SOME REMARKS ON NOETHERIAN RINGS

MICHIO YOSHIDA

In his lecture at the University of Kyoto on September 23, 1955, Professor Artin gave an important theorem on Noetherian rings, which seems to have not a few interesting consequences. It is the purpose of our present note to point out one of them. We begin by quoting a special case of the theorem.

THEOREM. Let R be a Noetherian ring with unit element, and a, b ideals of R. Then there exists a positive integer d such that

$$\mathfrak{a}^n \cap \mathfrak{b} = \mathfrak{a}^{n-r}(\mathfrak{a}^r \cap \mathfrak{b}) \qquad \qquad n \geqslant r \geqslant d.$$

Proof. Let $\{a_1, \ldots, a_m\}$ be a system of generators of \mathfrak{a} , and consider the polynomial ring $R[x] = R[x_1, \ldots, x_m]$. Denote by A_τ the set of forms of degree r in R[x], and by B_τ the set of all the forms f(x) of degree r such that $f(a_1, \ldots, a_m) \in \mathfrak{b}$. A_τ is a R-module, B_τ is a submodule of A_τ , and obviously $A_{n-r} \cdot B_\tau \subseteq B_n$ for $n \ge r$. We select a finite system of forms $f_i(x)$, $1 \le i \le l$, from $\{B_\tau; r = 0, 1, 2, \ldots\}$ such that any form f(x) of $\{B_\tau; r = 0, 1, 2, \ldots\}$ may be represented as

$$f = \sum_{i=1} \phi_i \cdot f_i,$$

where ϕ_i 's are forms of R[x]. Denote by d the maximum of the degrees of $f_i(x)$, $1 \leq i \leq l$, then for $n \geq r \geq d$, $A_{n-r} \cdot B_r = B_n$, namely $\mathfrak{a}^n \cap \mathfrak{b} = \mathfrak{a}^{n-r}$ $(\mathfrak{a}^r \cap \mathfrak{b})$.

By taking a principal ideal for \mathfrak{b} , we obtain the following:

COROLLARY. Let \mathfrak{a} be an ideal of R, and a a nonzero-divisor of R, then there exists a positive integer d such that

$$\mathfrak{a}^n: Ra = \mathfrak{a}^{n-r}(\mathfrak{a}^r: Ra) \qquad n \ge r \ge d,$$

consequently

$$\mathfrak{a}^n$$
: $Ra \subseteq \mathfrak{a}^{n-r}$.

Though Professor Artin did not mention this corollary, the last formula a^n : $Ra \subseteq a^{n-r}$ is of some interest. This is really a satisfactory generalization of a well-known theorem (1, p. 699, Lemma 9; 5, p. 38, Lemma 1). We would refer readers to a remark by Samuel on this kind of formula (2, p. 34). This formula enables us to sharpen one of his results (2, p. 23) as follows.

Received October 14, 1955.

MICHIO YOSHIDA

THEOREM 1. Let a be an ideal of Noetherian ring R. If a contains at least one nonzero-divisor, then there exists an element a of a such that

$$\mathfrak{a}^{n+r}$$
: $Ra = \mathfrak{a}^n$

for sufficiently large n, where r is determined by $a \in \mathfrak{a}^r$ and $a \notin \mathfrak{a}^{r+1}$.

Proof. Put

$$\mathfrak{n} = \bigcap_{n=1}^{\infty} \mathfrak{a}^n, \ ^*\!\!R = R/\mathfrak{n}, \ ^*\!\mathfrak{a} = \mathfrak{a}/\mathfrak{n}.$$

It is easily seen e.g. by the intersection theorem (4, p. 180, Theorem 3) that a a contains at least one nonzero-divisor and that any prime ideal of the zero ideal of R is closed and not open in a-adic topology. So Samuel's observations on the ring of forms $F(a) = \sum a' a' a' a' a' a'$, p. 22–23) ensure the existence of a superficial element a of some degree r with respect to a, which is not a zero-divisor. Hence a^{n+r} : $R^*a = a^n$ for sufficiently large n. Any element in the residue class a will have the property required in the theorem.

COROLLARY. Under the same assumption on a, there exist positive integers r, n_0 such that

$$\mathfrak{a}^{nr+mr}: \ \mathfrak{a}^{mr} = \ \mathfrak{a}^{nr}, \qquad \qquad n \geqslant n_0.$$

We do not know whether we can always take 1 for r in this corollary, but Samuel (3, p. 177, Theorem 10) tells us the following:

THEOREM. Let A be a local ring with the maximal ideal \mathfrak{m} , and let \mathfrak{q} be an \mathfrak{m} -primary ideal. Suppose \mathfrak{m} contains at least one nonzero-divisor, then

$$q^n$$
: $q = q^{n-1}$ for sufficiently large n.

Proof. In the case that the residue field k = A/m is infinite, his assertion is substantiated by the existence of a superficial element of degree 1 with respect to q, which is not a zero-divisor (2, p. 23). The other case that k is finite shall be reduced to the former case by the following device. Form the polynomial ring A[x] in an indeterminate X, then form the ring of quotients A^* of mA[x] with respect to A[x]. The residue field of A^* is k(x), hence

$$\mathfrak{q}^n A^* : \mathfrak{q} A^* = \mathfrak{q}^{n-1} A^*.$$

Notice that

$$(\mathfrak{q}^n A^*: \mathfrak{q} A^*) \cap A = \mathfrak{q}^n: \mathfrak{q}, \quad \mathfrak{q}^{n-1} A^* \cap A = \mathfrak{q}^{n-1}.$$

Before we transform the above theorems by "globalization," we shall recall some definitions and well-known facts. Let \mathfrak{z} be a prime ideal of R, and \mathfrak{q} a \mathfrak{z} -primary ideal. The \mathfrak{z} -primary component of \mathfrak{q}^n is called *n*th symbolic power of \mathfrak{q} , and usually denoted by $\mathfrak{q}^{(n)}$. Let \mathfrak{a} be an ideal of R, and z_1, \ldots, z_l be the minimal prime ideals of \mathfrak{a} . The intersection of the z_i -primary components $(1 \le i \le l)$ of \mathfrak{a}^n is called *n*th symbolic power of \mathfrak{a} , and denoted by $\mathfrak{a}^{(n)}$. If \mathfrak{q}_i denotes the z_i -primary component of \mathfrak{a} , then as is well known

$$\mathfrak{a}^{(n)} = \mathfrak{q}_1^{(n)} \cap \ldots \cap \mathfrak{q}_l^{(n)}$$

We denote by S the complement of

$$\bigcup_{i=1}^{l} \delta_i$$

in R, and form the ring of quotients R_s of S with respect to R in the Chevalley-Uzkov sense. We have then $\mathfrak{a}^{(n)} = \mathfrak{a}^n R_s \cap R$. Let

$$(0) = \mathfrak{q}_1^* \cap \ldots \cap \mathfrak{q}_t^*$$

be a primary decomposition of the zero ideal of R, and let \mathfrak{z}_i^* be the prime ideal of \mathfrak{q}_i^* . Assume $\mathfrak{z}_i^* \cap S = \phi$ for $i = 1, \ldots, s$ and $\mathfrak{z}_i^* \cap S \neq \phi$ for $i = s + 1, \ldots, t$. Then $\mathfrak{n} = \mathfrak{q}_1^* \cap \ldots \cap \mathfrak{q}_s^*$ is the kernel of the canonical homomorphism of R into R_s . Contracting of ideals of R_s on R and extending of ideals of R to R_s both give one-to-one mappings between the set of all ideals of R_s and the set of ideals of R whose prime ideals are disjoint with S. These mappings are the inverse of each other and they are isomorphisms with respect to the ideal operations (\cap) and (:). We are now in a position to verify the following:

THEOREM 2. Let \mathfrak{a} be an ideal of a Noetherian ring R. Suppose that any minimal prime ideal of \mathfrak{a} is not a prime ideal of (0). Then there exist an element a of \mathfrak{a} and a positive integer n_0 such that

$$\mathfrak{a}^{(n+r)}\colon Ra = \mathfrak{a}^{(n)}, \qquad n \ge n_0$$

where r satisfies $a \in \mathfrak{a}^{(r)}$ and $a \notin \mathfrak{a}^{(r+1)}$. Moreover

$$\mathfrak{a}^{(n+m)}$$
: $\mathfrak{a}^{(m)} = \mathfrak{a}^{(n)}$

for sufficiently large n and arbitrary $m \ge 0$.

References

- 1. C. Chevalley, On the theory of local rings, Ann. Math. 44 (1943), 690-708.
- 2. P. Samuel, Algèbre locale, Mem. Sci. Math., No. 123 (Paris, 1953).
- 3. ——, Sur la notion de multiplicité en algèbre et en géométrie algébrique, J. Math. pur. et appl. 30 (1950), 159–205.
- 4. O. Zariski, Generalized semi-local rings, Sum. Bras. Math. 1 (1946), 169-195.
- 5. ——, Theory and applications of holomorphic functions on algebraic varieties over arbitrary fields, Mem. Amer. Math. Soc., No. 5 (New York, 1951).

Hiroshima University