and with M,

denoting the seminormed space [fi, pA . Let Q, denote the canonical

mapping of M, onto U,IH. , and let || ||. denote the norm on H./N-,

defined by HekU)llj, = Pfe(x) for each x S. M . Thus, {^(l^)} are

identically distributed elements in a random normed space of mappings into

Af./A?, , and ^(P) is an element in the same random normed space of
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mappings into M.lHly . Since g ° Q. i s a continuous linear functional on

M. , and hence on M , Theorem k implies that

in measure. / /

Again, the condition of identically distributed elements can not be

dropped, but Corollaries 5 and 6 can similarly be stated and proved for the

Frechet space M . Also, i t is important to note that stochastic processes

are random elements in function spaces. In particular, discrete parameter

stochastic processes are random elements in the Frechet space s of all

real-valued sequences, and hence are elements in the random metric space of

mappings into the Frechet space 8 . Before considering stochastic

processes and the space <7[0, °°) , the last result for complete linear

metric spaces which have Schauder bases will be given.

THEOREM 8. Let U be a complete linear metric space which has a

Schauder basis {b-., fA , let {V } be a sequence of identically

distributed elements in L , and let V € L . For each k , fi,[V )
K, n

converges to fi,(V) in measure if and only if V converges in L to
K n

V .

Proof. The proof will follow similarly to Theorem 1 if it can be

shown that

llm , ._/£ /?, ,A ̂  dP = 0

rn(Ut(Vn-V),Q)

uniformly in n and that

t Vn-V) ,0j ^

converges to zero in measure for each t .

First , since the elements {QAv ) : n = 1, 2, . . . } are identically

distributed for each t and QAX) "*" 0 for each x € M as £-*•<»,
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by the Lebesgue bounded convergence theorem. Also, since fj,{V -V)

converges to zero in measure for each k , every subsequence of

has a further subsequence which converges to zero. Hence, for each t ,

t m[u AV-V),6) t , m[fk[V-V)bk,6)
lim , ._;„ i" T,\ ̂^ dP < lim 7 ," ,? ,?

= o . //

While the condition of identically distributed elements can again not

be dropped, Corollary 5 can be extended to complete linear metric spaces

which have Schauder bases. However, Corollary 6 does not readily extend

because of the possible non-homogeneity of the metric.

Let {Z ) be a sequence of separable Wiener processes on C[0, °°) .

With probability one the sample paths are continuous, and hence these

processes can essentially be regarded as elements in the random metric

space of mappings with M = C[0, °°) . By letting A be the constant

r 2-i*

random variable J p (l) and Z = A V for each n , the elements

{V} are identically distributed and the corollary to either Theorem 7 or

Theorem 8 can be applied. In particular, C[0, °°) has a Schauder basis

{bn, fn] where

n *• 1 2

with r> , v , and r being dyadic rational numbers. Thus, Theorem 8

yields convergence in measure for the processes with only pointwise

conditions, which also yield the weak convergence of BiI I ings ley [4]. The

Wiener processes can be replaced by any family of stochastic processes

which have continuous sample paths on [0, °°) , and the requirement of the

same finite-dimensional distributions is sufficient to insure the condition
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of identical distributions.
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