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Abstract. The multiple-planet systems discovered by the Kepler mission show an excess of
planet pairs with period ratios just wide of exact commensurability for first-order resonances like
2:1 and 3:2. In principle, these planet pairs could be in resonance if their orbital eccentricities are
sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly
small eccentricity. We consider a widely-held scenario in which pairs of planets were captured into
first-order resonances by migration due to planet-disk interactions, and subsequently became
detached from the resonances, due to tidal dissipation in the planets. In the context of this
scenario, we find a constraint on the ratio of the planet’s tidal dissipation function and Love
number that implies that some of the Kepler planets are likely solid. However, tides are not
strong enough to move many of the planet pairs to the observed separations, suggesting that
additional processes are at play.
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1. Introduction
The first 16 months of observations by the Kepler space telescope have led to the

discovery of 361 multiple-transit candidate systems (Fabrycky et al. 2012), and almost
all of them are real multiple-planet systems (Lissauer et al. 2012). Although most of the
planet pairs are not in or near mean-motion resonances, there is an excess of planet pairs
with orbital period ratios just wide of the first-order 2:1 and 3:2 resonances and a deficit
of pairs just narrow of the resonances (Lissauer et al. 2011; Fabrycky et al. 2012). The
excess and deficit occur within a few percent of exact commensurabilities. It is useful to
separate the sample into two groups: one with the radius of the inner planet R1 < 2R⊕
(Earths and super-Earths) and another with R1 > 2R⊕ (Neptunes and above). Both
pairs with R1 < 2R⊕, and pairs with R1 > 2R⊕ show an excess just outside 3:2 and a
deficit just inside 2:1, but there is not an obvious excess just outside 2:1 for pairs with
R1 < 2R⊕ (although the statistics are noisy due to small numbers).

2. Resonant Planet Pairs
For first-order, j:(j − 1), mean-motion resonances like 2:1 and 3:2, there are two

eccentricity-type resonance angles,

θ1 = (j − 1)λ1 − jλ2 + �1 and θ2 = (j − 1)λ1 − jλ2 + �2 , (2.1)

where λi is the mean longitude of planet i and �i is the longitude of periapse (i = 1 and
2 for the inner and outer planets, respectively). At least one of these angles must librate
about a fixed value for the pair to be in resonance, if we ignore inclination resonances.
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The resonance induced periapse precession is usually retrograde, i.e., �̇i < 0. In the
example of the 2:1 resonance in GJ 876, both angles librate about 0◦, and the periapses
are observed to precess at an average rate of �̇i = −41◦ yr−1 (Laughlin & Chambers
2001; Rivera & Lissauer 2001; Lee & Peale 2002; Laughlin et al. 2005). If the resonance
angle θi is librating,

θ̇i = (j − 1)n1 − jn2 + �̇i = 0 (2.2)

on average, or
P2

P1
− j

(j − 1)
= − �̇i

(j − 1)n2
> 0, (2.3)

where ni is the mean motion, Pi = 2π/ni is the orbital period, and �̇i < 0 due to the
resonance. So P2/P1 should in fact be slightly larger than the exact period ratio for a
resonant pair.

In the vicinity of a j:(j − 1) resonance, if we assume coplanar orbits, the Hamiltonian
to the lowest order in the orbital eccentricities ei gives

�̇1 = αn1(M2/M∗)C1/e1 and �̇2 = −n2(M1/M∗)C2/e2 (2.4)

where M∗ is the stellar mass, Mi is the planetary mass, α = a1/a2 , and ai is the orbital
semimajor axis (e.g., Lee 2004). For 2:1, the coefficients C1 = −1.190 and C2 = 0.428.
For 3:2, C1 = −2.025 and C2 = 2.444. Thus �̇i ∝ −1/ei and P2/P1 − j/(j − 1) could
be large and positive, if the eccentricities are small. This is different from higher-order
resonances. For example, for a second-order resonance, �̇1 involves terms that are either
independent of the eccentricities or proportional to e2/e1 (similarly, e1/e2 for �̇2).

Convergent migration of planets due to interactions with the protoplanetary disk can
result in capture into mean-motion resonances (e.g., Bryden et al. 2000; Kley 2000).
This is the most likely scenario for the origin of the 2:1 resonance in the GJ 876 system
(Lee & Peale 2002). If the growth of eccentricity due to continued migration within the
resonance is balanced by the damping of eccentricity by planet-disk interactions, the
eccentricities would reach equilibrium values determined by the ratio of the rates of ec-
centricity damping and migration. A natural question arises as to whether the Kepler
near-resonance pairs are simply resonance pairs with very small eccentricities (and hence
large positive departure of P2/P1 from exact commensurability) due to large eccentricity
damping during disk-induced migration. Most of the Kepler candidate planets are suffi-
ciently small that they are unable to open gaps in the protoplanetary disks and should
undergo type I migration. For classic type I migration, the migration and eccentricity
damping timescales are (Ward 1997; Tanaka et al. 2002; Artymowicz 1993)

a

ȧ
=

1
Ca

M∗
Mp

M∗
Σa2

(
H

a

)2
P

2π
and

e

ė
=

1
9Ce

M∗
Mp

M∗
Σa2

(
H

a

)4
P

2π
, (2.5)

respectively, where Ca ≈ 3, Ce ≈ 0.1, Mp is the planetary mass, Σ is the surface mass
density of the disk, and H/a is the dimensionless scale height of the disk. The ratio

Ke =
∣∣∣∣ ė/e

ȧ/a

∣∣∣∣ =
9Ce

Ca

(
H

a

)−2

. (2.6)

For H/a = 0.05 and 0.1, Ke = 120 and 30, respectively.
We have performed direct numerical orbit integrations using the symplectic integrator

SyMBA modified to include forced migration and eccentricity damping (Lee & Peale 2002;
Lee 2004). Figure 1 shows a convergent migration calculation with M∗ = 1M� and M1 =
M2 = 10M⊕. The planets are initially far from the 2:1 mean-motion commensurability,
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Figure 1. Evolution of ai , ei and P2/P1 − 2 in a calculation where M∗ = 1M�,
M1 = M2 = 10M⊕ and the outer planet is forced to migrate inward. The semimajor axes
and time are in units of the initial a2 ,0 and P2 ,0 of the outer planet, respectively.

and the outer planet is forced to migrate inward with ȧ2/a2 ∝ P−1
2 and Ke = 100. The

pair is captured into 2:1 resonance with both θ1 and θ2 librating. The eccentricities reach
equilibrium values that are too large (e1 ≈ 0.2), and P2/P1 departs from 2 by less than
0.001 at the end. This result is representative of calculations with Ke ∼ 100 for both 2:1
and 3:2. Hence the Kepler near-resonance pairs are not the result of eccentricity damping
within the expected range during disk-induced migration.

3. Tidal Damping of Eccentricity
It has been proposed that the subsequent damping of orbital eccentricities by tidal

dissipation in the planets may reduce the eccentricities to sufficiently small values to
explain the observed departures from exact commensurabilities (Lithwick & Wu 2012;
Batygin & Morbidelli 2012). Tidal dissipation in the planet damps the orbital eccentricity
on timescale

τe =
e

ė
=

1
21π

Q

k2

Mp

M∗

(
a

Rp

)5

P, (3.1)

while conserving the total angular momentum of the system, where Rp , Q, and k2 are the
radius, tidal dissipation function, and Love number of the planet of mass Mp . The above
equation assumes that the planet is synchronously rotating and that Q is constant as a
function of the tidal frequencies. Since ė/e is independent of e and a changes only slightly
for small e, one might expect e to decay exponentially. However, for the planet pairs near
a j:(j − 1) resonance, Lithwick & Wu (2012), Batygin & Morbidelli (2012), and Delisle
et al. (2012) have shown analytically that the eccentricities decay slowly according to a
shallow power law due to interactions between the planets:

e1 ∝ (t/τe)−1/3 , (3.2)

and
P2

P1
− j

(j − 1)
= (Djt/τe)1/3 . (3.3)

The coefficient

Dj =
9j2

(j − 1)3

(
M1

M∗

)2

β(1 + β)C2
1 , (3.4)
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Figure 2. Tidal eccentricity damping timescale τe of the inner planet for the Kepler candidate
pairs near the 3:2 and 2:1 resonances. See text for details.

where β = (M2/M1)α−1/2 = (M2/M1)[j/(j − 1)]1/3 , due to tidal dissipation in the inner
planet only. (Tidal dissipation in the outer planet adds to Dj/τe but does not change the
1/3 power-law behavior.) We have performed numerical simulations where the planets
are initially in 2:1 or 3:2 resonance and the eccentricity of the inner planet is damped on
a constant timescale τe (while the semimajor axis of the inner planet is adjusted at the
same time to conserve orbital angular momentum) to simulate tidal dissipation in the
inner planet. The numerical results are in excellent agreement with the above analytic
result after an initial transient period of a few τe .

An important consequence of this shallow power-law behavior is that many τe must
elapse to produce a departure of P2/P1 of a few percent from exact commensurability.
For example, P2/P1 − j/(j − 1) ≈ 0.03 requires t � 50τe . For P = 10days, M∗ = 1M·,
Mp = 10M⊕, Rp = 3R⊕, τe = 2.26 × 106(Q/k2) yr. Whether a near-resonance pair can
reach its P2/P1 −j/(j−1) within the age of its host star (∼ a few Gyr) depends critically
on Q/k2 of the inner planet, which is very different for rocky and giant planets.

The tidal Q/k2 of Solar System planets have been measured or constrained by the tidal
evolution of their satellites, while those of extrasolar giant planets have been constrained
by the existence of some close-in planets with non-zero orbital eccentricities. The lowest
bound on Q/k2 is 40 for rocky planets from Earth (Murray & Dermott 1999) and 2.2×104

for giant planets from Neptune (Banfiled & Murray 1992; Zhang & Hamilton 2008).

4. Comparison with Observations
Figure 2 shows the tidal eccentricity damping timescale τe (eq. [3.1]) of the inner planet

for the Kepler candidate pairs near the 2:1 and 3:2 resonances. Circles are adjacent pairs,
and triangles are non-adjacent pairs. Filled and open symbols are pairs with the radius
of the inner planet R1 < 2R⊕ and R1 > 2R⊕, respectively. For the “giant” planets
with Rp > 2R⊕, we adopt Q/k2 = 105 and mass from the mass-radius relationship
Mp = M⊕(Rp/R⊕)2.06 of Lissauer et al. (2011), which is consistent with Earth to Saturn
in the Solar System and with the known extrasolar planets. For the “rocky” planets
with Rp < 2R⊕, we adopt Q/k2 = 100 and mass from the mass-radius relationship
Mp = M⊕(Rp/R⊕)3.7 of Valencia et al. (2006). The dashed and solid lines in Figure
2 show τe as a function of P2/P1 according to equations (3.3) and (3.4) for t = 1Gyr
and 13.7Gyr, respectively, if we have two 10M⊕ planets orbiting a solar-mass star (i.e.,
M1/M∗ = 3 × 10−5 and M1 = M2). These lines indicate where such a resonant pair
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Figure 3. Maximum Q/k2 for the inner planet of the candidate Kepler pairs, with the four
panels showing the R1 < 2R⊕ and R1 > 2R⊕ cases for 3:2 and 2:1. See text for details.

would be in P2/P1 , if it started near exact commensurability, its age is t = 1Gyr or
13.7Gyr, and the tidal eccentricity damping timescale of the inner planet is τe . There
are some filled symbols below the solid lines for the age of the Universe, hinting that
some of the near-resonance pairs with R1 < 2R⊕ can potentially reach their current
locations by tidal eccentricity damping in less than the age of the host star. Most of the
pairs with R1 > 2R⊕ (open symbols) are well above the lines and have τe > 1010 yr,
indicating that they are unlikely to reach their current locations by tidal eccentricity
damping. However, the comparison in Figure 2 is not exact, as the theoretical curves are
for a specific combination of stellar and planetary masses, and the observed Kepler pairs
are plotted for assumed Q/k2 .

Instead of τe , we can plot (eqs. [3.1] and [3.3])

Q

k2
=

21π

P1

M∗
M1

(
R1

a

)5

[P2/P1 − j/(j − 1)]−3
Djt (4.1)

versus P2/P1 near the j:(j − 1) resonance with t = 13.7Gyr. This is the maximum Q/k2
or minimum tidal dissipation efficiency that the inner planet must have if the pair is to
evolve to its current P2/P1 in less than the age of the Universe. In Figure 3, the points
show this maximum Q/k2 for the inner planet of the observed Kepler pairs. The four
panels show the R1 < 2R⊕ and R1 > 2R⊕ cases for 3:2 and 2:1. The lines with arrows
pointing upward are the known lowest bound on Q/k2 for planets (2.2 × 104 for giant
planets and 40 for rocky planets). Figure 3 clearly shows that some pairs with R1 < 2R⊕
can reach where they are by tidal eccentricity damping, if planets with Rp < 2R⊕ are
rocky with Q/k2 � 40, but that none of the pairs with R1 > 2R⊕ can reach their current
P2/P1 , if planets with Rp > 2R⊕ are giants with Q/k2 � 2.2 × 104. Furthermore, there
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are clumps of R1 > 2R⊕ pairs just outside 2:1 and 3:2 that are more than an order of
magnitude below Q/k2 = 2.2 × 104.

5. Discussion
We have shown that some of the Kepler near-resonance pairs with R1 < 2R⊕ may be

able to move to their current near-resonance locations by tidal damping of eccentricity if
they are rocky with Q/k2 ∼ 100, but that planet pairs with R1 > 2R⊕ are unable to move
their current near-resonance locations by the same mechanism if they are giants with
Q/k2 � 2×104. What are the alternatives? One possibility is that some of the Rp > 2R⊕
planets are in fact rocky with low Q/k2 . Mass measurements or constraints would be a
way to rule in or out this possibility. Otherwise, another mechanism is needed for the pairs
with inner giant planets. Rein (2012) has suggested migration in turbulent disk, which has
both smooth and stochastic components. The departure from exact commensurability can
be used to constrain the relative strength of smooth and stochastic migration. However,
Rein (2012) has assumed that the smooth migration is always inward, which is only true
for classic type I (and type II) migration. Recent improvements in the analysis of the
corotation and horseshoe torques (plus the differential Linblad torque) have shown that
type I migration can be outward in some regions of certain disk models, and that there
are locations in the disk where the total torque vanishes and the migration is stalled (e.g.,
Paardekooper et al. 2011; Kretke & Lin 2012). This more complex migration behavior
means that it is possible for a pair of planets to undergo both convergent and divergent
migration, as the disk accretion rate decreases with time and the disk depletes. Whether
the breaking of resonances by divergent migration could result in an excess of planet
pairs just outside the first-order resonances will require further investigation.
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