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Abstract

Functional modeling is an analytical approach to design problems that is widely taught in certain academic communities but
not often used by practitioners. This approach can be applied in multiple ways to formalize the understanding of the systems,
to support the synthesis of the design in the development of a new product, or to support the analysis and improvement of
existing systems incrementally. The type of usage depends on the objectives that are targeted. The objectives can be cate-
gorized into two key groups: discovering a totally new solution, or improving an existing one. This article proposes to use
the functional modeling approach to achieve three goals: to support the representation of physics-based reasoning, to use
this physics-based reasoning to assess design options, and finally to support innovative ideation. The exemplification of the
function-based approach is presented via a case study of a glue gun proposed for this Special Issue. A reverse engineering
approach is applied, and the authors seek an incremental improvement of the solution. As the physics-based reasoning
model presented in this article is heavily dependent on the quality of the functional model, the authors propose a general
approach to limit the interpretability of the functional representations by mapping the functional vocabulary with elemen-
tary structural blocks derived from bond graph theory. The physics-based reasoning approach is supported by a mathemat-
ical framework that is summarized in the article. The physics-based reasoning model is used for discovering the limitations
of solutions in the form of internal contradictions and guiding the design ideation effort.
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1. INTRODUCTION

Tomiyama et al. (2013) provide a solid analysis of the reasons
behind the important gap that exists between the study and
usage of function modeling in academia and among industrial
practitioners. The concept of a function can be used for sev-
eral purposes within the engineering design process. It is, for
example, used in requirements engineering. Requirements
templates such as boilerplates (Dwyer et al., 1999) are often
formed using simple subject–verb–noun triplets. Require-
ments do not exclusively represent functions, but a great
part of them are functional requirements (to do something).
The function is a classical way to describe the overall purpose
of a system, to describe the internal structure, architecture,
and behavior of a system. Different aspects of function think-
ing or modeling have already been used and taught for a long

time as an important part of the engineering design process
(Pugh, 1991; Otto & Wood, 2001; Pahl & Beitz, 2013). For
example, for development phases and tools in requirements
engineering to describe the functional requirements, quality
function deployment to allocate customer needs to functions,
system engineering to represent the system architecture, and
also for system development management purposes, value
engineering (Miles, 1967). Therefore, why, despite its pres-
ence all over the engineering design process, is function
modeling not more widely used by design practitioners in
several of the design and engineering communities? Several
reasons exist that can explain the limited usage of function
modeling in industry (Tomiyama et al., 2009, 2013). First,
the engineering academic community, which is trying to pro-
mote function modeling, often presents studies related to
new product development, even though most of the design
activities inside companies are routine or incremental design
tasks. The academic community seldom studies incremental
or routine design tasks. Consequently, practitioners often
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consider that their everyday activities cannot be supported by
function modeling. Tomiyama et al. refer to this as a “not prac-
tical” syndrome among practitioners (Tomiyama et al., 2009,
2013). Second, the added value of function modeling is often
not immediately perceived by practitioners. It is often consid-
ered more efficient and more immediately rewarding to repre-
sent a solution quickly in a three-dimensional computer-aided
design software tool, instead of taking time to abstract the so-
lution in the form of a function model. In addition, function
models, when developed, can quickly explode and become
difficult to manage; function modeling is often seen as a
source of wasted time. Third, there are few professional soft-
ware tools capable of representing big function models effi-
ciently on a computer screen of limited size. It is particularly
difficult to get an overall picture of a complex function model
on a computer screen. Another element limiting the impact of
function analysis is the abstraction gap that exists between
function models and design structures. In the literature, several
models have been proposed to bridge this gap. The function–
behavior–structure (FBS models; Gero, 1990) and the require-
ment–function–behavior–structure model (Christophe et al.,
2010) are both attempts to connect functions to behaviors,
states, and structures. Nevertheless, those models provide little
operational support for function-level or qualitative simulation
of system behaviors (Tomiyama et al., 2013). The qualitative
simulation should improve the product development process
(Sen & Summers, 2013; Tomiyama et al., 2013).

The present article proposes to integrate function modeling
into a broader framework to achieve three concrete goals:
first, to support the representation of physics-based reason-
ing; second, to use this physics-based reasoning to assess
design options; and third, to use the framework to support
innovative ideation. In this article, the exemplification of
the functional-based approach is performed via the use of a
case study proposed for this special issue: a glue gun. A re-
verse engineering approach is applied, and the authors seek
an incremental improvement of the solution. The approach
follows an iterative process to break the functions down
from a black box model to a functional model with the desired
level of detail. The approach aims at converting the function
models to a list of governing equations and a causal graph be-
tween the variables in the system.

The rest of this paper is organized as follows: a state-of-the-
art analysis of the concept of functions and of different func-
tional techniques is presented in Section 2. This section ends
with a description of the approaches that can be used to limit
the variability of function modeling. In Section 3 and Section
4, the successive modeling steps and theoretical aspects of the
dimensional analysis conceptual modeling (DACM) frame-
work are presented. This is followed by the case study in Sec-
tion 5, in which DACM framework modeling is applied to
model the glue gun, to illustrate the several different model-
ing options, and to demonstrate the added value of the frame-
work. In the discussion/conclusion Section 6, the capabilities,
current limitations, and future developments of the DACM
framework are discussed further.

2. BACKGROUND

2.1. Nature of functions in different methodologies
and theories

To introduce the concept of functions, the definition of an ar-
tificial system proposed by Le Moigne is relevant. According
to Le Moigne (1994), influenced by Von Bertalanffy and
other systems theorists, a general system is an artifact (i.e.,
an artificial object) evolving in a certain environment to fulfill
a purpose (i.e., a finality). This artifact functions (i.e., does
activities) and its internal structure evolves over time, without
losing its structure. Artifact or natural systems do activities.
Consequently, they exhibit functions. These functions are
an abstract concept describing the activities of a system.
The concept of a function is present in sciences such as biol-
ogy (Dusenbery, 1992), economics (Stahel, 1997), and sys-
tems theory (Le Moigne, 1994; Luhmann, 2013). The con-
cept is extremely useful in analyzing complex systems. To
quote from Herbert Simon (1996): “We define a polar bear
by the conjunction of a project: survive by functioning, an
environment: The Arctic continent, then by analysing the
structural anatomy of this bear. . . .”

The importance attributed by systems theory and systems
engineering to the concept of a function is also present in en-
gineering design. Nevertheless, the concrete usage made of
the concept depends greatly on the authors and the viewpoints
they adopt. In the work of Pahl and Beitz (2013), a functional
structure is defined as “a meaningful and compatible combi-
nation of sub-functions into an overall function.” The func-
tions are classified as main and auxiliary functions. Main
functions are those subfunctions that serve the overall func-
tion directly, and auxiliary functions are those that contribute
to it indirectly. The definition of a function and the relations
between functions and design parameters are general, and the
final decision about the meaningful and compatible combina-
tion of the function depends uniquely on the designer’s per-
sonal preference. In axiomatic design (Suh, 1990), functional
requirements are defined as “the minimum set of independent
requirements that completely characterize the design objec-
tive for a specific need.” The concept of a function is still
fuzzy, and no distinction between main and auxiliary func-
tions is made by the author. In the initial general design the-
ory in 1981, Yoshikawa defines a function thus: “When an
entity is exposed to a circumstance, a peculiar behavior ap-
pears corresponding to the circumstance. This behavior is
called a visible function. Different behaviors are observed
for different circumstances. The total of these behaviors is
called a latent function. Both are called function inclusively”
(Yoshikawa, 1981). In the NFX50-151 standard (NFX50-
151, 1991), a function is defined as “an action of a product
or one of its components expressed in terms of finality.”
The standard also distinguishes two types of functions. The
first one is called a service function. The service function is
“the actions expected of the product in order to answer the
user’s needs.” The second type of function is a constraint
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function, which is the “limitation of the designer’s freedom
considered to be necessary for the applicant.”

In most of the design methodologies or theories, the argu-
ments about functions are not intended to give a clear defini-
tion of the function itself, but to show how desired overall
functions are decomposed into identifiable subfunctions until
they correspond to certain entities or design objects. Often
implicitly (and in disagreement with principles from value
analysis or system engineering), the designer has a solution
in mind and maps this solution with a function decomposition
matching this representation. This aspect often remains impli-
cit and is rarely studied in functional analysis. In particular,
when incremental innovation or routine design tasks are tak-
ing place, a functional model is the result of an iterative
process that ends when the functional model matches the
physical solution. This interplay between function/structure–
behavior requires further research. Functions are usually
used in two ways, for analyzing an existing object by discov-
ering “How does this object function?” or to design a new ser-
vice or artifact by answering the question “What are the
artifact’s functions?” In other terms, function modeling can
be used to perform reverse engineering analysis, as per its
main use in Otto and Wood (2001) or to create new artifacts.
The nature of the day-to-day design activity characterized by
routine or incremental design tasks is better grasped by an-
swering the question “How does this object function?” and
by performing reverse engineering. The question nevertheless
remains of “How is value for the designer to be generated with
the reverse engineering approach?” There is a need for a
methodology based on reverse engineering and capable of
analyzing the weaknesses of existing solutions but also ex-
ploring the design space and evaluating the potential design
directions. The concept of value is addressed in the DACM
framework developed in the article. The selection of colors
for the causal graphs in DACM is a way to represent the values
and viewpoints of the designers.

Currently, function modeling offers few methods to provide
solid support to those objectives. The methods briefly pre-
sented above allow the gap between functions on one side
and structure and behavior on the other side to be bridged to
some extent but are not capable of providing simulation ca-
pabilities and especially capabilities to support physics-based
reasoning to assess design options and for ideation purposes.
A fundamental paradox emerges. Function modeling is an at-
tempt to abstract and formalize design problems in order to un-
derstand the nature of the problem better, but at the same time,
there is a need for early concretization and validation via pro-
totyping and/or simulation. How can this be done quickly and
easily in early stages without the need for complex prototyp-
ing or simulations? The article aims to reconcile these view-
points by associating function models and early simulations.

Functions are used at different stages of the design process
for different purposes. Specific processes and tools reflecting
the different viewpoints and usages have been developed.
This section provides a rapid overview of the most common
processes and function representations. In systems engineer-

ing (INCOSE, 2012; System Engineering Fundamentals,
2013), a specific effort is made to identify the functional re-
quirements, to decompose them to lower function levels, to
allocate performances and limitations to the different func-
tional levels, to define functional interfaces, to develop func-
tional architectures, and to transform functional architectures
into physical architectures. Figure 1 illustrates this rich usage
of functions in systems engineering.

Figure 2 presents the different steps of the systems engi-
neering process where the concept of functions is used. The
functionalities of a system are considered throughout the
life cycle of a design project. On the contrary, the functional
modeling occurs only at the beginning of a development pro-
cess. At this early stage too, verification is needed, and in-
stead of considering the development process as a single V
model (VDI, 1993), it might be more appropriate to consider
multiple imbricated V cycles where verifications take place at
each stage of the process. This article aims to provide such a
type of verification capability for function modeling. Figure 3
summarizes a few of the most common forms used for the de-
composition of a function or functional architecture, such as
the functional tree, the functional structure, and the coupling
matrix (NFX50-151, 1991; Le Moigne, 1994). The func-
tional structure is the most commonly used.

The functional boxes themselves can be depicted using
three colors to characterize the level of knowledge associated
with those boxes. Figure 4 presents those colors. The inputs
and outputs of the functional boxes also have different forms.
The representation from Pahl and Beitz shown in Figure 5 is
the most commonly used.

Another way to represent a function is the octopus diagram
in Figure 6. The diagram presents the different elements of the
environment and the system to be designed. The diagram
allows the listing of the different service functions of systems,
as well as the constraint functions. It can also be replaced in
the system modeling language using a use case diagram (Frie-
denthal et al., 2008).

A design structure matrix (DSM) is a way of representing a
graph but also a functional architecture. A good overview of
DSM usage is provided by (Eppinger & Browning, 2012). A
DSM is especially used to model the structure of systems or
processes. A DSM lists all the constituent parts of a system
or the activities of a process and the corresponding informa-
tion exchange, interactions, or dependency patterns. DSMs
compare the interactions between elements of a similar na-
ture. Figure 7 presents an example of a DSM used to map
functions together. A DSM is a square matrix (i.e., it has
the same number of columns and lines) that maps elements
of the same domain. A domain mapping matrix associates
elements of a different nature in a matrix format and can
also be used to map, for example, functions and components.
The DACM framework presented in Section 3 utilizes DSM
as an efficient way to automatize the physics-based reasoning
approach.

The architecture of a system is usually represented using
the functional structure or a rich representation language
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such as Integrated Definition Methodology (IDEF; Hanra-
han, 1995) or one of the diagrams from system modeling lan-
guage (Friedenthal et al., 2008), such as an activity diagram
or a sequence diagram. Through all its variants the IDEF rep-
resentation language allows multiple aspects of functions to
be represented. The sequence of functions can also be repre-
sented using languages such as Petri nets or Grafcet (NFC03-
190þR1, 1995). Figure 8 represents the two-function model-
ing of a hybrid vehicle. In the hybrid series architecture, only
electrical energy is used to generate the final mechanical en-
ergy required for the wheels, while in the parallel architecture
both mechanical and electrical energy can be used simultane-
ously. Each of those powertrain configurations offers specific
advantages. The parallel configuration can generate more in-
stant power, while the series architecture is more fuel effi-
cient.

Functional modes existing in complex systems can also be
represented via a hybrid representation model such as that
presented in Figure 9. These modes each represent the activa-
tions of different functions in a single-function model of a hy-
brid vehicle. This presentation is not exhaustive, but the aim
was to present the richness of the functional description
where multiple modes of functional representations have
been developed over time. As a summary of this description,
the usage of functions within design methods as a concept
and as a design technique representation varies significantly.
In general, the literature related to complex systems advises

making intensive use of function modeling (Hmelo-Silver
et al., 2008). On the contrary, the field of product develop-
ment and design thinking (Bowler, 1976; Rowe, 1991) sel-
dom refers to the concept of functions, probably because of
the scope of the problems tackled by those approaches.
This significant difference between systems engineering
and design thinking is a source of a major question for the au-
thors of this article. Tension exists between the need to ab-
stract and the parallel need to prototype. Prototyping seems
more rewarding for designers than abstracting. In particular,
the benefit of physical prototypes is immediately visible
and provides a feeling of concrete achievement. This impres-
sion of achievement is also present with digital prototypes.

2.2. Physics-based reasoning in function modeling

The early stages of designing a product usually involve the
activity of proposing a variety of possible solutions to satisfy
the design requirements. The designer might analyze the fea-
sibility of the initial solutions. He might consider the trade-
offs and select one solution among the variety of possible
solutions. He might analyze how changing a design pa-
rameter affects the overall performance of a proposed solu-
tion. Therefore, the selection of one from among the possible
existing solutions is very dependent on the experience of the
designer of providing rationales. In order to enhance such
analysis in the early stage of design, one possible direction

Fig. 1. Design process in the IEEE 1220 Standard (IEEE, 2005).

Function modeling with physics-based reasoning 479

https://doi.org/10.1017/S0890060417000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000403


Fig. 2. The systems engineering process (Systems Engineering Fundamentals, 2013).

Fig. 3. Different functional representations.

Fig. 4. The color code used in the standard IEEE 1220 Standard (IEEE, 2005) to represent a system.
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is to enable physics-based reasoning on function models. In
his dissertation Sen (2011) stated that a function-based repre-
sentation is suitable for supporting early design analysis rea-
soning. Sen and Summers (2013) identified requirements to
enable physics-based reasoning from a function model.
They extracted the following requirements:

1. Coverage: This is the ability to cover the knowledge
and principles of various domains and their interac-
tions, such as electrical, mechanical, thermal, and
chemical engineering.

2. Consistency: Consistency is an internal property in the
representation to prevent internal conflict.

3. Validity against the laws of physics: The function
model representation should remain valid against the
existing laws of physics in each domain.

4. Physics-based concreteness: The functions should be
defined in terms of physical actions.

5. Normative and descriptive modeling: The representa-
tion should support both developing a function model
for new product design (so-called normative modeling)
and the function modeling of an existing artifact, con-
cepts, or physical principles (so-called descriptive mod-
eling).

6. Qualitative modeling and reasoning: It must enable
support for both qualitative and quantitative reasoning.

The first three requirements were stated to be generic require-
ments, and the others are based on their study of identified
gaps in function-based design (Summers & Shah, 2004).
Those requirements were taken into account in developing
the DACM framework and user interface.

2.3. Variability in function modeling, DACM scope,
and relevant approaches in literature

The function modeling process is a source of great variability,
which can be caused by multiple factors, such as the mod-
eler’s preferences and experience, for example, the functional
vocabulary used by the modelers, the level of abstraction, and
the level of detail selected. Variability can also exist at the
functional architecture level. Variability as such is not a
source of problems if the goal is to generate a large number
of solutions. These sources of variability can be a source of
creativity during the early stages during the divergent think-
ing process. Nevertheless, when repeatability in the models
is required in order to communicate function modeling with-
out ambiguity, the variability of function modeling is a source
of problems for the modelers and for any physics-based rea-
soning analysis.

A mechanism ensuring convergence in the modeling pro-
cess is required in this work if we want to generate a repeata-
ble physics-based reasoning approach. Two qualities of mod-
els are important to fulfill for functional models in this work.
Those characteristics are known as abstraction and fidelity.
The fidelity of a model refers to the degree of exactness of
the model compared to the real world (Roza, 2005). Moving
from a high-level model of a system to a more detailed level
containing more functions will increase the fidelity of the
model. Increasing the fidelity of the model might be useful
when the simulation of an existing system is intended. Ab-
straction is the selection of essential functions and neglects
the unnecessary functions when modeling a system (Roza,
2005). From a value analysis perspective, unnecessary func-
tions are functions that do not contribute directly to the global
service function of the system (NFX50-151, 1991). Reducing
the abstraction by considering more functions of the system
will increase the comprehensiveness of the model. To reduce
the variability in functional models, an initial approach

Fig. 6. Functional representation using an octopus diagram (de la Bretesche,
2000).

Fig. 5. Inputs and outputs in functional boxes.

Fig. 7. Example of a simple design structure matrix (function to function
mapping).
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consists of limiting the functional vocabulary to be used. A
significant effort was made in this direction by Hirtz et al.
(2002) in their development of a reconciled functional basis.
They provided a reconciled list of functional vocabulary but
also a list of fundamental energies conveyed by functions,
as well as their names in the form of generalized effort and
flow. Several authors in the community indicate the benefits
of the usage of the vocabulary in Hirtz’ functional basis vo-
cabulary (Ahmed & Wallace, 2003; Kurfman et al., 2003;
Sen et al., 2010; Helms et al., 2013).

The design process requires multiple iterations between
functional abstraction and concretization to be able to effi-
ciently converge toward a validated function model. The con-
cretization part is not covered by the work of Hirtz et al.
(2002). The concretization does not necessarily require con-
crete components, but more abstract elementary bricks are
needed. Those bricks can be the elementary energy sources,
transformation processes, and storage processes existing in na-
ture or in artificial artifacts. Bond graph theory provides a
compact list of those elementary bricks (Karnopp et al.,

2012). Those bricks are universal and present in each energy
domain with different names. They fulfill elementary func-
tions belonging to the functional basis. A combination of
these elementary functions allows more complex functions
to be developed. These bricks support the iterative movement
between function abstraction and concretization. They help to
close the gap between abstraction and validation, but this is
not sufficient. Variables and equations are also needed to cre-
ate simulations. Some features of bond graph theory are in-
cluded in DACM. Nevertheless, the purpose of the DACM
framework is different from bond graph theory because
DACM includes engineering design specifics. These specifics
are the necessity to have criteria to detect weaknesses in de-
sign solutions, the need to support exploration of the design
space, and the need to direct the design process toward inno-
vative solutions. It should be noted that DACM is also differ-
ent from the dissertation of Coatanéa (2005). The usage of di-
mensional analysis was already present in Coatanéa (2005)
but not the colored causal graph reasoning associated with
function modeling. DACM expands this initial work greatly.

Fig. 8. Two functional architectures of a hybrid vehicle.

Fig. 9. Six functioning modes of a hybrid vehicle.
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In the other relevant works, researchers focus on using
functional models in supporting computational design activ-
ities and innovation. For instance, Helms et al. (2013) aimed
at developing a computational approach to support designers
in the innovation process by introducing an approach to map
the physical effects with the bond graph theory.

The research of Lucero et al. (2016) is focused on develop-
ing a framework to support producing analogies and different
design solutions based on performance metrics related to
functionality. They investigated how analogies can be imple-
mented using performance metrics instead of linguistics. The
framework proposed by Lucero et al. shares some similarities
with the framework proposed in this research. Those similar-
ities are limited to use of functional basis vocabulary (Hirtz
et al., 2002) in developing the function model and mapping
the function model to the bond graph elements. However,
the two frameworks are different regarding the usage and ca-
pabilities. Here are some of those differences. Lucero et al.
use the bond graph theory to group the performance metrics
in functions in the functional basis, while the fundamental
reason of using bond graph theory in DACM is being able
to extract the causality of variables defining the functions.
The framework of Lucero et al. seeks the innovative design
solution by analogy generation across different domains,
while DACM also enables the incremental innovation by pro-
viding simulation capabilities and systematic contradiction
analysis. The simulation capability is not addressed in their
research (Lucero et al., 2016). Generation of the cause–effect
network among the variables describing the functions, qual-
itative and quantitative simulations, and contradiction analy-
sis are of the most important capabilities provided in DACM.

3. METHODS

As mentioned above, the objectives pursued by the authors in
this article are to tackle some of the perceived and probably
real limitations of function modeling, for example, its inabil-
ity to bridge the gap between function modeling and proto-
typing or simulation. The authors introduce the DACM
framework to link the abstract representation of a system in
the form of functional modeling with the behavior of this
system. The DACM framework was developed to add a phys-
ics-based reasoning capability to functional modeling. This
physics-based reasoning capability is used in the DACM
framework to assess design options and support innovative
ideation and strategic design decisions. In other words,
DACM should reinforce the reflective analysis capability in
the early phases of engineering development. Kahneman
and Tversky (Kahneman, 2011) demonstrated that cause–
effect analysis (Kistler, 2006) is the most common mechanism
used by humans to react and act in the physical world. One
idea supporting the development of DACM is that well-
informed causal analysis can efficiently support conceptual
modeling and analysis of design solutions and facilitates
the use of the reflexive mode. DACM should be able to favor
the slow and reflective mode of the brain and its natural ten-

dency to classify information in the form of cause–effect re-
lationships. DACM should offer concrete mechanisms to or-
ganize and simplify the complexity of the representation of a
problem, and to propose a mechanism to simulate behavior
using qualitative information analysis in early design phases.

4. THE DACM FRAMEWORK

DACM was initially developed as a specification and verifi-
cation approach for complex systems (Coatanéa, 2015). The
methods and theories contributing to the framework are ar-
ticulated around fundamental pillars such as functional mod-
eling, dimensional analysis, bond graph theory, causal rules,
and colored hypergraphs. The DACM framework follows a
step-by-step modeling and transformation process. Figure 10
shows the sequence of steps in DACM and related theoretical
methods.

4.1. Steps of DACM framework

4.1.1. Step 1: Indicating the objectives of the model and
defining the system of interest and its border

In the first step, the modeler explicitly provides rationales
regarding the aim of the model and defines the system of in-
terest. The approach is especially adapted to a context when
the functional model is the result of a reverse engineering pro-
cess. The aim of the model, in this case, is to favor incremen-
tal innovation.

4.1.2. Step 2: Function modeling

As presented in the Section 2, function modeling integrates
multiple possible facets and usages. In the present article, the
authors are especially interested in function modeling as a
tool to represent the system architecture (INCOSE, 2012).
Starting from one overall system functionality (or several
functionalities) representing the system’s intended objec-
tive(s), the specific usage of function modeling used in this
article is to describe the sequence of the associated functions
of a system or process. The approach considered in this article
voluntarily takes the perspective of incremental design as an
existing solution. The authors propose an interplay between
function and functional structures like in the FBS models
(Gero, 1990; Umeda et al., 1995) or the requirement–func-
tion–behavior–structure model (Christophe et al., 2010).
From this viewpoint, the functional models result from an
iterative process where functions and functional architectures
are refined progressively using an existing artifact structure as
a reference. The advantage of this approach is to propose an
initial mechanism to limit the variability of the modeling.
An element proposed by the authors in this article is to use
only a limited set of functional vocabulary for modeling in
the DACM framework developed in this article. The func-
tional modeling process is controlled in this phase by using
a normalized set of functional terms that directly use the func-
tional basis introduced by Hirtz et al. (2002). Table 1 presents
the selected vocabulary and the existing mapping with
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Fig. 10. Modeling steps in dimensional analysis conceptual modeling framework.

Table 1. Elementary bond graph elements used for modeling and limited
associated functional basis

Possible Names of Functions to Describe Organs Bond Graph Elements

To transform effort into flow or flow into effort
To resist effort or flow

Resistor (R)
Resistor (R)

To transform flow into displacement
To store displacement
To transform displacement into effort
To provide effort

Capacitor (C)
Capacitor (C)
Capacitor (C)
Capacitor (C)

To transform effort into momentum
To store momentum
transform momentum into flow
To provide flow

Inertia (I)
Inertia (I)
Inertia (I)
Inertia (I)

To transform input effort into output effort of another magnitude
To transform input flow into output flow of another magnitude

Transformer (TF)
Transformer (TF)

To transform input effort into output flow of another magnitude
To transform input flow into output effort into output effort of

another magnitude

Gyrator (GY)

Gyrator (GY)
To connect efforts of different magnitudes when flows are similar
To connect flows of different magnitudes when efforts are similar

Junction (JE/JF)
Junction (JE/JF)

To provide a constant effort
To provide a constant flow

Source (SE/SF)
Source (SE/SF)
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elementary building blocks from bond graph theory (Kar-
nopp et al., 2012) used to represent the structure.

The bond graph modeling approach is a method conceived
by Paynter (1961). It is a domain-independent graphical de-
scription of the dynamic behavior of physical systems. A clas-
sical bond graph model is expressed via a set of nine elemen-
tary elements. The nine elements are as follows: effort source
(Se), flow source (Sf), inertial elements (I), capacitive ele-
ments (C), resistive elements (R), transformer elements
(TF), gyrator elements (GY), effort Junction (0), and flow
junction (1). Each of those nine elements has a predefined
causality. Figure 11 represents the predefined causality of
the main bond graph elements. By analyzing the causality
and nature of each bond graph element, we extracted the list
of possible functions in Table 1. In resistor elements, for in-
stance, the nature of the element indicates the function “To re-
sist effort or flow” and the predefined causality satisfies the
function of “To transform effort into flow or flow into effort.”

4.1.3. Step 3: Providing fundamental variable list

In the context of bond graph theory, the variables, regard-
less of the energy domain, are categorized into three main ca-
tegories. Table 2 shows these main categories, together with
their associated secondary categories of variables. The math-
ematical relation between generic variables describes how
those variables relate to each other (Karnopp et al., 2012).

In each energy domain, “displacement” is the result of in-
tegration of the “flow” over time. For example, in the electri-
cal domain, the electrical current is measured in amperes,
which is equal to the charge per second. Equation (1) indi-
cates that the integration of the electrical current over time
is equal to the charge (q). The charge is equivalent to the

“displacement” in the electrical domain.ð
I: dt ¼ q: (1)

The generalized momentum is the result of integration of
effort over time. As an example, the flux linkage (known as
momentum), is defined as in Eq. (2), where U (known as ef-
fort) is the potential difference between two terminals of an
electrical element.

ð
U: dt ¼ l: (2)

The connecting variables proposed by Coatanéa et al.
(2016) cover the other variables that are not in the four men-
tioned categories (effort, flow, momentum, and displace-
ment) and are used to describe the material properties, geom-
etry, dimensions, and so on. The connecting variables are
often the design variables that a designer can select to influ-
ence the design. The connecting variable relates, for example,
effort and flow together. For instance, consider Ohm’s law in
Eq. (3), which indicates the relation between voltage and cur-

Fig. 11. Causality in the main bond graph elements.

Table 2. Fundamental categories of variables

Primary Category of Variables Secondary Category of Variables

Energy (En)
Overall system variables Efficiency rate (h)

Generalized effort (E)
Power variables (P) Generalized flow (F )

Generalized displacement (D)
State variables Generalized momentum (M )

Connecting variables (C )
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rent in a conductor. The potential difference (U ) is propor-
tional to the product of electrical current (I ). The connecting
variable (R), known as resistance, creates this relation be-
tween effort and flow.

U ¼ IR: (3)

The efficiency is a dimensionless variable (the so-called
Pi-number in Step 7). It is defined between input and output
variables that have the same dimensions. Consider the power
efficiency, which is defined as the ratio of output power di-
vided by the input power. Equation (4) shows this relation.

php ¼ Po : P�1
o : (4)

Figure 12 visualizes these relations, where the state vari-
ables, such as momentum, connecting, and displacement,
are located inside the elements and the power variables are lo-
cated outside.

The categories of and relations between the variables ex-
plained above are domain independent. Table 3 illustrates
the mapping between the different types of energies and the
categories of generic variables. The complementary informa-
tion on the dimensions of the variables is also represented in
the table. For each energy domain, the pair of effort and flow
defines the power. In other terms, the effort multiplied by the
flow produces the power. For instance, in the translational

mechanical domain, force” and linear velocity define the me-
chanical power, while in the hydraulic domain, pressure and
volumetric flow rate characterize the hydraulic power.

4.1.4. Step 4: Assigning variables

In order to be able to present the causal graph based on the
function model, we need first to assign variables to the func-
tional structure. In this step, the fundamental variables pro-
vided in the last section are assigned to the functional struc-
ture. The categorization of the variables proposed in Step 3
facilitates the systematic assignment of variables. The power
variables are located outside the bond graph “boxes,” and the
state variables are located inside the boxes.

4.1.5. Step 5: Applying causal ordering rules

This step of the DACM process is fundamental. During this
phase, the cause–effect relationships between variables are
defined in the form of a causal graph. The algorithm pre-
sented in Figure 13 generates the cause–effect relationships
between variables by considering multiple causal rules de-
rived from bond graph theory (Karnopp et al., 2012). The
principle of the algorithm is detailed in Figure 13. The algo-
rithm starts by identifying the modeling problem and the in-
itial function model proposed by the modeler. A one-to-one
mapping (so-called bijective mapping) maps each function
in the functional structure with one of nine bond graph ele-
ments. If this mapping is not bijective, it means the functional

Fig. 12. Representation of the generic variables and their interconnections in the bond graph context.

Table 3. Mapping table between the types of energies and specific names of the variables with the associated units and dimensions

Emergy Domain Generalized Effort SI Units Dimensions Generalized Flow SI Untts Dimensions

Human Force Newton MLT22 Velocity m/s LT21

Biological Pressure Pascal ML21T22 Volumetric flow rate m3/s L3T21

Electrical Voltage Volt ML2T23A21 Current ampere A
Hydraulic Pressure Pascal ML21T22 Volumetric flow rate m3/s L3T21

Mechanical (rotational) Torque Nm ML2T22 Angular velocity rad/s T21

Mechanical (translational) Force Newton MLT22 Linear velocity m/s LT21

Chemical Affinity J/mol M2L2T22mol21 Reaction rate mol/L/s L21T21mol
Pneumatic Pressure Pascal ML21T22 Volumetric flow rate m3/s L3T21

Optical Intensity W/m2 MT23 Velocity m/s LT21

Magnetic Magnetomotive force A-turns A Magnetic flux rate Wb/s ML2T22A21

Thermal Temperature difference Kelvin t Entropy flow rate J/ks ML2T23t21
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structure requires more refinement. An iterative process is
considered until it ensures that each function is mapped
with one, and only one, bond graph element among the pos-
sible elements. Afterward, the algorithm applies the causal
rules to the element one by one to cover the functional struc-
ture completely. If any conflict between causalities is de-
tected, the algorithm goes back to the step where the bond
graph elements were attributed to the functional structure.
Otherwise, the process continues to complete the causality
between variables. The algorithm finally generates a causal
graph from the extracted cause–effect relationships between
the variables.

4.1.6. Step 6: Generating a colored causal graph

The DACM framework colors the causal graph generated in
the previous step. The variables are classified into four main
classes, depending on the border of the system of interest. Col-
ors are associated with each variable. The color code follows.

Exogenous variables. They are imposed onto the system.
They are part of the environment of the system. The exoge-
nous variables also cover the variables with no degree of free-
dom in changing their values. Therefore, the designer cannot
modify them unless the border of the system is changed. In
general, the physical and mechanical properties of the mate-
rial are examples of exogenous variables. The exogenous
variables are shown in black in a causal graph.

Independent design variables. This variable is not influ-
enced by any other variable in the system. Designers can
modify the value of design variables before the other type
of variables. This variable can be selected during the design
process. The independent variables are shown in green.

Dependent design variables. This variable, colored blue,
is influenced by other variables and is thus more difficult to
control than independent design variables. This variable
can be selected during the design process.

Performance variables. They are a special class of depen-
dent design variables. They are important for the overall per-
formance evaluation of the system. The designers try to opti-
mize them by minimizing (min.), maximizing (max.), or
obtaining a target value (target). The performance variables
are shown in red.

4.1.7. Step 7: Computing behavioral laws

In Step 7, two types of behavioral laws are computed. The
first type of behavioral laws is equations in the junctions in
the form of algebraic summation and equality between vari-
ables. A template for this kind of equation for the junction
is shown in Figure 11. These equations are extracted from
the detailed functional structure. The other equations are cal-
culated on the basis of the causal graph using dimensional
analysis, described below.

Dimensional analysis. Dimensional analysis proposes an
approach that reduces the complexity of modeling problems
to the simplest form before going into more details with any
type of qualitative or quantitative modeling or simulation
(Bridgman, 1969). Dimensional analysis (DA) theory has
been developed over the years by an active research commu-
nity including prominent researchers in physics and engineer-
ing (Maxwell, 1954; Matz, 1959; Barenblatt, 1996). The fun-
damental interest of DA is to deduce certain constraints on the
form of the possible relationship between variables from the
study of the dimensions of the variables (i.e., length, mass,

Fig. 13. Description of the causal ordering algorithm.
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time, and the four other dimensions of the international system
of units) used in models. For example, in the most familiar di-
mensional notation, learned in high school or college physics,
force is usually represented as [MLT22]. Such a dimensional
representation is a combination of mass (M ), length (L), and
time (T ). Newton’s Law F ¼ m . a with F (force), m (mass),
and a (acceleration) is constrained by the dimensional homo-
geneity principle. This dimensional homogeneity is the most
familiar principle of the DA theory and can be verified by
checking the dimensions on both sides of Newton’s law.
The other result widely used in DA is Vashy–Buckingham’sQ

theorem, stated and proved by Buckingham in 1914 (Bar-
enblatt, 1996). This theorem identifies the number of indepen-
dent dimensionless numbers that can characterize a given
physical situation. The method offers a way to simplify the
complexity of a problem by grouping the variables into dimen-
sionless primitives. Every law that takes the form yo ¼ f(x1, x2,
x3, . . . , xn) can take the alternative form:

Y
0

¼ f
Y

1

,
Y

2

, . . . ,
Y

n

 !
: (5)

Here,
Q

i are the dimensionless products. This alternative form
is the final result of the DA and is the consequence of the
Vashy–Buckingham theorem. A dimensionless number is a
product that takes the following form:

pk ¼ yi:x
aij

j : xail
l : xami

m , (6)

where xi are called the repeating variables, yi are named the
performance variables, and aij are the exponents. Equation (6)
presents the dimensionless form of reusable modeling prim-
itives, used intensively to develop the framework presented
in this research work. Examples of those primitives are present
in multiple domains of science. For example, the efficiency
rate, the Reynolds number, and the Froude number are
some example of dimensionless primitives. As a result of
the last step, the DACM software tool generates the governing
laws of the system automatically. The example below briefly
exemplifies the construction of a governing law for a small
causal graph. From the causal graph shown in the figure be-
low, it is possible to construct the matrix in Table 4. This in-
itial matrix contains all the influencing variables, together
with their associated dimensions. The target variable (power)
is in the first column and the entire set of cause variables in
the other columns.

The initial matrix should be separated into two submatrices
[A] and [B] in a manner that [A] always remains a nonsingu-
lar square matrix, and [B] contains the variable for which we
are seeking a dimensionless product equation. The condition
of the nonsingularity of matrix [A] necessitates excluding any
nondimensional variables from the matrix, and combining
columns or rows to create a nonsingular square matrix. If a
line of [A]þ [B] is totally null, then this line can be removed
and the rank of [A] then diminishes. If the linear composition
affects the lines, the system of the unit can be changed to
move to composed units. These are usually sufficient to re-
move the problem. For example, in this case, we need to com-
bine two rows of the initial matrix in order to have a square
matrix [A]. Table 5 shows the split matrices where two
rows are combined to make [A] a square matrix.

The next step consists of computing the exponent of the di-
mensionless numbers presented in Eq. (2). To achieve this
task, the following formula taken from Szirtes and Rozsa
(2006) is used:

½C� ¼ �ð A½ ��1: B½ �ÞT : (7)

Matrix [C] is the vector matrix representing the exponents
ai1, ai2, ai3. Figure 15 illustrates the algorithm for computing
the behavioral laws from the causal graph. The algorithm
identifies the dependent and performance variables in the
causal graph and creates the initial matrix containing its influ-
encing variables. It follows the same principles explained
above to present the behavioral laws in the form of Pi-num-
bers. The iterative process continues to cover all the depen-
dent and performance variables of the causal graph.

C ¼ �ðA�1:BÞT ¼ �
1
3

0

�2
3
�1

2
64

3
75: 3
�3

� �0
B@

1
CA

T

¼ ½�1 �1 �,

(8)

Table 4. Matrix derived from the causal
graph shown in Figure 14

P Power Power T v

Mass 1 1 0
Length 2 2 0
Time 23 22 21

Table 5. Split matrices containing influencing
variables

[B]
[A]

P Power Power T v

Mass×Length 3 3 0
Time 23 22 21

Fig. 14. Causal graph.
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pPower ¼ Power:T ð�1Þ:wð�1Þ: (9)

4.1.8. Step 8: Analysis: qualitative simulation,
quantitative simulation, contradiction analysis, and
incremental systematic innovation

By the end of Step 7, the functional structure has been trans-
ferred to the casual graph between the influencing variables
and a set of governing equations. This step is dedicated to ana-
lyzing the whole model. The DACM framework enables
quantitative and qualitative simulations (Forbus, 1988). It
can be used as a systematic approach to find the weaknesses
and contradictions of the system, which facilitates the incre-
mental systematic innovation. This step assigns objectives to
the performance variables colored in red in the causal graph
generated in Step 6. Using the simulation machinery, those ob-
jectives are propagated backward in the causal graph. The ob-

jectives can be qualitative (i.e., maximizing or minimizing).
The propagation of the objectives in the causal graph may gen-
erate contradictions (Ring, 2014). For example, the resulting
objective of the propagation can lead to variables that should
simultaneously answer contradictory objectives (Warfield,
2002). In order to understand how the dimensionless primi-
tives and causal graphs that are generated are used in this
work in qualitative simulation, let us consider the causal rela-
tions between energy (E) in joules, J; power (P) in watts; and
time (t) in seconds. A causal graph can be established between
those variables considering the relations presented in Figure 16.

From this causally oriented graph, a dimensionless product
can be constructed using Eq. (2) and Eq. (10) can be formed.
The mathematical machinery developed by Bhaskar and
Nigam (1990) to reason about a system of causal relationships
is used in this article. A dimensionless product can be ex-
pressed in the general form, below. Equation (11) can be di-
vided by xj to form Eq. (12).

pEn ¼ En:t�1:P�1, (10)

yi ¼ pk:x
�aij

j :x�ail

l :x�ami

m , (11)

yi

xj
¼ pk:

x
�aij

j

xj
:
x
�ail

l

xj
:
x
�ami

m

xj
: (12)

From Eq. (12), a partial derivative can be written involving
the variable yi and the variable xj and taking the following
form:

@yi

@xj
¼ �pk:aij

x
�aij

j

xj
:x

x
�ail

l :x
�ami

m

xj
: (13)

The partial derivative can be reformulated and simplified
by replacing Eq. (12) into Eq. (13); we then obtain Eq. (14):

@yi

@xj
¼ �aij

yi

xj
: (14)

From Eq. (14), the sign of the derivative (@yi)/(@xj) can be
determined by simply verifying the sign of the exponent aij.
This simple machinery provides a powerful approach for
propagating qualitative optimization objectives (maximize,
minimize) in a causal network. Let us take the small example
shown in Figure 16, in which we define the initial objective of
minimizing the energy (En). What should the resulting objec-
tives for the power (P) and the time (t) be? By using Eq. (10),
we can obtain two partial derivatives:

@En

@P
¼ 1

En

P
, (15)

@En

@t
¼ 1

En

t
: (16)Fig. 16. A small causal graph representing the relation between energy, time,

and power.

Fig. 15. Description of the behavioral law computation algorithm.
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From Eqs. (15) and (16), it is possible to deduce that both
P and t vary in the same direction as En as a result of the
sign of the partial derivative. Consequently, if En needs to
be minimized, it also requires P and t to be minimized.
This is summarized in Figure 17. This process is named back-
ward propagation in the article.

The principle described in this section is used to propagate
qualitative objectives in a network and is exploited in the
DACM framework to discover design weaknesses and to pro-
pose inventive solutions.

4.2. What are the possible design directions and their
potential added values?

Once the contradictions and weaknesses of the system have
been detected, one possible direction is to apply the innova-
tive design principles to remove design contradictions
(Fig. 18). The figure at the end of the article illustrates
some of these innovative principles in the causal graph be-

tween variables. Some of these principles can be directly
mapped with the TRIZ inventive principles (Altshuller,
1984), but not all of them. They were developed during the
course of the research by analogy with historical situations
from design, but also from history and biology. Another pos-
sible direction is to generate a virtual design for an experiment
that takes advantage of the simulation machinery developed
in the previous steps. The impact of the different variables in-
fluencing the performance variables is computed on the basis
of their order of magnitude, and the variables are ranked ac-
cording to their impact level. It helps in the later selection
of the potentially most valuable design directions for innova-
tion.

5. APPLICATION: GLUE GUN CASE STUDY

In this section, a glue gun was selected as a case study. Two
basic approaches are compared initially to present the func-
tion model of the glue gun. The first approach attempts to
build a function model in such a way as to avoid as far as pos-
sible having any existing architecture or design solution in
mind for the modeler. This approach is presented first and
it aims at demonstrating that it can be used in a new product
development context too. Another interest for the author lay
in demonstrating how it can lead to a different function mod-
eling result when compared later with the purely reverse en-
gineering approach. The reverse engineering approach is pre-
ferred in an incremental innovation process, and for this
reason, the reverse engineering approach is also applied for
the function modeling of the glue gun. The differences in
the architectures obtained from both approaches are dis-
cussed. This article focuses in its second phase exclusively
on the reverse engineering approach to demonstrate the scope
of the entire DACM framework using the glue gun as an
example.

In the first approach, the modeling begins with defining the
boundaries of the system or artifact to be designed, recogniz-
ing different elements of the systems’ environment in order to
satisfy the final aim of the system. In the glue gun case, the
final aim is to deliver a controlled amount of molten glue.
The input material is in the form of solid glue and the output
material is the molten glue. The system requires thermal en-
ergy to melt the glue. To start with similar initial conditions
for both our both modeling approaches, it is assumed at first
glance that the primary energy used to provide heat is electri-
cal energy, and the mechanical energy to feed the glue stick is
provided by human energy. The solid glue is used in two
functions, to provide hydraulic energy to push the liquid

Fig. 17. Backward propagation of objectives in a causal graph representing the relation between energy, time, and power.

Fig. 18. Contradiction detection algorithm.
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glue out of the nozzle and also to change the state of the solid
glue into liquid glue. The associated energy domains and ma-
terials in the glue gun are shown in different colors in Fig-
ure 19 (i.e., orange for energies and blue for materials). After-
ward, the necessary functions are defined between different
energies and materials. While some functions can only be de-
fined between energies or between materials, some other
functions need to use an energy domain to act between two
materials. For example, as shown in Figure 19, the solid
glue stick is transformed into a liquid glue stick (F5) by using
thermal energy. The functions shown in Figure 19 are system-
atically defined in Table 6. Each function is also given an ap-
proximate sequence and sorted according to the order in
which this function becomes active. The active functions in
the same time interval in Table 6 are represented in parallel
in Figure 20. The function schematic shows each function
in the form of input and output. Having the input, output,
and time sequence interval for each function helps us to
know how the functions are connected. To relate two func-

tions together, we need to match the output of the function
to the input of the function in the next time sequence interval.

The function model based on this initial analysis is repre-
sented in Figure 20. It should be mentioned that the modeler
has a significant impact on the nature of the model. For exam-
ple, one might think that the pressure on the liquid glue stick
can be provided by directly pushing the glue stick by hand or
by an indirect action performed on the glue stick, or even by a
specific device generating pressure on the liquid glue.

The second approach used to present the model of the func-
tional architecture is a purely reverse engineering approach.
In this approach, existing design architecture is available,
and the role of the modeler is to represent the functional
model using the existing system as a reference. Later in this
section, the function model will be used in the DACM frame-
work to take the function modeling a step forward toward in-
creasing the usability of the function modeling. The sequence
of the required steps in the DACM framework was explained
in the Section 3 (see Fig. 10).

5.1. Step 1: System definition

The modeling begins with systems definition and the purpose
of the modeling. In this case study, the system is the whole
glue gun, including its components, and the purpose of the
modeling is to present a model supporting the later physics-
based reasoning.

5.2. Step 2: Function modeling

A black box model is considered; the solid glue stick is the in-
put material, and the human energy and electrical energy are
the energy inputs. The human and electrical energies are
used to push and melt the glue. At the other side of the black
box model of the glue gun, we have the melted glue. After the
trigger has been pushed, the human force is converted to me-
chanical work belonging to the mechanical energy domain.
The mechanical force activates a mechanism to guide the
glue stick and to grip it. The glue stick is melted in a dedicated

Fig. 19. Schematic view of associated functions in the glue gun.

Table 6. Function definition for schematic view of the glue gun’s associated functions

Function Subject Object By Function Schematic
Sequence
Interval

F1 (to transform) Human energy (HE) Mechanical energy (ME) HE�F1
ME T1

F2 (to transform) Electrical energy (EE) Thermal energy (TE) EE�F2
TE T1

F3 (to grip and move) Mechanical energy (ME) Solid glue stick (SG) SG, ME�F3
SG, ME T2

F4 (to guide) Solid glue stick (SG) Body component (BC) SG�F4
BC T2

F5 (to transform) Solid glue stick (SG) Liquid glue (LG) Thermal energy (TE) TE, SG�F5
TE, LG T3

F6 (to create pressure) Solid glue stick (SG) Liquid glue (LG) Mechanical energy (ME) ME, SG�F6
ME, LG T3

F7 (to guide and contain) Liquid glue (LG) Container (C) LG�F7
C T3

F8 (to transform) Mechanical energy (ME) Hydraulic energy (HyE) ME�F8
HyE T4

F9 (to provide) Liquid glue (LG) Liquid glue (LG) Hydraulic energy (HyE) LG, HyE�F9
LG T5
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area of the glue gun, and a compressed spring provides the
backward movement of the trigger, allowing a new push on
the trigger. On the other side, the electrical energy is converted
into thermal energy, and this thermal energy melts the glue
stick. A part of this thermal energy is also dissipated in the
environment. The modification of the state of the glue from
solid to liquid leads the energy to change from mechanical en-
ergy to hydraulic energy. The initial function model is repre-
sented in Figure 21. In the preparation of the function model
that follows, a limited set of vocabulary is used. This vo-
cabulary was presented in Table 1 in the Section 3. Figure 21

depicts a model resulting from numerous iterations. The lim-
ited vocabulary is used to converge in terms of representation
details. It should be noted that the function model shown in
Figure 21 is slightly different from the function model shown
in Figure 20. The model is different in its architecture, and in
Figure 20, the system used to pull back the trigger is not pres-
ent. This main difference is that Figure 20 was not trying to
abstract from any specific solution. The architecture in Fig-
ure 21 is also more detailed. This is due to the forced usage
of a limited set of function vocabulary pushing the modeler
to detail more the model.

Fig. 20. Glue gun function model based on function schematic interaction.

Fig. 21. Initial function model of the glue gun.
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The model in Figure 21 is used as a reference, and the
DACM framework is now developed further. The functional
boxes in the function model are mapped to the bond graph
elements (Fig. 22). This is done by performing a one-to-
one mapping between the functional representation shown
in Figure 21 and the bond graph elements presented in Ta-
ble 1. Knowing the primary function name provides a limited
set of choices between bond graph elements. For instance,
“connect” offers two possible bond graph elements: “flow
junction” and “effort junction.” There is a clear difference be-
tween these junctions. A flow junction is used when we have
flows of equal values between different “pipes” connecting at
junctions. An effort junction is applied if the efforts arriving
at an interface are equal. This kind of physics-based reasoning
should be performed for each functional box to decide be-

tween the types of junctions to be integrated. These choices
are fundamental to the validity of the final model. These choi-
ces are automated in the online platform developed to model
the use of the DACM framework.

Table 1 and Table 7 represent the one-to-one mapping of
the initial function model into a bond graph representation.
Analyzing the initial bond graph reveals that the conversion
of human force to mechanical force is performed by a “trans-
former” (TF4) element. The transformer converts transla-
tional force and velocity to torque and angular velocity, while
we will need translational force and velocity after JE1. So the
use of an additional transformer between the (TF4) and (JE1)
elements is essential. Having this kind of critical physics-
based reasoning in the bond graph can show if any required
element is missed. Moreover, it will give an insight into the
design solution even before attributing a physical artifact to
the functions. It should be noted that the human force could
be transferred to mechanical force with a single transformer
if a direct human force is applied in the same direction as
the movement of the glue stick. This is not the case in the ar-
chitecture of the glue gun. This is consequently requiring a
transformation of a linear movement into a rotational move-
ment using a second transformer. This process requires satis-
fying the coherence of the model with the real glue gun archi-
tecture, and when this is obtained, it is possible to move to the
next phase.

Now let us have a more detailed look at the thermal ele-
ments of the model (Fig. 22). The effort and flow variables
are temperature and entropy flow rate, respectively. The mul-
tiplication of flow by effort shows the instantaneous power.
Nevertheless, the entropy is not conservative and not directly
measurable either. For those reasons, applying a true bond

Fig. 22. The initial bond graph model mapped from the initial function model of the glue gun.

Table 7. Mapping from functional vocabulary to possible
choice of bond graph elements

Verbs Used
in Glue
Gun FM

Primary Function
Vocabulary

Possible Choice in Bond
Graph Elements

To connect Connect JE, JF
To convert Convert TF, GY
To divide Branch JE, JF
To guide Channel JE, JF
To provide Provision SE, SF, I, C
To resist Magnitude TR, R, I, C
To store Provision SE, SF, I, C
To transform Convert TF, GY
To change Magnitude TR, R, I, C
To absorb Provision SE, SF, I, C
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graph in the thermal domain is not straightforward. A pseudo
bond graph, initially developed by Karnopp (1979), offers the
possibility of using the heat flow rate instead of the entropy
flow rate to characterize the flow. It provides more flexibility
for presenting equations without losing the advantages of
bond graph elements. Thus, another modification of the in-
itial function model is to present the thermal aspect of the
model in a pseudo bond graph. In a pseudo bond graph, the
“heat flow rate” and “temperature” characterize the flow
and effort, respectively. A pseudo bond graph can be system-
atically applied to a thermal process. With the hypothesis that
the temperature is distributed nonhomogenously in the parts,
each part is represented in a flow junction or with a divided
flow function. The temperature remains constant at each con-
tact surface. The interaction or the contact surface between
parts or between parts and the surroundings is shown by
the effort junction or with the connect function. In other
words, we will have an effort junction between the flow junc-
tions. The resistor and capacitor elements are connected via a
flow junction and effort junction, respectively. The resistor
element characterizes the heat transfer by conduction and
convection.

Once again, the latest function model should be mapped to
the bond graph elements using Table 7. In the next step, the
variables are assigned to the bond graph representation.

5.3. Steps 3 and 4: Providing and assigning variables

Each energy flow between two functional boxes is mapped to
variables in two categories: flow and effort. The flow and ef-
fort variables are selected on the basis of the energy domain
in Table 1. In order to be able to distinguish easily between
the different variables in the same category, a number is at-
tributed to the repetitive variables. In addition to the flow
and effort variables, some of the bond graph elements require
the variables to be assigned inside the elements to generate
the causality and define the characteristic of the element.
As mentioned in the Section 3, the inside variables are cate-
gorized into the three categories of “displacement,” “momen-
tum,” and “connecting.” The use of connecting variables is a
major difference with the bond graph approach. This type of
variable is allowing to really designing a system and not sim-
ply modeling the dynamic of a system. Table 8 represents the
influencing variables of the model, together with their associ-
ated dimensions and categories.

Figure 23 depicts the pseudo bond graph representation,
mapped from the modified function model of the glue gun
shown in Figure 24. The influencing variables are assigned
to the pseudo bond graph representation. The transformer
TF5 is added between TF4 and JE1 on the mechanical side
of the model in comparison with the last bond graph represen-

Table 8. System variables with associated dimensions and categories

Parameters Symbol Unit Dimension Category

Electric potential U Volt ML2T23A21 Effort
Electric current I Ampere A Flow
Velocity (feed rate) V m/s LT21 Flow
Force F N MLT22 Effort
Volume flow rate Q m3/s L3T21 Flow
Pressure P N/m2 ML21T22 Effort
Torque Tr N m ML2T22 Effort
Angular velocity w rad/s T21 Flow
Melted glue viscosity m Pa.s ML21T21 Momentum
Temperature difference t 8C t Effort
Entropy flow rate S W/8C ML2T23t21 Flow
Heat flow rate f J/s ML22T23 Flow
Temperature e 8C t Effort
Stiffness coefficient K Kg/s2 MT22 Connecting
Glue gun nozzle diameter d m L Displacement
Coefficient of conduction Kc W/(m8C) MLT23t21 Connecting
Glue stick diameter D m L Displacement
Coefficient of convection H W/(m28C) MT23t21 Connecting
Coil heat exchange surface A m2 L2 Displacement
Glue gripper mass M1 kg M Connecting
Trigger mass M2 kg M Connecting
Mass of glue stick in coil M3 kg M Connecting
Glue stick and glue density r kg/m3 ML23 Connecting
Mass flow rate MFR kg/s MT21 Flow
Transformation modulus n — — —
Specific heat capacity Cp J/kg k L2T22 t21 Connecting
Duration of function DT s T Connecting
Ambient temperature ta 8C t Effort
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tation. The transformer (TF4) transforms the translational
force (F ) and velocity (V ) into torque (Tr) and angular veloc-
ity (w). From the other side of the model, the electrical en-
ergy and the difference in temperature between adjacent parts
cause the heat flow. JE3 and JE2 represent the heating coil and
glue stick. JF4 maps the heat exchange surface between “outer
surface of coil and surroundings,” and JF3 shows the heat ex-
change surface between “the inner surface of the heating coil
and the glue stick.” In addition, (e5) shows the temperature
difference between the outer surface of the coil (e2) and the
ambient temperature (e4 ¼ ta). The convection coefficient
(H ), heat surface exchange (A), and temperature difference
(e5) characterize the heat convection between the heat coil
and the surroundings in the (R1) element. In the same manner,
the difference in temperature between the inner surface of the
coil and the glue stick (e6), conduction coefficient (K ), and
glue stick diameter (D) characterize the heat conduction be-
tween the heating coil and the glue stick in the (R2) element.

5.4. Steps 5, 6, and 7: Generating a colored causal
graph and computing behavioral laws

Using the predefined causality rules for each bond graph ele-
ment (see Fig. 11), a general causal graph and the governing

equations are generated. This is a second major difference
with the traditional bond graph approach. Colors are used,
and the equations are derived using the DA theory (Coatanéa
et al., 2016). Identifying incoming and outgoing variables
will enable us to form the causal graph. An additional rule is
that the exogenous variables are always the cause of outgoing
variables. The causal graph shows the relation between vari-
ables in terms of cause and effect in a visual manner, and the
set of equations relate the variables in a mathematical manner.

Figure 25 represents the causal graph of the glue gun
model. The governing equations extracted are the causal
graph and are listed in Table 9. DA is used to present equa-
tions between variables in the form of the product (Coatanéa
et al., 2016). The other equations, in the form of equalities
and summation of variables, are extracted from the junctions.

5.5. Step 8: Qualitative simulation, contradiction
analysis, and incremental innovation

Once the causal graph and set of governing equations of a
problem are ready, the contradiction analysis can be per-
formed. The contradiction analysis starts with choosing the
qualitative objective of the performance variables (i.e., red
variables) of the system. In the case of the glue gun, finding

Fig. 23. Pseudo bond graph representation filled with variables.
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a design solution that lets the user provide molten glue with
less effort and less energy consumption is desirable. Less en-
ergy consumption is partly related to the insulation condition
of the system. However, it is also related to the final tempera-
ture of the output molten glue. Therefore, minimizing the out-
put temperature of the molten glue (i.e., minimizing “e8”) to a
few degrees above its melting point can be considered to be
the first qualitative performance. If the user can have a higher
material flow rate while pressing the trigger, this satisfies the
desired need to have molten glue with less human effort. In-

creasing the output material flow rate (i.e., maximizing MFR)
is considered to be the second qualitative performance in this
study. It should be mentioned that different qualitative perfor-
mances can be considered that are based on different aims.
The backward propagation as the result of considering the
two above-mentioned performances is shown in the causal
graph in Figure 26.

Let us analyze the result of backward propagation shown in
Figure 26. Maximizing the flow rate of molten glue (MFR)
requires the volume flow rate (Q) to be maximized. Volume

Fig. 24. Modified function model of the glue gun.

Fig. 25. Causal graph of the glue gun.
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flow rate depends on multiple variables such as pressure (P),
viscosity (m), and the volume of molten glue [cross section
(S) and length (L)]. Maximizing the flow rate requires maxi-
mizing or minimizing one or several of these variables. To in-
crease the volume of molten glue (Q), we need to increase the
pressure on the glue stick (P), and/or the cross section of the
glue stick (S ). Increasing the pressure has a direct relation
with applied force, and a reverse direction with the glue stick
cross section. Therefore, the first contradiction is detected, as
we need to minimize and maximize the cross section (S )
simultaneously (see Fig. 26). In contrast, based on the casual
graph, to minimize the viscosity (m), the temperature of mol-
ten glue (e8) should be increased. The latter is in contradiction
with the second objective of the study, which is to decrease
the temperature (e8). The backward propagation of the second
objective (minimizing e8) also indicates that the glue stick
diameter (D) should be minimized to melt the glue stick faster
and reduce the energy consumption. Figure 26 illustrates the

backward propagation of the two qualitative objectives on the
causal graph. The contradictions are highlighted on the causal
graph. The result of the contradiction analysis and the visual
causal relation between variables will guide where the de-
signer should search for an idea to innovate or to improve
the performance of the system. In addition to the principles
of TRIZ (Altshuller, 1999), the inventive principles based
on the causal graph are presented in Figure 27. To suppress
the contradiction and to present an innovative solution in
the current case study, we used Principle 9. Principle 9 exists
among the TRIZ principles and basically suggests dividing
the object into other objects. Therefore, using several glue
sticks with a small diameter can solve the contradictions in
this case study. The pressure is applied to an area, which is
equal to the sum of the cross sections of the glue sticks.
Smaller diameter of glue sticks enables the faster melting
and the sum of the cross sections can be increased without in-
terfering with the fast melting condition. As a result of pro-
viding a new solution for suppressing the contradiction, the
causal graph should be updated to see if the proposed solution
causes another contradiction in the system or not.

6. CONCLUSION

The paper presented an approach developed in order to tackle
some of the issues limiting the usage of functional modeling
in the engineering design world. The key objective of this ar-
ticle was to demonstrate that an extension of the capability do-
main of function modeling can be developed to build physics-
based reasoning models. The DACM framework presented in
this paper is a concrete method to implement the theoretical
FBS models presented in the literature. Other characteristics
associated with function modeling, such as the variability
of the models produced by different modelers, have been
analyzed in this paper. In this article, since the DACM
framework predominantly starts from a reverse engineering

Table 9. Governing equations extracted from causal graph
and dimensional analysis

p f1 = C1 . f1 . e1 . I−1 .U−1 pTr = C5 .Tr .F−1
2 . r−1

e1 ¼ e2 ¼ e3 pV2 = C6 .V2 .w−1 . r−1

f1 ¼ f2 + f3 pF3 = C7 .F3 .Tr−1
2 . r−1

2

e1 ¼ t1 F3 ¼ F4 ¼ F5

f2 ¼ f4 ¼ f5 V3 ¼ V4 + V5

e2 ¼ e5 + e4 OR e5 ¼ e2 2 e4 F5 ¼ F6 + F9

e4 ¼ ta V5 ¼ V6 ¼ V9

p f5 = C2 . f5 . e−1
5 .H−1 .A−1 F7 ¼ F8 ¼ F9

f3 ¼ f6 ¼ f7 V9 ¼ V7 + V8

e3 ¼ e6 + e7 OR e6 ¼ e3 2 e7 pV7 = C8 .V7 .F−1
7 .M−1

1 .DT−1
3

p f6 = C3 . f6 . e−1
5 .K−1 .D−1 pV8 = C9 .V8 .F−1

8 .M−1
2 .DT−1

4

f7 ¼ f8 pP = C11 .P.F−1
4 .D2

p f8 = C4 . e8 . f −1
8 .M .Cp pQ ¼C12 .Q .m .P21 . D22 . L21

F2 ¼ n1 . F1 pMFR ¼ C13 . MFR.r21 . Q21

V2 ¼ V1/n1

Fig. 26. Contradiction analysis in the causal graph.
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Fig. 27. Some inventive principles for the causal graph.
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situation, it is required that the function model that is gener-
ated matches the structure of the artifact being analyzed.
The final model produced by DACM is heavily dependent
on the quality of the functional model. Nevertheless,
DACM is not limited to be used in incremental design inno-
vations. For this reason, different mechanisms have been pro-
posed to refine the functional model progressively and to in-
sure convergence in the direction of a single functional
model. The DACM approach cannot yet guarantee that differ-
ent modelers will obtain a similar functional model at the end
of the DACM process. A study of case studies involving sev-
eral modelers is required as a continuation of the research to
develop further the DACM approach. The authors of the arti-
cle are also developing an online platform for DACM in
which an ontology combined with AI-based tools has been
developed to support the initial function modeling process.

The case study has exemplified the usage of DACM in the
context of the glue gun example. The design objectives re-
tained by the authors for the glue gun were to diminish the en-
ergy consumption and the manual effort on the trigger to be
employed by the user of the glue gun. Other design objectives
can be considered, such as, for example, increasing the output
flow rate of the glue gun or adjusting the temperature of the
glue precisely. We encourage readers to apply the approach
in other case studies and to contact us if support is needed
to use the approach. The DACM transformation and reason-
ing process of the initial function model are based on solid
scientific grounds, as all the elements that combine to form
DACM are validated approaches. The novel aspect of
DACM has been integrated into a more global approach.
The method has already been tested and validated in multiple
case studies, and the method is currently being used in differ-
ent design and manufacturing domains. The authors of the ar-
ticle are eager to test the approach in other fields as well.
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NFX50-151. (1991). Analyse de la valeur, analyse fonctionnelle, expression
fonctionnelle du besoin et cahier des charges fonctionnel. Accessed at
http://perso.citi.insa-lyon.fr/sfrenot/cours/PI/AF_JFOREST.pdf

Otto, K.N., & Wood, K.L. (2001). Product Design: Techniques in Revrese
Engineering and New Product Development. Upper Saddle River, NJ:
Prentice Hall.

Pahl, G., & Beitz, W. (2013). Engineering Design: A Systematic Approach.
London: Springer Science & Business Media.

Paynter, H.M. (1961). Analysis and Design of Engineering Systems. Cam-
bridge, MA: MIT Press.

Pugh, S. (1991). Total Design, Integrated Methods for Successful Product
Engineering. Boston: Addision-Wesley.

Function modeling with physics-based reasoning 499

https://doi.org/10.1017/S0890060417000403 Published online by Cambridge University Press

http://perso.citi.insa-lyon.fr/sfrenot/cours/PI/AF_JFOREST.pdf
http://perso.citi.insa-lyon.fr/sfrenot/cours/PI/AF_JFOREST.pdf
https://doi.org/10.1017/S0890060417000403


Ring, J. (2014). Discovering the real problematic situation: the first aspect of
conceptual design. Insight 17(4), 11–14.

Rowe, P.G. (1991). Design Thinking. Cambridge, MA: MIT Press.
Roza, Z. (2005). Simulation fidelity theory and oractice. PhD Thesis. Delft

University of Technology.
Sen, C. (2011). A formal representation of mechanical functions to support

physics-based computational reasoning in early mechanical design. PhD
Thesis. Clemson University.

Sen, C., Caldwell, B.W., Summers, J.D., & Mocko, G. (2010). Evaluation of the
functional basis using an information theoretic approach. Artificial Intelli-
gence for Engineering Design, Analysis & Manufacturing 24(1), 85–103.

Sen, C., & Summers, J.D. (2013). Analysis and identifying requirements
for physics-based reasoning on function structure graphs. Artificial
Intelligence for Engineering Design 27, 291–299. doi:10.1017/
S0890060413000292

Simon, H.A. (1996). The Sciences of the Artificial. Cambridge, MA: MIT
Press.

Stahel, W.R. (1997). The functional economy: cultural and organizational
change. In The Industrial Green Game: Implications for Environmental
Design and Management, pp. 91–100. Washington, DC: National Aca-
demies Press.

Suh, N.P. (1990). The Principles of Design. New York: Oxford University
Press.

Summers, J.D., & Shah, J.J. (2004). Representation in engineering design: a
framework for classification. Proc. DETC’04 ASME 2004 Design Engi-
neering Technical Conf. Computers and Information in Engineering
Conf., pp. 1–10, Salt Lake City, UT.

System Engineering Fundamentals. (2013). System Engineering Fundamen-
tals—US Army. Washington, DC: US Department of Defense, US Army.

Szirtes, T., & Rozsa, P. (2006). Applied Dimensional Analysis and Modeling,
2nd ed. Burlington, MA: Elsevier.

Tomiyama, T., Beek, V., Cabrera, T.J.A., Komto, A., & Hitoshi D’Amelio,
V. (2013). Making function modeling practically usable. Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing 27(3),
301–309.

Tomiyama, T., Gu, P., Jin, Y., Lutters, D., Kind, C., & Kimura, F. (2009).
Design methodologies: industrial and educational applications. CIRP

Annals Manufacturing Technology 58(2), 543–565. doi:10.1016/
j.cirp.2009.09.003

Umeda, Y., Tomiyama, T., & Yoshikawa, H. (1995). FBS modeling: model-
ing scheme of function for conceptual design. Proc. 9th Int. Workshop on
Qualitative Reasoning, pp. 271–278, Amsterdam.

VDI (1993). VDI 2221: Systematic Approach to the Development and Design
of Technical Systems and Products. Düsseldorf: Author.

Warfield, J.N. (2002). Understanding Complexity: Thought and Behavior.
Bentonville, AR: AJAR.

Yoshikawa, H. (1981). General design theory and a CAD system. Man-
Machine Communication in CAD/CAM (Sata, T., & Warman, E., Eds.),
pp. 35–58. Amsterdam: North-Holland

Hossein Mokhtarian is a joint doctoral student at Tampere
University of Technology and Grenoble Alpes University.
His research area is the modeling and simulation of additive
manufacturing.

Eric Coatanéa is a Professor at Tampere University of
Technology. He holds a doctorate from Aalto University in
Finland and the University of West Brittany in France. Eric’s
research interests are system engineering, design methodolo-
gies, and manufacturing. Dr. Coatanéa is a member of the
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