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Abstract. It is conjectured that the central quotient of any irreducible Artin–Tits
group is either virtually cyclic or acylindrically hyperbolic. We prove this conjecture
for Artin–Tits groups that are known to be CAT(0) groups by a result of Brady and
McCammond, that is, Artin–Tits groups associated with graphs having no 3-cycles and
Artin–Tits groups of almost large type associated with graphs admitting appropriate direc-
tions. In particular, the latter family contains Artin–Tits groups of large type associated
with cones over square-free bipartite graphs.
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1. Introduction. Artin–Tits groups are groups with special finite presentations. Let
� be a finite simple graph with the vertex set V(�) and the edge set E(�). An edge e
consists of two endvertices, which we denote by se and te. We suppose that edges e are
labeled by integers m(e) > 1. The Artin–Tits group A� associated with � is defined by the
following presentation:

A� = 〈V(�) | setesete · · ·︸ ︷︷ ︸
length m(e)

= tesetese · · ·︸ ︷︷ ︸
length m(e)

for all e ∈ E(�) 〉. (1.1)

Free abelian groups, free groups and braid groups are examples of Artin–Tits groups. If we
add relations v2 = 1 to (1.1) for all v ∈ V(�), then we get the associated Coxeter group W� .
In terms of the properties of W� , we can define important classes of Artin–Tits groups. For
example, A� is said to be of finite type if W� is finite. Others are said to be of infinite type.
We mainly argue on Artin–Tits groups of infinite type.

We can also define classes of Artin–Tits groups in terms of edge labels of �. A� is said
to be

� right-angled if all edges of � are labeled by 2, or
� of large type if all edges of � are labeled by integers greater than 2.
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For general Artin–Tits groups, many basic questions are still open (refer to [10]). For
example, it is unknown whether the following are equivalent or not for any Artin–Tits
group A�:

(i) A� is directly indecomposable, that is, it does not decompose as a direct product of
two nontrivial subgroups;

(ii) A� is irreducible, that is, the defining graph � does not decompose as a join of two
non-empty subgraphs such that all edges between them are labeled by 2.

Note that (i) clearly implies (ii).
Now, we consider questions related to group actions on hyperbolic/non-positively

curved spaces. The following is one of the biggest problems on such actions of Artin–Tits
groups.

PROBLEM 1.1 ([10, Problem 4]). Which Artin–Tits groups are CAT(0) groups, that is,
groups acting geometrically on CAT(0) spaces?

Here, CAT(0) spaces are geodesic spaces where every geodesic triangle is not fatter than
the comparison triangle in the Euclidean plane (see [6] for the precise definition). A group
action is said to be geometric if the action is proper, cocompact and by isometries.

The following is a related conjecture, which is the main concern of this paper.

CONJECTURE 1.1 ([16, Conjecture B]). The central quotient of every irreducible
Artin–Tits group is either virtually cyclic or acylindrically hyperbolic.

The definition of acylindrical hyperbolicity of groups is recalled in Section 2. We can
find many applications of acylindrically hyperbolic groups in [13, 21] etc. The n-strand
braid group Bn (n ≥ 3) is an Artin–Tits group and the central quotient is acylindrically
hyperbolic ([3, 4, 17]). In addition to this motivating example, Conjecture 1.1 holds for
Artin–Tits groups in the following list:

(A1) Artin–Tits groups of finite type ([8]).
(A2) Right-angled Artin–Tits groups ([9, 18]).
(A3) Two-dimensional Artin–Tits groups such that the associated Coxeter groups are

hyperbolic ([19], see also [16] for A� such that all edges of � are labeled by integers
greater than 4). Note that such a group is characterized as A� such that every triplet
(v1, v2, v3) of vertices of � satisfies

1

m1,2
+ 1

m2,3
+ 1

m3,1
< 1,

where

mi,j =
{

the label of the edge between vi and vj (if vi and vj are adjacent)

∞ (if vi and vj are not adjacent)

([20]).
(A4) A� such that � is not a join of two non-empty subgraphs ([11], see also [12] for

Artin–Tits groups of type FC such that the defining graphs have diameter greater
than 2).

To the above list, we add Artin–Tits groups that are known to be CAT(0) groups by
a result of Brady and McCammond [5]. We discuss the following two cases. The first
case is when � is triangle-free, that is, � does not contain 3-cycles. We do not need any
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restriction on the labels of edges. Such Artin–Tits groups are said to be triangle-free Artin–
Tits groups.

THEOREM 1.1. For every triangle-free Artin–Tits group A� such that � has three or
more vertices, the following are equivalent:

(i) A� is acylindrically hyperbolic.
(ii) A� is directly indecomposable.

(iii) A� is irreducible.
(iv) � is not a complete bipartite graph with all edges labeled by 2.
(v) � is disconnected, or it contains a 2-path full subgraph with an edge labeled by an

integer greater than 2 or a 3-path full subgraph with all edges labeled by 2.

Under either of (i)–(v), and thus all of (i)–(v), A� is centerless. In particular, Conjecture 1.1
is true for triangle-free Artin–Tits groups.

The second case is the following:

THEOREM 1.2. Let A� be an Artin–Tits group of almost large type associated with
� with three or more vertices. Suppose that � can be appropriately directed. Then the
following are equivalent:

(i) A� is acylindrically hyperbolic.
(ii) A� is directly indecomposable.

(iii) A� is irreducible.
(iv) � is not a cone over a graph consisting of only isolated vertices with all edges labeled

by 2.

Under either of (i)–(iv), and thus all of (i)–(iv), A� is centerless. In particular,
Conjecture 1.1 is true for Artin–Tits groups of almost large type associated with graphs
admitting appropriate directions.

Terminologies “of almost large type” and “appropriately directed” are defined in Section 2.
We note that graphs can contain 3-cycles in the setting of Theorem 1.2. As a corollary of
Theorem 1.2, we have the following.

COROLLARY 1.3. Let A� be an Artin–Tits group associated with a cone over a square-
free bipartite graph � = {v0} ∗ �′. Suppose that � has a 3-cycle subgraph. Let �′

1 be the
possibly empty subgraph consisting of all isolated vertices in �′, and let �′

2 = �′ − �′
1.

Suppose further that every edge in �′
2 and every edge between v0 and �′

2 are labeled by
integers greater than 2. Then A� is acylindrically hyperbolic, directly indecomposable and
centerless. In particular, Conjecture 1.1 is true for such an A� .

Figure 1 shows an example of � in Corollary 1.3.
By Theorem 1.2, we can also see that Conjecture 1.1 is true for Artin–Tits groups of

almost large type associated with square-free graphs (see Corollary 3.4).

REMARK 1.1. Theorems 1.1 and 1.2 treated Artin–Tits groups A� such that � has three
or more vertices, since Conjecture 1.1 is true when � has less than three vertices. In fact, if
� has less than three vertices, it satisfies one of the following: (1) � has only one vertex, (2)

� has exactly two vertices and no edges, and (3) � has exactly two vertices and an edge. In
the first case, A�

∼= Z, and thus the central quotient is trivial. In the second case, A�
∼= F2,

which is hyperbolic. Since its center is trivial, the central quotient of A� is acylindrically
hyperbolic. In the third case, when the edge label is 2, A�

∼= Z2, which is reducible. When
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Figure 1. The join of graphs v0 and �′
1 ∪ �′

2.

Figure 2. Two examples of � such that A� is not in (A1)–(A4).

the edge label is greater than 2, A� has an infinite cyclic center and its central quotient
is Z/mZ ∗ Z/2Z for odd m and Z/m

2 Z ∗ Z for even m (see [16]). These free products are
virtually F2 and thus hyperbolic.

We compare Artin–Tits groups in Theorem 1.1 and Corollary 1.3 with (A1)–(A4).
Our Artin–Tits groups are not necessarily of finite type, right-angled or with the associated
Coxeter groups being hyperbolic. A triangle-free Artin–Tits group is possibly associated
with a join. Also, a cone over a graph is a join. Figure 2 shows a triangle-free graph and
a cone over a square-free bipartite graph such that associated Artin–Tits groups are not in
(A1)–(A4).

Finally, we consider one of the basic questions on algebraic properties of Artin–Tits
groups. When an irreducible Artin–Tits group is of finite type, the center is known to be
infinite cyclic ([7, 14]). For irreducible Artin–Tits groups of infinite type, it is conjectured
that the center is trivial ([10, 15]). When � is not a cone, it is known that A� is centerless
([11]). Theorem 1.1 and Theorem 1.2 give affirmative partial answers to this conjecture.
In particular, Corollary 1.3 claims that some Artin–Tits groups associated with cones are
centerless.

We give an outline of this paper. Section 2 contains preliminaries on acylindrically
hyperbolic groups, Artin–Tits groups, and Brady–McCammond’s CAT(0) spaces. Section 3
contains proofs of Theorems 1.1 and 1.2. Our strategy is to answer the following problem:
if an Artin–Tits group acts geometrically on a CAT(0) space, does it have a rank-one isom-
etry? Such a strategy is based on relations between rank-one isometries on CAT(0) spaces
and acylindrical hyperbolicity of groups ([2, 22]) and was used in previous works on Artin–
Tits groups (for example, [16]). In the proofs of the main theorems, we observe geometric
actions of Artin–Tits groups on CAT(0) spaces, constructed by Brady and McCammond
[5]. We detect group elements acting as rank-one isometries on the CAT(0) spaces.
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2. Preliminaries.

2.1. Acylindrically hyperbolic groups. Hereafter, we always assume that group
actions on metric spaces are by isometries. We recall the definition of acylindrically
hyperbolic groups.

DEFINITION 2.1 ([4, 21]). An isometric action of a group G on a metric space (X , d) is
acylindrical if for every ε ≥ 0, there exist R ≥ 0 and N ≥ 0 such that every x, y ∈ X with
d(x, y) ≥ R satisfy

|{g ∈ G | d(x, gx) ≤ ε, d(y, gy) ≤ ε}| ≤ N . (2.1)

A group G is acylindrically hyperbolic if G acts acylindrically and non-elementarily on a
(Gromov-) hyperbolic space.

Examples and basic properties of acylindrically hyperbolic groups can be found in
[21].

DEFINITION 2.2 (cf. [6]). An isometry γ on a metric space (X , d) is hyperbolic if there
exists a point x ∈ X satisfying d(x, γ x) = infx′∈X d(x′, γ x′) > 0. When X is a CAT(0) space,
γ is hyperbolic if and only if it acts by a translation on a geodesic line lγ in X . We call lγ
an axis of γ ([6, Theorem II-6.8]). γ is rank one if it is hyperbolic and its axis does not
bound a flat half-plane.

THEOREM 2.1 ([22, Theorem 1.3]). If a group G acts properly on a proper CAT(0) space
with a rank-one isometry, then G is either virtually cyclic or acylindrically hyperbolic.

2.2. Artin–Tits groups and Brady–McCammond’s CAT(0) spaces. Let � be a
finite simple graph with edges labeled by integers greater than 1. The associated Artin–
Tits group A� is defined by the standard presentation (1.1). A graph is said to be directed if
every edge e is identified with an ordered pair (se, te) of endvertices. When � is directed,
A� admits another presentation.

LEMMA 2.2 ([5, Section 5, Definition (G�)]). Let � be a finite simple directed graph
with the vertex set V(�) and the edge set E(�). Suppose that edges e are labeled by integers
m(e) > 1. Then A� admits a presentation with the generating set:

V(�) ∪ {xe}e∈E(�) ∪ {αe,3, . . . , αe,m(e)}e∈E(�),m(e)≥3 (2.2)

and relations

xe = sete, xe = tese (2.3)

for every e ∈ E(�) with m(e) = 2, and

xe = sete, xe = teαe,3, . . . , xe = αe,iαe,i+1, . . . , xe = αe,m(e)se (2.4)

for every e ∈ E(�) with m(e) ≥ 3.

Let K� be the presentation complex associated with the presentation of A� in
Lemma 2.2. K� has a unique vertex o, a directed 1-cell for each generator and a 2-cell
for each relation in (2.3) and (2.4). We denote by Pr : K̃� → K� the projection from the
universal cover K̃� onto K� . The 1-skeleton of K̃� can be identified with the Cayley graph
of A� on the generators (2.2). We fix such an identification and let õ ∈ K̃� be the vertex
corresponding to the identity element of A� . Figure 3 shows 2-cells in the universal cover
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Figure 3. 2-cells in K̃� corresponding to edges of � labeled by 2 and 3.

Figure 4. 2-cells of K̃� isometric to an Euclidean isosceles right triangle.

Figure 5. Directed 3-cycles and 4-cycles. Labels m, n, and p are greater than 2. Unlabeled undirected
edges can admit any label greater than 1 and any direction.

K̃� of K� . In [5], Brady and McCammond showed that K̃� can be given a metric to be an
A�-equivariant CAT(0) space under some combinatorial assumptions on �.

Let us consider two families of Artin–Tits groups. The first one is the family of
triangle-free Artin–Tits groups.

THEOREM 2.3 ([5, Theorem 6]). Let A� be a triangle-free Artin–Tits group. Let us
assign � an arbitrary direction. Then K̃� has a metric satisfying the following:

� all 2-cells are isometric to a Euclidean isosceles right triangle, and
� all 1-cells corresponding to generators in {xe}e∈E(�) are the longest and of length 3

√
2.

Moreover, K̃� with this metric is a proper CAT(0) space. The action of A� on K̃� is
geometric.

Figure 4 shows the identification of 2-cells with Euclidean triangles in Theorem 2.3.
The second one is the family of Artin–Tits groups of almost large type associated

with graphs admitting appropriate directions. Here, an Artin–Tits group A� is said to be of
almost large type if the defining graph � satisfies the following two conditions:

(1) For every 3-cycle in �, all edges are labeled by integers greater than 2.
(2) For every 4-cycle in �, at least two edges are labeled by integers greater than 2.

In addition, we say that such a � admits an appropriate direction or can be appropriately
directed if � can be directed such that each 3- (resp. 4-) cycle is directed in the same way
as one of 3- (resp. 4-) cycles in Figure 5. We note that � can admit 3-cycles.

THEOREM 2.4 ([5, Theorem 7 and Remark on p. 9]). Let A� be an Artin–Tits group of
almost large type and � admits an appropriate direction. Let us assign � an appropriate
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Figure 6. Intersection points of 1-cells xe, se, and te with L� .

Figure 7. A part of L� related to an edge e labeled by 4 in Theorem 2.3.

direction. Then K̃� has a metric such that all 2-cells are isometric to a Euclidean equilat-
eral triangle with side length 3. Moreover, K̃� with this metric is a proper CAT(0) space.
The action of A� on K̃� is geometric.

In Theorems 2.3 and 2.4, we assign K� a metric dK�
such that it is locally isometric to

K̃� . We often observe the link L� = {z ∈ K� | dK�
(o, z) = 1} of the unique vertex o in K� .

Note that L� is regarded as a graph. Indeed, each 1-cell of K� corresponds to two vertices
of L� , and each corner of a 2-cell of K� corresponds to an edge of L� . We assign L� the
path metric induced by the metric of K� . Then, the distance between adjacent vertices of
L� is the angle between corresponding 1-cells at o in K� .

We consider the setting of Theorem 2.3. For every directed 1-cell c of K� , two intersec-
tion points with L� are named c− and c+ in order, see Figure 6. We draw L� following [5],
see Figure 7. In L� , every edge connected to a vertex x+

e or x−
e (a “top” or “bottom” edge

in Figure 7) is of length π/4. The other edges (“middle” edges in Figure 7) are of length
π/2. By noting that � is triangle-free, we can confirm that L� does not contain nontrivial
loops of length less than 2π . This fact is a key ingredient of the proof of Theorem 2.3 ([5,
Theorem 6]).

Under the setting of Theorem 2.4, we can discuss everything in a similar way. We note
that all the edges of L� are of length π/3.

3. Main results.

3.1. Triangle-free Artin–Tits groups. In this section, we prove Theorem 1.1.

LEMMA 3.1. Let A� be a triangle-free Artin–Tits group and let � be assigned an arbi-
trary direction, as in Theorem 2.3. Suppose further that � contains one of the following
directed graphs as a full subgraph:

(1) the 2-path directed graph �m,n as in Figure 8, and
(2) the 3-path directed graph �2,2,2 as in Figure 8.

Then A� is acylindrically hyperbolic.
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Figure 8. A 2-path directed graph �m,n with edges labeled by m ≥ 2 and n ≥ 3, and a 3-path directed
graph �2,2,2 with edges labeled by 2.

Figure 9. L�m,n and L�2,2,2
.

Proof. Let K̃� be the A�-equivariant CAT(0) space in Theorem 2.3. Let L� be the link
of the unique vertex o of K� . We find a rank-one isometry in A� .

(1) We discuss the case where � contains �m,n as a full subgraph. By Lemma 2.2, A�m,n

has the following presentation:〈
v1, v2, v3, x1, x2, x1 = v1v2, x1 = v2α1,3, . . . , x1 = α1,mv1,

α1,3, . . . , α1,m, x2 = v2v3, x2 = v3α2,3, . . . , x2 = α2,nv2

α2,3, . . . , α2,n

.

〉
(3.1)

Let K�m,n ⊂ K� be the presentation complex of (3.1). Let L�m,n ⊂ L� be the link in K�m,n .
We draw L�m,n on the left-hand side of Figure 9.

We show that α2,nv3v1 acts as a rank-one isometry on K̃� . First, we find an axis of
α2,nv3v1. In K� , let l be the concatenation of 1-cells α2,n, v3, and v1 in this order. We note
that 1-cells of K� are loops based at o. We show that l is a local geodesic. Since l is geodesic
around any point of l except o, we investigate l around o and show that:

dL�
(v+

1 , α−
2,n), dL�

(α+
2,n, v−

3 ), dL�
(v+

3 , v−
1 ) ≥ π. (3.2)

To see dL�
(v+

1 , α−
2,n) ≥ π , we find a shortest path P from v+

1 to α−
2,n uniquely in L�m,n , which

is of length π (see the bold line in Figure 9). This path P is the unique shortest one even in
L� . Indeed, if we have a shortest path P′ from v+

1 to α−
2,n in L� through L� − L�m,n , then P′

should go out from L�m,n at a point in {v±
i }i=1,2,3 and come back into L�m,n at another point

in {v±
i }i=1,2,3. Since � is simple and �m,n is a full subgraph, every path through � − �m,n in

� between different vertices in {vi}i=1,2,3 contains at least two edges. It follows that every
path through L� − L�m,n between different points of {v±

i }i=1,2,3 is of length greater than or
equal to π , see Figure 10. This shows that the length of P′ is greater than π . In particular
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Figure 10. Assuming that vi and vj are not adjacent in �, the distance between different points of
{v±

i , v±
j } in L� is at least π . The minimum π occurs only in cases where vi and vj are connected by a

2-path �′ in �.

Figure 11. An axis l̃ of α2,nv3v1.

we have

dL�
(v+

1 , α−
2,n) = dL�m,n

(v+
1 , α−

2,n) = π. (3.3)

Similarly, we confirm that:

dL�
(α+

2,n, v−
3 ) = dL�m,n

(α+
2,n, v−

3 ) = π. (3.4)

Also, according to Figure 9, dL�m,n
(v+

3 , v−
1 ) > π . Therefore,

dL�
(v+

3 , v−
1 ) ≥ π. (3.5)

Here, the minimum π occurs only when v1 and v3 are connected by a 2-path �′ in Figure 10.
By (3.3), (3.4), and (3.5), we have (3.2). It follows that l is geodesic around o. Indeed,
assume that a geodesic from v+

1 to α−
2,n, a geodesic from α+

2,n to v−
3 or a geodesic from v+

3

to v−
1 does not pass through o. Then a triplet (v+

1 , o, α−
2,n), (α+

2,n, o, v−
3 ), or (v+

3 , o, v−
1 ) con-

tributes to a non-collapsing geodesic triangle as vertices. Since K� is piecewise Euclidean
and CAT(0) around o, three interior angles of such a triangle must be less than π , contrary
to (3.2) (cf. discussions in the proof of Theorem 15 of [1]). Therefore, l is locally geodesic.
Hence, the lift l̃ through õ is an axis of α2,nv3v1, see Figure 11.

Next, we show that l̃ does not bound a flat half-plane. On the contrary, we assume
that l̃ bounds a flat half-plane E. By Pr : K̃� → K� , the unit semicircle C ⊂ E centered at
õ is isometric to the path P of length π from v+

1 to α−
2,n in L� (see the bold semicircle in

Figure 11). It follows that C goes through lifts of v+
1 , v−

2 , x−
2 , and α−

2,n. Therefore, E contains
2-cells corresponding to relations x1 = v1v2, x2 = v2v3, and x2 = α2,nv2 around õ. The unit
semicircle in E centered at v−1

1 (̃o) should go through lifts of v−
1 , x−

1 and v+
3 (see the dotted

semicircle in Figure 11). This is impossible, since there is no path of length π in L� from
v−

1 to v+
3 through x−

1 (see Figure 9).
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Figure 12. An axis l̃ of x1x3.

Since we detected a rank-one isometry α2,nv3v1 in A� , Theorem 2.1 shows that A� is
acylindrically hyperbolic.

(2) We discuss the case where � contains �2,2,2 as a full subgraph. The argument is
similar to (1). According to Lemma 2.2, A�2,2,2 has the following presentation:〈

v1, v2, v3, v4 x1 = v1v2, x1 = v2v1,

x1, x2, x3 x2 = v2v3, x2 = v3v2,

x3 = v3v4, x3 = v4v3

.

〉
(3.6)

Let K�2,2,2 ⊂ K� be the presentation complex of (3.6). Let L�2,2,2 ⊂ L� be the link in
K�2,2,2 . We draw L�2,2,2 on the right-hand side of Figure 9.

We show that x1x3 acts as a rank-one isometry on K̃� . Let l be the concatenation
of 1-cells x1 and x3 in K� . As in (1), we can find a shortest path Q from x+

3 to x−
1

uniquely in L� (see the bold line in Figure 9). This path Q is of length π . In particular,
we have dL�

(x+
3 , x−

1 ) = π . Similarly, we confirm that dL�
(x+

1 , x−
3 ) = π . Therefore, l is a

local geodesic, and the lift l̃ through õ is an axis of x1x3, see Figure 12. Now assume that l̃
bounds a flat half-plane E. By Pr : K̃� → K� , the unit semicircle C ⊂ E centered at õ is iso-
metric to the path Q of length π from x+

3 to x−
1 in L� (see the bold semicircle in Figure 12).

It follows that C goes through lifts of x+
3 , v+

3 , v−
2 , and x−

1 . Therefore, E contains lifts of
2-cells corresponding to relations x3 = v4v3, x2 = v3v2, and x1 = v2v1 around õ. Then, the
unit semicircle in E centered at x1(̃o) should go through lifts of x+

1 , v+
1 , and x−

3 (see the
dotted semicircle in Figure 12). This is impossible, since there is no path of length π in
L� from x+

1 to x−
3 through v+

1 (see Figure 9). Theorem 2.1 shows that A� is acylindrically
hyperbolic.

LEMMA 3.2. If � is a connected triangle-free graph with more than one vertex, then
either � is a complete bipartite graph or contains the 3-path graph as a full subgraph.

Proof. Let � be a connected triangle-free graph with more than one vertex. If � con-
tains an n-cycle of n ≥ 5 as a full subgraph, then � contains a 3-path subgraph of the
n-cycle as a full subgraph. Otherwise, � does not have odd cycles and thus is a bipartite
graph. We divide the vertex set of � into two non-empty subsets VW and VB such that every
edge connects a vertex in VW and one in VB. If � is not a complete bipartite graph, then
there exist vertices vW ∈ VW and vB ∈ VB of graph distance greater than 2, and every short-
est path from vW to vB is a full subgraph. For such a path, any 3-subpath is a full subgraph
of �. An example of � is shown in Figure 13, where the division of the vertex set is drawn
as white/black coloring of vertices.

Proof of Theorem 1.1. Let � be a finite simple graph with edges labeled by integers
greater than 1. Suppose that � is triangle-free with at least three vertices.
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Figure 13. A bipartite graph � which is not complete.

[(i) ⇒ (ii)] Suppose that A� is acylindrically hyperbolic. In general, an acylindrically
hyperbolic group does not decompose as a direct product of two infinite groups ([21]).
Since K� in Theorem 2.3 is a finite K(A�, 1) space, A� is torsion-free. It follows that A�

does not decompose as a direct product of two nontrivial subgroups.
[(ii) ⇒ (iii)] We prove the contrapositive. If � is a join of two non-empty subgraphs

�1 and �2 such that all edges between them are labeled by 2, then A� is the direct product
of A�1 and A�2 .

[(iii) ⇒ (iv)] We prove the contrapositive. If � is a complete bipartite graph with all
edges labeled by 2, then � is a join of two non-empty subgraphs without any edge �1 and
�2 such that all edges between them are labeled by 2. Therefore, A� is reducible.

[(iv) ⇒ (v)] Suppose that � is not a complete bipartite graph with all edges labeled by
2. Under this assumption, it is enough to consider the following three cases: (1) � is not
connected, (2) � is connected and at least one edge of � is labeled by an integer greater
than 2, and (3) � is connected and all edges of � are labeled by 2. In the second case, �

contains a 2-path full subgraph with an edge labeled by an integer greater than 2. In the
third case, we can apply Lemma 3.2, since � is a connected triangle-free graph with more
than one vertex, It follows that � either is a complete bipartite graph or contains a 3-path
full subgraph. By the assumption, � contains a 3-path full subgraph with all edges labeled
by 2.

[(v) ⇒ (i)] First, if � is disconnected, then A� decomposes as a free product of two
infinite subgroups, and thus acylindrically hyperbolic. Second, suppose that � contains
a 2-path full subgraph with an edge labeled by an integer greater than 2. Let us assign
a direction to the subgraph in the same way as �m,n in Figure 8. We direct other edges
arbitrarily. With this direction, � satisfies the assumptions in Lemma 3.1. Lemma 3.1 shows
that A� is acylindrically hyperbolic. Finally, suppose that � contains a 3-path full subgraph
with all edges labeled by 2. Let us assign a direction to the subgraph in the same way as
�2,2,2 in Figure 8. Other edges are directed arbitrarily. With this direction, � satisfies the
assumptions in Lemma 3.1. Lemma 3.1 shows that A� is acylindrically hyperbolic.

Suppose that A� is acylindrically hyperbolic. Since an acylindrically hyperbolic group
does not admit an infinite center ([21]), the center of A� is finite. Since A� has a finite
K(A�, 1) space K� , A� is torsion-free. It follows that the center of A� is trivial.

Let A� be an irreducible triangle-free Artin–Tits group. When � has three or more
vertices, the central quotient of A� is A� itself, which is acylindrically hyperbolic. When �

has less than three vertices, see Remark 1.1.

3.2. Artin–Tits groups associated with cones over square-free bipartite graphs.
In this section, we prove Theorem 1.2 and Corollary 1.3.
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Figure 14. A 2-path directed graph �′ with edges labeled by m, n ≥ 3.

Figure 15. The subgraph L�′ of L� corresponding to the 2-path subgraph �′ of �, and two points l±.

LEMMA 3.3. Let A� be an Artin–Tits group of almost large type. Suppose that � is
a complete bipartite graph with all edges labeled by 2. Then � is a cone over a graph
consisting of only isolated vertices with all edges labeled by 2.

Proof. Assume that � is not a cone. Then, � has a square with all edges labeled by 2,
which contradicts the assumption that A� is of almost large type.

Proof of Theorem 1.2. [(i) ⇒ (ii) ⇒ (iii) ⇒ (iv)] We repeat the same argument as in
the proof of Theorem 1.1.

[(iv) ⇒ (i)] Let A� be triangle-free. By Lemma 3.3, (iv) in Theorem 1.2 implies (iv)
in Theorem 1.1. Therefore, according to Theorem 1.1, A� is acylindrically hyperbolic.

We consider the case where � has a 3-cycle. Let us assign � an appropriate direction.
Let K̃� be the A�-equivariant CAT(0) space in Theorem 2.4. Let L� be the link of the
unique vertex o of K� . We find a rank-one isometry in A� . We fix a 3-cycle of �. Then, as
a subgraph of the 3-cycle, we take a 2-path subgraph �′ in Figure 14. By Lemma 2.2, A�′

has the following presentation:〈
v1, v2, v3, x1, x2, x1 = v1v2, x1 = v2α1,3, . . . , x1 = α1,mv1,

α1,3, . . . , α1,m, x2 = v2v3, x2 = v3α2,3, . . . , x2 = α2,nv2

α2,3, . . . , α2,n

.

〉
(3.7)

Since �′ is not a full subgraph of �, A�′ is not a subgroup of A� . On the other hand, the
presentation complex K�′ of (3.7) is a subcomplex of K� . Let L�′ ⊂ L� be the link in K�′ ,
see Figure 15. As shown in Figure 16, we take a directed loop l in K�′ , which intersects
with L�′ at two points l+ and l−. In L�′ , the distance between l+ and l− is greater than
π , see Figure 15. Even in L� , the distance between l+ and l− is greater than π . Indeed, a
shortest path from l+ to l− in L� through L� − L�′ should go out from L�′ at a point in
{v±

i }i=1,2,3, passes at least one edge in L� − L�′ , and comes back into L�′ at another point

https://doi.org/10.1017/S0017089520000555 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089520000555


ACYLINDRICAL HYPERBOLICITY OF SOME ARTIN–TITS GROUPS 63

Figure 16. A directed loop l in K�′ and its intersection points with L�′ .

Figure 17. A directed 3-cycle in �.

in {v±
i }i=1,2,3. The length of such a path is greater than π , since the distance between l±

and {v±
i }i=1,2,3 in L�′ is greater than π/3. Therefore,

dL�
(l+, l−) > π. (3.8)

As in the proof of Lemma 3.1, l is a local geodesic around o, and the lift l̃ through õ is
an axis of γ = x2α1,3 in A� (see Figure 16). Assume that l̃ bounds a flat half-plane E. By
Pr : K̃� → K� , the unit semicircle in E centered at õ on l̃ is isometric to a path of length π

from l+ to l− in L� , contrary to (3.8).
When A� is acylindrically hyperbolic, the same discussion as in the proof of

Theorem 1.1 shows that the center of A� is trivial. Similarly, Conjecture 1.1 can be
confirmed.

Proof of Corollary 1.3. Let � satisfy assumptions in Corollary 1.3. By assumptions on
edge labels of �, A� is of almost large type. We show that � can be appropriately directed.
Note that �′

2 is bipartite. We color vertices of �′
2 by black and white such that every edge

in �′
2 connects a white vertex and a black vertex. We give a direction to every edge e

of � as follows. If e is in {v0} ∗ �′
1, e is directed arbitrarily. If e is in �′

2, e goes from a
white vertex to a black vertex. Otherwise, e goes from v0 to a white vertex or goes from
a black vertex to v0. Then, every 3-cycle is the one in Figure 5, as shown in Figure 17.
Note that �′

2 has no 4-cycles. Since every 4-cycle shares two edges with such a directed
3-cycle, it is the same as the rightmost 4-cycle in Figure 5. Hence, � is appropriately
directed. Since � satisfies the condition (iv) in Theorem 1.2, A� satisfies (i), (ii), and (iii) in
Theorem 1.2.

Let us state one more corollary of Theorem 1.2.

COROLLARY 3.4. Let A� be an Artin–Tits group of almost large type associated with
� with three or more vertices. Suppose that � is square-free, that is, � does not contain
4-cycles. When A� is irreducible, it is acylindrically hyperbolic, directly indecomposable,
and centerless. In particular, Conjecture 1.1 is true for such an A� .

Proof. If � is triangle-free, then we use Theorem 1.1. Otherwise, every two triangles
of � either share only a vertex or are disjoint, since � is square-free. We can assign a
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direction to all triangles as in Figure 5. When other edges of � are directed arbitrarily, � is
appropriately directed. We apply Theorem 1.2.
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